
Revista Brasileira de Física, Vol. 21, no 2, 1991 

Multifractality in Magnet ic Models 

W.A.M. M o r g a d o  a n d  E.M.F. C u r a d o  
Centro Brasileiro de Pesquisas Físicas, Rua Xavier Sigaud 150, 22290, Rio 
de Janeiro, Brasil 

and 

S. Cout inho  
Departamento de Física, Universidade Federal de Pernambuco, 50739, Re- 
cife, B r a d  

Received August 30, 1990 

A b s t r a c t  The connection between the multifractal properties and the 
critical behavior of the local magnetization of the ferromagnetic Ising model 
on hicrarchical lattices is established. A linear relation between the ,ü- 
critica1 exponent of the local magnetization and the a-crowding index 
(Hõlder exponent) is obtained showing that a continuous infinite set of crit- 
ical exponents {oi) is required to describe the critica1 behavior of the local 
magnetization of the system. Each P, exponent corresponding to a class 
of sites of the system is related to a ri-local susceptibility exponent by a 
"hyperscaling" relation where the j ( a , )  function value plays the role of the 
dimensionality of this class of sites. 

In t roduc t ion  

In this paper we discuss the multifractal properties and critica1 behavior of 

the local magnetization of the Ising model on hierarchical lattices. We review the 

main results of our previous work [see reference 11 and discuss new insights to the 

problem. 

The study of spin models on hierarchical lattices is of special interest to statis- 

tical mechanics since the Migdal-Kadanoff renorrnalization group equations2 were 

proved to be exact on the diamond hierarchical lattice (hereafter DHL)3. Severa1 

properties of the Ising model on these lattices were established. For instance, the 

thermodynamic limit of the free energy has been proved to be well defined415. The 
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total spontaneous magnetization has been analytically obtained5 and the total 

susceptibility has been found to be infinite for T > Tc '16 and finite for T < T, 597. 

In reference 1 we have shown that the local magnetization of the ferromagnetic 

Ising model on the diamond hierarchical lattice is a fractal measure, i.e., it has 

a multifractal structure. We found that the local magnetization of a given site 

can be obtained by an exact recursion relation between the local magnetization 

of two sites of previous, distinct, hierarchical levels. From this relation we were 

able to get the f (a)-function which characterizes the multifractality, the average 

magnetization and its critica1 exponent. Our approach allows us to calculate the 

critica1 exponent /3, associated with the local magnetization of every class of sites 

of the lattice. Now we search for the connections between the critica1 exponents 

describing the local behavior of the order parameter and those associated with 

its multifractal structure. The former are more related to the phase transition 

undergone by the order parameter, that is, to the thermodynamical behavior of 

the model hamiltonian close to the transition, while the latter are more related 

to the spatial distribution of the local order parameter over the lattice, that is, 

to the geometry and topology of the lattice. Actually we found a linear relation 

between the local ,!?, critica1 exponent associated with the local magnetization of 

a particular class of sites of the lattice and the corresponding a,-exponent (called 

Holder exponent or crowding index). Furthermore we obtain a relation between 

the 7,-exponent of the local susceptibility, the v-exponent of the correlation length, 

B,, and the f (ai) value for this particular class of siites. The latter corresponding 

to a "hyperscaling relation" for each class of sites of the lattice. 

In section 2 we describe the model Hamiltonian and review the multifractal 

properties of the local and average magnetization ol' the Ising model on the DHL. 

Section 3 is devoted to the study of the connection between the order parameter 

critica1 exponent, the a-exponent and f (a)-function. Finally the conclusions are 

summarized in section 4. 
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2. The Model Hamiltonian and the Local Magnetization 

