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Abstract  A stochastic model for the dynamics of Superparamagnetic par- 
ticles based on a classical generalized Lagrangian formalism is proposed. It 
is a generalization of the model proposed by Brown, allowing for fluctuations 
on the magnitudes of the magnetic moments of the particles. 

1. Introduction 

Superparamagnetic particles are ve-y fine particles of a ferromagnetic material, 

containing a single ferromagnetic domain. Because of their small size,the directions 

of the magnetic moment show a random time dependence and their magnitudes 

may also fluctuate around some most probable value. When a magnetic field is 

applied on a sample of such particles it shows paramagnetic behaviour, with a 

very big Curie constant, since the individual magnetic moments are severa1 orders 

of magnitude bigger han the Bohr magneton, p~ 

The study of the dynamics of this magnetic moment, @(t ) ,  is a very interest- 

ing problem in non-equilibrium statistical mechanics, whose conclusions may be 

verified by suitable experiments, like magnetic resonancel, Mõssbauer effect2, etc. 

The first stochastic theory proposed for it is due to ~ r o w n ~ ,  who postuiated a 

Langevin type equation obtained from the phenomenological Gilbert's equation6, 

by adding to it a noise field term. The weak point of this approach is that it is 

not suitable for taking into account fluctuations on the magnitudes of ji, which 

may be very important in case of very fine particles. A11 subsequent theoretical 

developments derive from Brown's work3 and suffer from the same drawback. 
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The basic point to write down an equation of motion for a magnetic moment is 

to recognize that ji s proportional to some angular momentum and that the time 

derivative of the angular momentum of any system is equal to the torque applied on 

it. Well known are the phenomenological equations of ~ l o c h ~ ,  Landau-Lifshitz5 

and Gilbert6. We propose now an alternative way of obtaining an equation of 

motion for ji(t). The entra1 idea is to assume that the general form of the equation - 
will not depend on the details of the origin of ji(t). Therefore we write ii = yS, 

where the angular rnorneritum or "Classical Spin" S will be simulated by that 

of a rotating symmetric body, in the limit of zero moment of inertia and infinite 

angular velocity, *. By this trick we can write down a classical Lagrangian and 

derive the equations of motion from it. Landau-Lifshitz equation (or Gilbert's 

equation) as well as Brown's stochastic equation will follow as articular cases of 

our general treatment. 

Langevin equations 

The Lagrangian of a rotating symmetric body is7 

where Ii and 13 are the moments of inertia, 8, and $J the usual Euler angles and 

V(0,d) some potential ciicrgy. The generalized Lagrangian equations of motion 

read 

where the generalized coordinates q, are in the present case the Euler angles 

8, 4 and $, and the "generalized forces" Q, are the dissipative and stochastic 

contributions to the total torque, which are not included in the Lagrangian. We 

assume for Q, the forma 

83 
&a (t) = - - + Na ( t )  a& 

where the first term is the dissipative torque, derived from a Rayleigh dissipative 

function8 
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1 
7 = - A ( @  + $2sin2B) + %(*) 

2 (4) 

where A is a dissipative constant and &(&) is a function to be defined below. The 

second term, N,( t ) ,  is the noise torque. When the equations (I), (3) and (4) are 

substituted into (2) we get a system of three equations of motion. After taking 

the limit 4 -+ O, I3 -+ O and & -+ oo so that  44 = S (finite), these equations of 

motion become 

A$ + s$sinO = -vo + ~ ~ ( t )  (5.a) 

s cos 19 - S~SZILB + ~ $ s i n ~ 6  = -V4 + N4(t) (5.6) 

S = -B(S-So)  + N s ( t )  (5 .~1  

where Vg = dV/ae and V4 = dV/ad. In the derivation of eq. (5.c) we have 

assumed that  
B 

30 = -(s - so) 2 

2 (6) 

which may be justified wheever S( t )  does not deviate too much from the equilib- 

rium value So. The model has, therefore, two relaxation constants, one ( A )  for 

relaxation in direction (6,d) of S ( t )  and the other (B) for relaxation in the mag- 

nitude of S(t). Correspondingly, we assume also two stochastic torques (noises) 
-+ 

É(t) and r ( t ) ,  which we will cal1 Utransversal noisen and LLlongitudinal noisen, re- 

spectively; their cartesian components &(t)  and r j ( t )  will be assumed to behave 

as independent white noises, 

< ~ , ( t )  > = o < r j ( t )  > (7 .4  

< &(t)tj(t!) > = 2DSZj6(t - tt) (7.6) 

