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Abs t rac t  We have developed an approach, based on the LMTO-ASA 
formalism and the recursion method, which allows us to perform first- 
principles spin-polarized sef-consistent calculations of electronic structure 
in real space. To illustrate the method we obtain the electronic structure 
of ferromagnetic FeNis and anti-ferromagnetic FeMn. The results compare 
well with those obtained by other methods. The scheme described here 
can be appiied to non-periodic systems and is very useful to obtain local 
magnetic moments in complex metallic systems. 

1. Int roduct ion 

Real space methos such as the recursion rnethod' do not require symmetry 

and their cost when solving an eigenvalue problem grows linearly with the number 

of non-equivalent atoms being considered. For these reasons, real space methods 

are very useful to describe the electronic properties of complex systems, for which 

the usual k-space methods are inapplicable or extremely costly. Real-space meth- 

ods are not very practical in general, but they are extremely efficient when the 

system in consideration can be well described by a tight-binding (TB) Hamilto- 

nian. Because localized d-bands play a central role in the electronic structure of 

transition metal alloys, for a long time parametrized TB Hamiltonians and real 

space methods have been used to study the magnetic properties of these systems. 

A lot of progress in understanding the magnet.ic properties of metallic systems was 

made by using this approach and simple d-band parametrized model Hamiltoni- 

ans. Usually, the parameters are obtained from a LCAO fit to more exact k-space 
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calculations or adjusted to fit experimental results and it is assumed that they 

can be transferred to describe the more complex systems one wants to study2. In 

the case of magnetic systems the Stoner parameter (I) is also needed. This is an 

additional problem, because the results for the magnetic moments are sensitive 

to the choice of I and, often, the results can be made to agree with experiment 

through small variations of this quantity. The LCAO parametrization has often 

been extended, with encouraging results, to treat s and p electrons but the lack of 

a sound theoretical background to justify the procedure leaves some fundamental 

questions unanswered. Which are the approximations being used when one forces 

the Hamiltonian to be tightly bound through a fit? Should the usually extended 

s-p electrons be treated within the TB scheme? How do we treat the wave function 

and quantities which depend on it? Do the parameters in binary alloys change as 

a function of the magnetic moment? 

A major progress towards obtaining a tight-binding Hamiltonian based on a 

solid theoretical understanding of the problem carne in 1984, with the advent of the 

LMTO-ASA-TB formalism3. The LMTO-ASA is a linear method implemented 

around an energy E, that treats s-p and d electrons in the same manner. In 

this formalism, the Hamiltonian can expressed in terms of different sets of basis 

functions4. One can always choose an appropriate set for which the relevant part 

of the Hamiltonian is tightly bound for s-p and d electrons. The sound theoretical 

framework of the LMTO-ASA formalism allows us to evaluate wave functions 

and to know exactly which approximations being made. Within the LMTO-ASA 

theory, simple parametrized Hamiltonians can be built without the need for fits 

to more exact calculations or experiment516. The lack of adjustable parameters 

make the results more reliable. Parametrized LMTO-ASA calculations have been 

used with success to study the electronic structure of severa1 systems. In the case 

of magnetic systems, it has been used in conjunction with the Stoner criterion 

to obtain the electronic structure of Fe~i;. But in some cases, such as that 

of antiferromagnectic FeMn, the parametrized LMTO-ASA approach fails. This 

suggests tha a more rigorous first, principles self-consistent approach may be needed 

to obtain reliable results for the magnetic properties of complex metallic systems. 
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The possibility of using the LMTO-ASA T B  formalism in conjunction with the 

recursion method in order to perform self-consistent calculations in real space was 

first pointed out by Fujiwara7. At that time, some technical aspects regarding the 

determination of reliable LMTO-ASA T B  structure constants were still unknown. 

They were interested in a very complex amorphous Fe-B alloy, and therefore never 

attempted a site by by site self-consistency or a spin-polarized calculation. They 

made a self-consistent calculation for the average Fe and B in the cluster ignoring, 

for the sake of simplicity, the local variations of the potential. 