We consider here the ferromagnetic Ising model on the simplest hierarchical 

lattice, namely the diamond hierarchical lattice. Starting with a bond linking 

the two sites (called roots, vertices or surface sites), the DHL with N levels is 

constructed by replacing this bond by the basic cell (see figure 1-a). Then the 

new bonds of the cell are successively replaced by the basic cell it self. Each step 

introduces new sites which constitute the levels of the DHL (see figure 1-b). The 

reduced Hamiltonian of the spin-112 ferromagnetic Ising model with zero field in 

an N-leve1 DHL is (the zero-leve1 DHL is the initial bond): 

where KN is the reduced cou~ling constant of the exchange interaction between 

a11 pairs < ij > of nearest-neighbor spins of the N-leve1 DHL, and the a's are 

the spin variables (a = f 1). To analyze the structure of the local magnetization 

it is sufficient to look at the sites of one of the shortest paths joining the two 

roots of the DHL. A11 the shortest paths are equivalent since each one contains 

(in a symmetrically arranged way with respect to the middle point) a11 kind of 

sites of the DHL with distinct coordination numbers and depths with respect to 

the roots. We can identify the sites on this path by a pair (s,l) where l is the 

level (l=1,2, ..., N) an s is the position (s=l,3,5,7, ..., 2'-1) of the site within the 

t t h  level with respect to one root (see figure i-c). If l=N, then s represents the 

chemical distance from the considered site (s,N) to one of the roots. The local 

magnetization of a given site of the last hierarchical level ( e  = N) and that of 

its nearest-neighbor sites can be evaluated as a function of the coupling constant 

KN, the effective fields and the effective interaction acting upon these neighbors. 

These effective fields and coupling which enclose the effect of the remaining lattice 

can be formally obtained by tracing over spin variables of the remaining lattice, 

following the spirit of the decoration transformationa. However, by eliminating 

these effective fields and interaction we end up with a recurrence equation between 

the local magnetization of a given site of the ~ ' ~ - 1 e v e l  and the local magnetizations 
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of two sites belonging to  the (N-l)th and jth levels (j:=0,1,2, ... N-2) respectively. By 

induction this equation can be generalized to each site of the lattice giving rise to 

where sf = (s f 1)/2, sff = (s 7 1)/2(-; and 

with tf = tanh Kl.  For temperatures below the ferromagnetic critica1 temperature 

T,, the local magnetization profile of the DHL can be obtained from eqs.(2) and 

(3), and with the help of the renormalization equation for the coupling constants 

of the DHL, given by 

tepl = 2ti/( i  + t:) (4) 

A. T h e  Local Magnet izat ion Profile at t h e  Crit ical  Po in t  

The local magnetization profile at the critical point for one of the shortest 

paths joining the two vertices of the DHL can be straightforwardly given from 

eq.(2) by replacing A! for A, where 

t ,  being the exact unstable fixed point solution of eq.(4), that is 

t, = (a, - 2/a, - 1)/3 = 0.543689 ... 

with a, = ( 3 m  + 17)'13. For an N-leve1 DHL the sites of a given shortest path 

on the tth-leve1 can be arranged over the interval [0,1] such that the pair (s, e) 
corresponds to the point s.2Te (with s = 1.3.5 .... 2' - 1 and = 1.2 ..... N). 

In figure 2 we display the local magnetization profile of the DHL with N=10 

levels at the critica1 point with fixed ferromagnetic boundary conditions which 

correspond to assuming both spins a t  the roots [O and I ]  with fixed values a = 1. 

Actually, to obtain the local magnization profile it is sufficient to fix just one spin 

of the lattice in order to break symmetry. However this leads to an asymmetric 

profile. We remark some properties of the profile shown in figure 2. 

250 
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Fig. 1 - Diamond Hierarchical Lattice (DHL). a)  One bond replaced by the basic 

cell. b) The DHL up to three levels. The open circles are the roots. The broken 

line indicates an arbitrary shortest path joining the roots. c) The sequence of 

sites (s, e)  appearing in a shortest path between the roots A and B for the 3-leve1 

DHL. 
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i) The local magnetization is symmetric by reflection with respect to the middle 

point, due to the present boundary conditions. 

ii) The average magnetization vanishes in the N -+ oo thermodynamic limit as it 

should be. This will be shown later. 

iii) The magnetization profile has no smallest scale. Figure 3 shows the magnifi- 

cation of figure 2 between two deep sites. 

iv) There is a discontinuity everywhere in the infinite leve1 limit. For every value 

of m there is a m A , / ( l  - A , )  ~u 0.72m discontinuity both to the left and right 

side limits. 

v) The fractal dimension of the profile is about 1.8791 ... (box counting). 

vi) The local magnetization is a fractal measure. (See 1I.B). 