< r i ( t ) r j ( t r )  > = 2Di ,6( t  - tl) ( 7 . ~ 1  

< Ei(t)rj(tl) > = o ( 7 . 4  

The spberical noise components, which appear in equations (5), are related to the 

respective cartesian components by 

No = S ( &  cos B cos q5 + ty cos O sin 4 - E, sin O) ( 8 . ~ 1  

N4 = S(-(, sin 0 sin q5 + Ey sin 0 cos 4) (84 
Ns = ~ z s i n 6 c o s q 5 + I ' y s i n B s i n ~ + ~ , c o s B  (8.~1 
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By substituting equations (8) into (5) we get, after some algebraic manipulation, 

the following stochastic differential equations for the spherical coordinates (O, 4, S) 

of S : 
3 3 

9a = Fa(q) + C ~ a i ( q )  ti(t) + C ~ a i ( q ) r i ( t )  (9) 
i= 1 i= 1 

where a = 8,4,  S ,  i=z, y, z and FaGai and Hai are known functions of 8 , 4  and S 

listed in the Appendix. From the set of equations (9) we can obtain the Fokker- 

Planck Equation for the probability distribution P(O,+, S,t) ,  a work which will not 

be presented here because of space limitation. Some particular cases, however, may 

be examined easily and are very interesting. Notice, first, that a formal solution 

to the equation (5.c) is 

From this equation and the properties 

which can be easily obtained from equations (7) and (8), we get 

- 
D 

u;(T) =< ( S  - ~ 0 ) ~  >,q= lim < (S - S O ) ~  >= - 
t-tm B 

where the equilibrium variance u;(T) is an increasing function of temperature 

T which depends of the particular features of the particules, like form, volume, 

crystalline structure, etc, The relation B = Dla;, for T > O, is the analogous 

of Einstein relation in the usual Brownian motion, being a manifestation of the 

Fluctuation-Dissipation Theorem. In the limit of no longitudinal noise, D = B = 

O, S = So=constant, the set of equations (5) reduces to two equations for O(t) and 

d(t) ,  which are identical to the spherical components of Brown's phenomenological 

equations3 
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with the following identifications: 

N4 (t) h$(t)  = - 7s sin 0 

Of course, when D -t O it follows that we can put h( t )  = O and identify 

equation (14) with the (deterministic) Gilbert equation6, equivalent to the Landau- 

Lifshitz (deterministic equation5 

+ 
where H = - aV/a j ,  ,ü = ,S, 7, = 6 and AL = 

A2+S2 

In conclusion we may say tbat, by a procedure based on classical analytical me- 

chanics, we obtained general equations for the dynamics of the magnetic moments 

of single domain particles, which extend previous results, allowing for more general 

fluctuations, and reduce to them when the appropriate contraints are imposed. 

Appendix A 

b(S)  Fo = -a(S)V' + -V6 - Bb(S)(S  - So)ctgB 
sin B 

F$$= -- ctge 
b ( S )  Vs - *Vd - Ba(S) ( S  - So) - 
sino sin2e sin 19 

Gsz = Sa(S )  cos B cos 4 + b(S) sin 4 

Gey = Sa(S )  cos 0 sin 4 - b(S) cos 4 

Gfl, = -Sa(S)  sin B 
b(S) cos B cos 4 - a(S )  sín 4 

GbZ = S-- 
sin B 

b(S) cos 0 sin 4 + a ( S )  cos 4 
Gd, = S--- -- 

sin B 
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G4,  = -Sb(S) 

Gsz = G S y  = GSz  = O  

HRz = Sb(S) cos B cos 4 

HRy = Sb(S) cos B sin g5 

HBz = ~ b ( s ) c t ~ ~ B s i n B  

H$, = -Sa(S)ctgB cos 4 

= -Sa(S)ctgB sin 4 

H$, = - ~ a ( s ) c t ~ ~ 6  

Hsz = sin 6 cos 4 

H S y  = sin 6 sin q5 

Hsz = cos 0 
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Resumo 

Propomos um modelo estocástico para a dinâmica de partículas Superpara- 
magnéticas baseado em formalismo Lagrangeano clássico generalizado. Trata-se 
de uma generalização do modelo proposto por Brown, que permite flutuações nas 
magnitudes dos momentos mag,néticos das partículas. 