In this paper we develop a spin-polarized, first-principles, self-consistent real 

space calculation. The procedure is very similar to the regular k-space LMTO-ASA 

formalism, but the solution of the eigenvalue problem is implemented in real-space 

with the help of the recursion method'. This approach has been tested in non- 

magnetic ZrgFe, giving occupation numbers for s-p and d-bands which agree within 

one hundredth of electrons with those obtained in k-space8. The paper is organized 

in the following way: in Sec. 2 we give a description of the LMTO-ASA and of 

its several representations; in Sec. 3 we describe the real-space self-consistent 

approach and present some results for FeNis and FeMn; finally, in Sec. 5, we 

present our conclusions. 

2. The LMTO-ASA-TB fo rma l i sm 

The LMTO-ASA-TB formalism is a well known first-principie method and has 

been described in several papers3~4~9~10. Therefore we will be as brief as possible in 

our discussions of the method. The LMTO is a linear method and its solutions are 

valid around a given energy E,. Here, as in most of the literature, E, is chosen 

a t  the center of gravity of the occupied part of the given ( s , ~  or d) band. We use 

a first order T B  Hamiltonian where terms of order of (E - E , ) ~  and higher are 

neglected. We also work in the atomic sphere approximation (ASA), where the 

space is divided into Wigner-Seitz cells, which are then approximated by Wigner- 

Seitz (WS) spheres of same volume. The function p,(r), is defined as  the radial 

part of the solution of the Schrodinger equation for a spherical potential inside a 

given sphere a t  energy E, and its energy derivative @ , ( r )  defined at  energy E, 
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are very fundamental quantities in the LMTO-ASA formalism. To understand 

the LMTO-ASA formalism from a real space point of view we should start by 

describing the choice of the LMTO-ASA basis functions. Instead of obtaining 

the basis set from solutions of an isolated atom (as in the LCAO), we consider 

the solutions for an isolated muffin-tin sphere of radius s, with a given spherical 

potential for r < s and a flat potential outside. It is assumed that  the kinetic 

energy for one electron outside the muffin-tin sphere is approximately zero and 

the solution of the Schrodinger equation outside the muffin-tin sphere reduces to  

the non-divergent solu.tion of Laplace's equation where l = 0,1,2  for S ,  

p and d orbitals, respectively. The solution inside the sphere should match the 

one outside at  the boundary o l  the sphere. This set of muffin-tin orbitals will be 

used as an envelope in order to force the LMTO-ASA basis set t o  be continuous 

and differentiable in a11 space. To build the LMTO-ASA basis functions from 

given muffin-tin orbitals we use a procedure involving p , ( r )  and +, ( r )  which is 

described below. First we consider the orbital centered at  a site R. The tail goes 

as Ir -  RI-^-' outside the ceiitral sphere and is a regular function within every 

other sphere centered around any R' # R. Around the site R', the tail can be 

expanded in a serie using regular solutions 14 - ~ ' 1 ~  the Laplace equation. If we 

use a scale a and define r~ G je - RI, the tail of a muffin-tin orbital centered at  R 

can be expressed aroud any other site R' by the expansion

Q 

: 

where L = (e, rn) is a collective angular momentum index and s $ ~ , , ~ ~  are the well 

known coefficients of the expansiong. These coefficients depend on the position of 

the sites on the given structirre, but not on the type of atoms being considered. 

Now that the envelope function is written in a convenient form, to build the 

corresponding LR4TO-ASA orbital, we snbstitute the solutions of the envelope 

inside every WS sphere by a linear cornbination o cp,(r) and +,(r), chasen in 

order to preserve the value of the function and its derivative a t  the boundary of 

the sphere. When built in this way, the LMTO-ASA basis is nearly orthogonal to 
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the core levels and provides a much better basis for the actual solutions than the 

original muffin-tin orbitals. Using the LMTO-ASA basis set { x : ~ )  we can build 

the IIamiltonian H' and the overlap matrix 0' in the usual way. These quantities 

can be expressed in terms of So and of potential parameters which depend on the 

values of the functions p, (r )  and @ , ( r )  substituted a t  the WS sphere boundary. 

Until now we have described the standard LMTO-ASA formaIism which does 

not give rise to a T B  Hamiltonian. The structure matrix S0 entering the Hamil- 

tonian decays as r-2e-' with distance and is very long ranged for s ( t  = 0) and 

p(C = 1) orbitals. Andersen and ~ e ~ s e n ~  have shown that  one of the character- 

istics of the LMTO-ASA formalism is that  that the choice of basis set can be 

changed to suit ones' purpose. A controlled mixing of the original basis set can 

yield a new basis, built to have a particularly desirable property. For a general 

basis { X R , L }  the amount of rnixing is determined by a set of parameters W!. These 

pararneters define the basis and can be adjusted to produce a set with the desired 

property. Because the sets are related through mixing, they can be obtained from 

each other. There are three very important LMTO-ASA representations. The first 

is the standard representation with no mixing (Qe = 0) which we have described. 