POSITION 

Fig. 2 - Local magnetization (at the critica1 point) against spin position (in 

an arbitrary scale) within a shortest path joining the two roots of a DHL with 

N=10 levels. Note: the average magnetization of this profile does vanish a t  the 

N + rw, thermodynamic limit, which is not evident from this N=10 plot. 
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L L . ,  i I 

Fig. 3 - Magnification of figure 2 between 0.250 and 0.375, on a renormalized 

scale. 

B. Mult i f ractal  properties.  T h e  f (a)-function 

Consider a magnetization profile of an N-leve1 DHL covered by a set of boxes 

{ci) each one with the same box width E .  A local measure within the box cp can 

be defined by 

where mp is the average local magnetization within the box cp and mp is the 
P 

total magnetization of the profile. Let Sj be the set of boxes for which the measure 

vanishes with exponent aj as the box width goes to zero, that is 

Let N, be the nurnber of elements of the set Sj, and f (aj) the exponent such that 

k;. diverges as E -t 0, that is 
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The dependence of f ( a I )  with a, can be obtaiaed by displaying the measure 

distribution in a reduced double logarithmic plot (with reducing factor equal to 

h & ) .  In the E -, O limit this plot should converge to the f (a)-function, which 

reflects how densely the singularities of the measure are dístributed. In figure (4) 

we show the f (a)-function for the local magnetization of'the DHL with N=29 levels 

for temperatures close to the critica1 point. Despite the slow convergence, figure 

(4) contains most features of an f (a)-function, say: a concave curve with a single 

maximum equal to the Hausdorff dimension of the support (which is one in our 

case), and an infinite slope at  the points in which f (a )  = O. In this figure (dashed 

line) we also show what we expect the true f (a)-function ( N  + oo limit) to look 

like. The values a,i, and a,,,, which reflect, respectively, how the measures of 

the most concentrated and the most rarified intervals scale with the box width, 

are calculated exactly. We get 

a,,, is in extremely good agreement with th numerical end point of the graph for 

N=29 levels. For a,i, as well. as the value f,,,(a) = 1, convergence is slow. In 

the inset of figure (4) we show the values of f,,,(a) as a function of N-', which 

indicate this convergence. 

C. The average magnetization 

The average magnetization (per site) of the entire lattice is defined by 

where @(N) = $(2 + 22N) is the number of sites in an N-leve1 DHL. With help 

of eq.(2) we can show that the temperature dependent average magnetizatiori is 

given by 
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Fig. 4 - f (a)-function of the DHL local magnetization profile for N=29 levels. The 

dashed curve represents the expected N => oo limit. The inset gives the maximum values 

of f (a) as function of N-', showing the slow convergence towards one as N =+ oo. 

recovering a previous result5. 

At the critica1 point Ai = A, = 0.419643 ..., then with help of eq.(3) we get 

from eq.(lO) that 

rn(T,) = lim [i(l+ 2A.)] = lim (k) -+ 0 
n-m n-+m 

as should be expected. From eq.(2) and (9) one is able to show that the total 

magnetization also follows a recursion equation given by 
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which a t  the critical point gives for the average magnetization the recursion equa- 

tion 
1 1 

m&' = - ( I  + 2 t ~ ~ ) m ~ - ~  - -te177ZN-2 ( N  -4 W) 4 8 (13)  

3. Critical Behavior 

A. Average critica1 behavior 

The critica1 exponent /3 associated with the average magnetization can be 

evaluated assuming that the total magnetization at  the critical point shows a 

power law behavior with respect to the linear size of'the system L that is, M(L) - 
'. Close to Tc the average magnetization n ( L )  = M ( L ) / L ~  (d being the 

dimensionality of the system) behaves in the L -+ oo limit as ( t ) P  where t = 

(T - Tc)/Tc. On the other hand the correlation length, which at  the critica1 

point scales as the linear size of the system behaves like E - L - (t)+ where 

v is the correlation length exponent. Therefore one can write that the average 

magnetization has a t-u(D-d) - tP dependence, which leads to 

For our system we get from eq.(9) that 

giving that D = 1 - ln tc /  In 2 = 1.87914 ... On the other hand, v can be obtained 

from the coupling constant renormalization equation (see eq.(4)) giving l / u  = 

2 ln(1 -+ tC)/ In 2 = 0.747235 .... Since d = IR 4/ In 2 = 2 for the DHL, the result 

from eq.(14) is that 

This exact value of P for the average magnetization of the entire lattice, which 

was already obtained by other approaches5~10, can also be calculated exactly from 

the recursíon equation for the average magnetization. Actually assuming that 

dose to the transition temperature mN - ( b t ~ ) ~ ,  where 6 t ~  = tc6tN-1 with 

