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Abstract We propose a functional integral. representation for the proba- 
bility distribution over the statistical ensemble of Newtonian fluid velocity 
fields satisfying an u1tra.-local gaussian random initial condition. 

1.' Introduction 

The main task in the statistical approach to fluid turburlence (or in the theory 

of random fluid dynamicsl) is to solve the set of infinite hierarchy equations for the 

random Auid velocity correlation functions. There are two schemes to solve these 

equations: the first scheme consists in applying ad hoc closure approximations 

without any contr01~>~; the second, pionered by ~ o ~ f ~ ,  consists in writing the 

above infinite set of equations as a single functional differential equation satisfyíng 

some suitable initial-time condition and trying to solve it by means of a functional 

integral4. 

Our aim in this paper is to present a (formal) functional integral solution for 

the Navier-Stokes equation with a Gaussian (ultra-local) random initial condition. 

This study is the content of section 2. 

2. The functional integral 

Let us start this section by writing the Navier-Stokes equation for the velocity 

field of an incompressible fluid in the presence of a non-random externa1 force 

F,(z, r) with a Gaussian (ultra-local) Random initial condition 



Let us remark that we have eliminated the pressure term --;i by using the 

incompressibility condition (h;) 3 O which, in turn, lead us to  consider only the 

transverse part of the force and non-inertial field terms in Navier-Stokes equation. 

The transverse part of a generical vector field W(z, 7) is defined by the relationship 

Our task, now, is to compute the p-average of the N-point fluid velocity 

fields eq. (l.a), for arbitrary space-time points, by means of a functional integral 

representation for the characteristic functional of the random fluid velocity fields 

ZIJdx, E)], namely3 

(vi1 (21 7 ti), [p])...ViN ( X N  7 (N> [V])) 
9 

where 

The functional measure dp[Vi] in eq. (4) is defined over the functional space 

M of a11 possible realizations of the random fluid motion defined by eq. (1). An 

explicit (formal) expression for the above functional measure should be given by 

the product of the usual Feynman measure weighted by a certain functional S[Vi] 

to be determined5. 

DF[vi1 = (dVi(z, E)) ( 5 4  
z€RS 

O < f < a J  
i=1,2,3 
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In order to determine the Weight Functional S[Vi] we first rewrite the Navier- 

Stokes Equation as a pure integral equation which has an explicit term taking into 

account the initial condition4 

Ai161 = &[P] 

with 

Here, the Kernels O;jk, H(1) ,  H(o) are given respectively by 

Let us now introduce the following functional representation for the generating 

functional Z[Ji  (z, E)]('') 

exp (- /RS d x  Lrn d i ( v i .  J % X ,  E ) )  

where dF)(.) denotes the delta - functional integral representation defined by the 

rule 

with C(Vi) being an arbitrary functional defined on M .  



By writing the (o-average in eq. (9) by means of a Gaussian functional integral 

in p ( z ,  e ) ,  we obtain the following functional integral representation for the weight 

s [V'] 

where we have used the Fourier Functional Integral representation for the Delta - 

functional in eq. (9)4 

6(F)(~' - vi[(o]) = d F ) ( ~ ; [ v ]  - B;[(o]) = DET 

It  is worth remarking that  the functional determinant in eq. (12) is unity as 

a straightforward consequence of the fact that the Green function of the operator 

8/36 is the step function (see eq. (40) in ref. 4). 

We, then, face the problem of evaluating the (o and K functional integrals in 

eq. (12). 

The p-functional integral is of Gaussian type and easily evaluated 

where the Kernel C(xl ,  ti ; x2, t2) is given by 

C(x i ,  €1; 22, t2) = dzH(o)(zi - z, ti)H(o)(z - ~ 2 7  62) (14) 

and is the (formal) Green function of the self - adjoint extension of the square 

Bi* Bi diffusion operator 

a a 
- - - v&,) (- - UA,,)C(Z~, €1;.2, h) = 0 a €1 

(15) 
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with the (~e l l -~osed )  initial and boundary conditions 

Its explicit expression in K-momentum space is given by (see ref. 6). 

As a consequence of eq. (13) we have represented the weight ~ [ v ' ]  by a Gaus- 

sian functional integral in the K,(z ,  c) fieid 

exp(-S[v']) = exp ( - $ /R1 dx idz2  l"I d l l d ( 2  

By noting that (see ref. 4). 

we finally obtain the expression for the weight S[vl]  



By substituting eq. (22) in eq. (9) we obtain our proposed functional integral 

representation for eq. (1) 

ex* ( - ln' dx Lrn d i ( ~ ; . ~ ) ( x ,  i ) )  

The above written functional integral is the main result of this paper. 

A perturbative analysis for eq. (22) may be implemented by using the free 

propagator eq. (17) in the context of a background field decomposition V, = 

Vi + /3yq where satisfies the non-Random Navier Stokes equation 

with 

Vi(z,o) r o, 

with ,B being a coupling constant (P  << 1). It is worth remaking that the cross 

term 

vanishes in ~ [ v ' ]  as a result of the boundary condition 

for the "free propagatorn (see eq. (19) and ref. 6. 

Finally, we point out that our proposed functional integral eq. (22) differs 

from that proposed in ref. 7. 

A complete perturbative analysis will be presented elsewhere. 
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Resumo 

Apresentamos uma solução tipo integral funcional para a Equação de Navier- 
Stokes tendo como condição inicial uma distribuição aleatória gaussiana ultra- 
local. 