The second is the nearly orthogonal representation where Qe is chosen to make 

the overlap matrix close to unity. Finally we have the TB or most localized rep- 

resentation, with a mixing chosen to make the interactions between neighboring 

sites as short ranged as possible. Here, following the literature4, we use quantities 

without bars to denote the potential parameters Qe,Cj Ae in the nearly orthogo- 

na1 representation. The mixing Qe and the other potential parameters C[ and A( 

in the orthogonal representation given in terms of the solutions a t  the boundary 

of each WS sphere, being different for every non-equivalent atom in the system. 

From now on we will use quantities with a bar to designate quantities in the most 

localized representation. The structure constant matrix S for a basis set defined 

by a mixing is written in terms of the original canonical structure matrix sO 

of eq.1 as4 : 

s = SO(I - Q s O ) - '  (2) 
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in two independent parts. First we find the structure constant matrix S for the 

given system. It has been shown that S decreases exponentially with distance 

and that to find the 9 x 9 matrices connecting each nonequivalent atom to  its 

neighbors it is sufficient to invert a cluster of about 20 atoms around each of the 

atoms. Because the values of Q are given by constants that do not depend on 

the potential, does not change during the self-consistent process. Given 3, t o  

build the Hamiltonian we should find the potential parameters C and A. They 

can be found from the orthogonal potential parameters C ,  A and Q using Eq. (3). 

But to obtain C, A and Q we have to solve the Schrodinger equation inside each 

non-equivalent sphere. This part of the problem is often called " the atomic part" 

and is treated in the same manner as in k-space. Actually we use regular LMTO- 

ASA codes when solving for the "atomic ~ a r t . "  in real-space. This part gives a11 

the non-trivial information about the potential. Therefore the approximations for 

the exchange and correlation terms used in real-space are exactly the same as the 

ones used in regular k-space LMTO-ASA formalism. The potential inside a WS 

sphere and, therefore, the potential parameters, are uniquely determined if we give 

the occupation for each local ( s , p  and d) band a t  the site, the first and second 

moments of the local density of states relative to E, and the logarithrnic derivative 

of p,(r) at  the sphere boundaryH. This is so because the spherical average of the 

charge density inside the sphere is given in terms of the radial part of the solutions 

of the Schrodinger equation inside the sphere, and the moments of the local density 

of states(LD0S). With given moments and a guess for the solutions a t  E = E, 

inside the sphere, we can find the charge density. Using Poisson's equation we 

can find the electrostatic potential. If we sum the exchange and corretion terms 

and use the given boundary conditions we can obtain better solutions for the 

Schrodinger equation inside the sphere and betler values for the spherical charge 

density. We proceed until the potential reaches a final self-consistent value for 

the given moments and logarithmic derivatives. Here we choose E, in order to 

keep the first moment of the density of states for the occupied part of the band 

always zero. To start a self-consistent process, we give reasonable guesses for the 

occupation, second moment and logarithmic derivatives for each nonequivalent 
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Here I is the unit matrix and Q is a diagonal matrix with elements Qe. Using this 

expression, the mixing that gives the TB or most localized representation can be 

found by trial and error3, choosing the values of Q in expression (2) in order to 

obtain a localized structure constant rnatrix S .  The values of mixing were found 

to be approximately independent of the structure and are given for s,p and d 

electrons by Q ,  = 0.3485, QP - 0.05303 and Q d  = 0.010714 3$4. 

In the self-consistent real-space approach described in this paper, we will work 

in the orthogonal representation
g
, but will express the orthognal Hamiltonian in 

terms of localized parameters of the TB representation. Because the basis func- 

tions of the severa1 representations are not independent, the orthogonal parameters 

C(, Ae, Qe are related to the potential parameters C and A of the TB represen- 

tation. For a given energy E, we have: 

Finally, to first order in E - E,, we can express the Hamiltonian H of the 

orthogonal representation, in terms of T B  parameters314 as: 

In the orthogonal representation the overlap ~na t r ix  is close to unity and we 

have t.o solve a simple eigenvalue problem of the form: 

It is interesting to note that the LMTO-ASA basis functions, when written in 

this form, can be sen as a Taylor series expansion of an  energy dependent partia1 

wave. 