256 
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r, = IdtN/dtN-i]t ,  = (1 + tz)2, we get from eq.(13) the exact value of P given 

by eq.(16). The y critica1 exponent associated to the susceptibility per spin can 

be also estimated by using the finite size scaling argument. The susceptibility 

per spin is equivalent to the average of the squared magnetization. Henee a t  the 

critical point the susceptibility per spin x - L ~ ~ - ~  and therefore x has a tu(2D-d) 

dependence giving 7 = v(2D - d) .  For our particular system we end up with 

which is the 7 exponent for the average susceptibility per spin of the Ising model 

on the DHL. 

B. Local critical behavior 

- Relation with the f (a)-svectrum 

In this section we focus our attention on the critica1 behavior of a particular 

subset of sites Si represented by a point in the f(u)-spectrum, that is, for which 

their measure behaves with exponents a, and f ( a j )  as  defined by eqs.(6) and 

(7). Assuming that the average magnetization m, of the set Sj behaves with P, 
exponent at the critica1 point, that is, rnj - ( t ) P ~  one can write that 

where the summation runs over the subsets with distinct values of a,, i.e., mjYj 
i 

equals the total magnetization of the system. From eq.(6) we have that p, - L-%. 

Therefore from eq.(18) we get ( L ) - ~ ~ I ~ - *  - L-aj yielding in the L -t CCI limit: 

which relates the critical exponent of the local magnetization to the exponent. 

For the present model this relation can be evaluated explicitly. At the critica1 

point with N -, oo we have m j  - (6tN)Oj, 6tN - ( ~ , ) ~ 6 t ~ ,  r, = (1 + t;l2, 
M j  = E m j  - (2/t,)N and E = 2 - N ~ 0 .  With help of eqs.(5) and (6) we get 

i 
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Comparing eqs.(l9) and (20) we recover our previous results (see 3.A), respectively 

D = 1 - ln te /  ln 2 with Y = ln 2/ In r,. 

Now combining eqs.(l9) and (14) to eliminate D we end up with 

For the local magnetization profile (figure 2) the f(a)-function can be rescaled 

with help of eq.(21) (with d=i) yielding a "f (0)-function" shown in figure (5). 

We remark that the set of sites represented by a,;, and f (a,,,) = O for which 

the measure is most concentrated has Pmin = O. This correponds in our model to 

the set of sites with finite magnetization at T,. We recall that this happens as a 

consequence of the fixed boundary conditions at the roots, which induce a finite 

magnetization at the Umagnetically neighboring" surface sites. On the other hand 

the set of points represented by a,,, and f (a,,,) = O for which the measure is 

most rarified corresponds to 

Fig. 5 - ''f(B)-function" of the DHL local magnetization ~rofi le  for N=29 levels. 

258 



Multifractality in Magnetic Models 

Actually the set of sites described by P,,, corresponds to the 'magnetically 

deepest" sites of the DHL. One can show that the local magnetization of these 

sites at  Tc can be reached by the recursion relation 

starting from every pair of neighboring sites at  a11 levels. Taking rnc - (tt)P, and 

tc = r C t c p l  we obtain from eq.(23) and the definition (3) the exact expression of P 
given by eq.(22). From eq.(23) is also easy to see that  rnl -+ O as C -t CO. 

From eq.(21) it is evident that the class of sites for which the local mag- 

netization behaves at  Tc with he same exponent of the whole lattice is the one 

characterized by a = d. In the present model, for the local magnetization profile 

this corresponds to a = 1 (or /3 = 0.161 ..., see eq.(16)). 