3. Self-consistent real-space scheme 

The present LMTO-ASA recursion scheme, solves the eingenvalue problem 

given above in a self-consistent manner. As in k-space the problem can be divided 
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WS sphere. With this starting guess we find the orthogonal potential parameters. 

Using Eq. (3) we find C and A and build the real space TB Hamiltonian of Eq. 

(6). We use the recursion method and a large cluster to obtain the LDOS for 

s - p and d electrons at  each nonequivalent site. With this knowledge we find the 

new energy E, and the new moments for each band at  each nonequivalent site. 

As in k-space, the new logarithmic derivatives are given in terms, of new values 

of E, and the old potential parameters8. We use the new values of the moments 

and logarithmic derivatives to obtain new values for the orthogonal parameters 

and new T B  parameters C and A .  We build a new real space Hamiltonian using 

expression (5) for fixed S and use the recursion method to  obtain the local density 

of states which will be used for the next interation. The results will have converge 

when the moments and logarithmic derivatives obtained by solving the eigenvalue 

problem differ by less than a previously established amount from the ones which 

have generated the Hamiltonian. We should note that  when we solve for the 

"atomic part", we choose the potential to be zero a t  the boundary. When building 

the Hamiltonian we should correct the relative energy scale of each WS sphere by 

the Madelung energy due to charged WS spheres of other sites at  the given sphere 

and, also, take into account the electrostatic contribution of the sphere itself. 

For magnetic systems the procedure is similar, but we have to  treat up and 

down bands separately, when solving for the eigenvalue problem. These bands 

are generated by Hamiltonians with the same structure constant, but different 

potential parameters and, t herefore, will have di fferent moments and logarithmic 

derivatives associated with them. When solving for the "atomic partn we use these 

moments to obtain the spherical charge density associated with up and down spins. 

We use the total charge density when solving Poisson's equation, but the up  ad 

down contributions are needed to obtain the exchange and correlation term. In 

the present work a exchange and correlation term of the form proposed by Barth 

Hedin12 is used. 
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4. Resul ts  and Discussion 

To illustrate the procedure we have obtained spin polarized results for ferro- 

magnetic FeNi3 and antiferromagnetic FeMn. For the FeNis structure, we have Fe 

in the corner and Ni in the faces of a FCC unit cell with lattice constant of 6.620 

a.u. For FeMn, we have a basic FCC unit, with a lattice constant of 6.850 a.u., 

and two Fe and two Mn atoms in the basis. We have performed self-consistent 

LMTO-ASA calculations in real-space (with the scheme developed here) and in 

reciproca1 fipace for the two compounds. In reciproca1 space we ~erformed two cal- 

culations: one using, for the Hamiltonian, the same approximations that we have 

used in reahpace and the second using the standard LMTO-ASA approach. For 

calculations in real-space we have used, for both FeMn and FeNis, a large cluster 

of 1372 atonis. To avoid surface effects, the LDOS was obtained via the recursion 

method, for an atom close to the center of the cluster. Here, we have used a cutoff 

parameter LL=20 in the recursion chainl. A Beer and petiffor13 terminator was 

used to obtain the LDOS and its moments. We note that the precision can be 

increased by using a larger cutoff parameter LL. 

We have mentioned that the potential within the sphere is governed by the 

moments of the local density of states and the logarithmic derivatives for up and 

down bands. We find that the occupation (moment of order zero) is the most 

sensitive of these quantities and the one that differs the most from corresponding 

k-space values4. Therefore, to give an idea of the efficiency of the real-space 

approach, we show, in tables I and 11, the results for the occupations of up and 

down bands around Fe and Ni in FeNis and around Fe and Mn in FeMn. We show 

results from three different calculations: self-consisten real-space results (RS), 

self-coiisistent k-space results with the first-order (FO) Hamiltonian and regular 

LMTO ASA k-space results (FH). We also show the local magnetic moment for 

Fe and Ni in FeNi3 and for Fe and Mn in FeMn. Comparing the results of FO and 

FH, we see that second order effects and the inclusion of combine corrections are 

not very important. Therefore our real-space Hamiltonian should represent the 

systems well. 
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Table I: Results for the occupation of up (1) and down (1) spins for 
the real-space method (RS), k-space with first order Hamiltonian 
(FO) and witli the full LMTO-ASA Hamiltonian (FH). Magnetic 
moments in p~ are also shown. 

rnag. mom. 

Table 11: Results for the occupation of up (T) and down (1) spins for 
the real-space method (RS), k-space with first order Hamiltonian 
(FO) and with the full LMTO-ASA Hamiltonian (FH). Magnetic 
moments in p~ are ais0 shown. 

For FeNis there are some results for the magnetic r n ~ r n e n t ' ~ ? ' ~ .  The spin- 

polarized parametrized LMTO-ASA approacii, which uses potential parameters for 

the piire metals and the Stoner criterion to obtain the electronic structure, works 

very well for FeNis '. Our prcsent results are shown in Table I. We can see that  

the real-space self-consistent approacli compares very well with the k-space results, 
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for which the same FO approximation was used. Occupations of s and p electrons 

differ by a negligible amount and even for d-bands the differences in occupation 

are of order of hundredths of eleciron. This is the kind of agreement that we 

expect from our experience with nonmagnetic systems8. The magnetic moments 

compare very well with those obtained in k-space. The pararnetrized LMTO-ASA 

approach gives 2 . 5 ~ ~  for Fe and .76pB for Ni. A DVM cluster calculation with 19 

atoms gives 3 . 1 ~ ~  for Fe and .82pB for Ni. Ai1 these values are rather close and 

it is clear that the present real-space approach is quite competitive. 

FeMn is more interesting. While the magnetic moments in FeNi3 are quite 

stable, the moments in FeMn are very sensitive to small variations of the lattice 

constant. The parametrized LMTO-ASA approach, in this case, clearly indicates 

that the system will be antiferromagnetic, if any magnetism shoud be present. 

But the parametrized calculation slowly converges to a non-magnetic state. The 

FeMn moment is very sensitive to details of the calculation and should be an 

interesting test for the method. If we compare the RE and FO occupatio~? values, 

we see hat s and p bands are in very good agreement, but the d-bands differ by 

0.1 electron. This discrepancy is small, but is larger than the one expected on the 

basis of previous results for non-magnetic systems. It leads to values of magnetic 

moments which are less accurate than in the case of FeNi3. Even so, the results 

are quite good considering the dificulty of the ~roblem.  We have investigated the 

reasons for the failure of the parametrized approach in FeMn. In the parametrized 

approach%e use the Stoner criterion, where the d-band shift should be equal to  

the magnetic moment times the Stoner parameter (extracted from pure metals). 

Using the d-band shifts and d-band magnetic moments of the RS calculations, we 

would need a decrease of 8% on the Stoner parameter of Fe and a decrease of 

17% on the Stoner parameter of Mn to  stabilize the moments. We also noticed 

that the parameter A, which regulates the band width, is different for the up and 

down bands. In the parametrized approach, a single value of A is used for both 

bands. We note that if we use in the converged calculations an average value of 

A ,  between the up and down values, the magnetic moments decrease. The case 

of FeMn illustrates why methods involving parameters are not reliable. Small 
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differences in these parameters can determine whether the system is magnetic or 

not. Here we have shown that even when the system is very sensitive to parameters, 

the self-consistent real-space approach is reliable. 

5. Conclus ions  

We have developed a first-principies self-consistent real-space method that  can 

be used to study the electronic structure of complex metallic systems. The method 

was tested for simple crystalline FeNis and FeMn, where k-space results can e 

obtained. But it does nof, make use of symmetry and can be applied to  non-periodic 

systems. To illustrate the advantage of the present approach let us consider the 

problem of a magnetic substitutíonal impurity on a non-magnetic host. The cost of 

the real-space method grows linearly with the number of nonequivalent atoms. If 

only the density of states is used, atoms with same LDOS are considered equivalent. 

Therefore, to study the influence of the impurity over four shells of neighbors we 

only need to consider seven nori-equivalent atoms, and the cost of the calculation 

is just seven times that of a mono atomic crystal! It is clear that  we can also easily 

treat magnetic interactions between impurities. 

In conclusion, we have presented a new approach to the study of spin-polarized 

electronic structure in complex metallic systems. The method is competitive and 

its potential should be further investigated. 
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