- Local hyperscaling relation 

The average magnetization m j  of the class of sites Sj behaves a t  Tc with a 

Pj critical exponent, that is mj - (t)Dj. On the other hand we can write that  

mj = Mj/k;.. Now assuming that a t  Tc the total magnetization of Si behaves 

like Mj - ~ ~ 1 ,  Dj being a characteristic exponent and L is the linear size of the 

relevant cluster which corresponds to the correlation length at  Tc(L - ( - t-") 

we get that 

Pj = -v[Dj - f (a j ) ]  (24) 

The susceptibility per spin of this class Sj behaves a t  Tc with a critica1 exponent 

rj (x j  - (t)-7j). Since the susceptibility per spin is equivalent to the average 

squared magnetization ( x j  - ~ ~ ~ j - ~ ( ~ j ) )  we get 

r, = v[2Dj - f (a j ) ]  

By eliminating D j  from eqs.(24) and (25) we end up with 

which corresponds to the 'hyperscaling relationn for each class of sites charac- 

terized by aj and f (q). Note that  f (a j )  plays the role of the dimensionality of 

s,. 

259 
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4 .  Conclusions 

The multifractal properties of the local magnetization of the ferromagnetic 

Ising model on hierarchical lattices were reviewed and extended from ref. 1. In 

that reference the f (a)-spectrum of the normalized local magnetization profiIe was 

numerically obtained by an exact recursion procedure, showing a multifractal be- 

havior at the critica1 temperature. The boundary values &,i, and a,,, for which 

the f (a)-function vanishes were analitically obtained confirming the numerical re- 

sults. The multifractal behavior described by the f (a)-function implies that there 

exists an infinite class of sites of the system such that the normalized local mag- 

netization (measure) of each one scales with a particular exponent. Now we have 

shown that the local magnetization of each class of sites characterized by a point of 

the f (a)-function, say a, and f (ai), has a distinct p, critica1 exponent at Tc. A lin- 

ear relation between ai and pi was established as shown by eq. (21). We note that 

the class of sites for which the local magnetization behaves like the average mag- 

netization, that is with Pi = p, scales with the dimensionality of the system, that 

is with ai = d. We remark that eq. (21) which constitutes the main result of this 

paper should hold for a general system presenting a second order phase transition 

with a multifractal order parameter. With help of cq. (21) the f (a)-spectrum can 

be rescaled leading to an "f (P)-spectrumn as shown in figure (5) for the present 

model. Since an infinite number of exponents is required to describe the critica1 

behavior of the order parameter we are driven to look the " f (p)-spectrumn of the 

Iattice as a good candidate to express the "universality classn of the model. More- 

over we have also shown that for every set of sites d.escribed by a pi exponent there 

exists a 7, exponent associated with the local susceptibility which related to Pi 
through a "hyperscalingn relation, where the corresponding f (cri)-function value 

plays the role of the "dimensionalityn of the corresponding class of sites. This is 

given by eq. (26). We note that a11 sites characterized by critica1 exponents Pi 
and r i ,  are spread out over the whole system and undergo a phase transition at 

the same critica1 temperature. Therefore the correlation Iength should diverge at 
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T, with the same exponent v ,  otherwise a particular class of sites would domi- 

nate the behavior of the system at  the transition. Regarding the behavior of the 

whole system, we have calculated recursion equations for the total and average 

magnetization which allow us to obtain the critica1 exponents of the whole system 

verifying that they obey the hyperscaling relation. 
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R e s u m o  

Investigamos a relação entre o comportamento crítico e as propriedades mul- 
tifractais da magnetização local do modelos de Ising ferromagnético em redes 
hierárquicas. Mostramos que existe uma relação linear entre o intervalo de variação 
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dos expoentes de Hõlder-a e o conjunto contínuo, infinito, de expoentes críticos 
{Pi) necessário para descrever o comportamento-crítico da magnetização local do 
sistema. Mostramos ainda que para cada classe de sítios da rede hierárquica existe 
uma relação de "hiperescala" conectando P,, o expoente crítico da susceptibilidade 
de correlação v. Nesta relação f (a;) desempenha o papel da "dimensionalidade" 
da classe de sítios correspondente. 


