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Abstract In this paper, the general form of the Noether theorem is used as 
a systematic procedure for the identification of integrable twedimensional 
systems. We give some applications for polynomial potentials, including the 
generalized Hénon-Heiles case. 

1. Introduction 

The analysis of the regular or chaotic behavior of general nonlinear systems 

is an important problem in applied rnathematics. In particular, the identification 

of integrable systems and the study of the relation between integrability and the 

symmetry structure of the system has been considered, in the 1 s t  years, by severa1 

a ~ t h o r s l - ~ .  In this work, we use the general form of the Noether theorem in 

the analysis of two-dimensional hamiltonian systerns. Let us start from the two- 

dimensional system described by the lagrangian 

and, therefore, with the following equations of motion 

This system will be integrable, in the sense of Liouvillel, if, in addition to the 

energy, it admits a second isolated conserved quantity I(x,Y, z, y). Ln this case, 
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no chaos will appear and the behavior of the system will be regular. By using 

the Noether theorem, we establish a systematic procedure for the search of ~WC- 

dimensional systems with a nontrivial symmetry transformation and, consequently, 

with a second invariant. 

There is co  general method for determining whether a system of differential 

equations is integrable or not. However, in recent years, partial and important 

results in this direction were obtained by Ziglin and yoshida7, for two-dimensional 

homogeneous hamiltonian systems. We will summarize, now, some procedures 

used in the identification of integrable systems and for obtaining of the second 

invariant: 

1 - Direct Method 

This method was introduced by Laplace and developed y Bertrand and 

Whittaker8. Here, we assume the existente of a second invariant with a poly- 

nomial form on the velocities 

and we impose 

for the eq. (2). We obtain a system of partial differential equations that, if solved, 

leads to integrable systems which have an invariant with the form (3). This proce- 

dure gives us quite general results and applies also in the case of non-hamiltonian 

systems
g
. A limitations of this method h a j  to do with the computational diffi- 

culties, which restrict it to the obtaining low order polynomial invariants; this 

problem can be attenuated with the utilization of algebraic c ~ m ~ u t a t i o n ' ~ .  

2 - Lie Symmetries 

The method, introduced by Lie", consists of the determination of the sym- 

metry transformations of the equations of motion and identification of the second 

invariant4. If we assume only geometrical symmetries, we obtain, a t  most, in- 

variants with a quadratic dependence on the velocities. Due to this fact, many 
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integrable systems can not be found by this p r o c e d ~ r e ~ ? ~ ~ .  The method is applied 

also for nonhamiltonian systems. 

3 - Painlevé test 

The singular point analysis, introduced by S. Kowalewski and P. Painlevé, can 

serve, in a certain sense, to decide between integrable and nonintegrable dynamical 

systems. A system of ordinary differential equations in the complex domain is 

said to be of Painlevé type if the only movable singularities of a11 its solutions are 

poles. This means that there are no movable branch points, nor movable essential 

singularities13. The Painlevé test is used as a criterion for the integrability of the 

system, but there is no general proof of this conjecture. It is convenient, in many 

cases to extend the concept of Painlevé property to the, so-called, weak Painlevé 

property14. There are interesting connections between the analytical properties of 

the system and its integrability15. 

4 - Noether symmetries 

The Noether symmetries are infinitesimal point transformations which main- 

tain the invariance (up to a constant) of the action functional. By this theorem, 

for each symmetry there is an associated invariant. If we consider only geometrical 

transformations, the Noether symmetries constitute a subgroup of the Lie symme- 

try group for the corresponding equations of motion. In this case the, procedure of 

identification of integrable systems is very limited. However, the utilization of the 

generalized form of the Noether theorem, by assuming symmetry transformations 

with a dependence on the velocities, gives us a more general method for obtaining 

of invariants and generalised ~ ~ m m e t r i e s ' ~ .  In this work, we explore this possibility 

for two-dimensional systems. We show how a general procedure for the identifica- 

tion of invariants and their associated symmetries can be obtained by considering 

the generalized symmetries. In this way, we get an over determined set of par- 

tia1 differential equations, which permits the identification of integrable potentials. 

These results are applied to the generalized Hénon-Heiles potential and we find 

62 
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the three integrable cases. We consider also the Kepler potential, ~e r tu rbed  with 

polynomial terms in z and y, with the form 

n being an integer, and the potential V = znym. 

2. Noether  theorem a n d  integrability conditions 

We take the general formulation of the Noether theorem as reviewed by 

Cantrijn and sarlet17. If an infinitesirnal transformation 

2; =z,  + €71i(t, si, i,) 

leaves invariant (up to a constant) the action 

there exists an invariant for the system given by 

a L  z = -(v ,  - i ,€)  + € L -  a i ,  

The conditions for the infinitesimal transforrnations (5) to be symmetry transfor- 

mations of (6) are 
a€ a L  avj a€ L - +  -(- - z . - )  - a f a i ,  a i j  a i ,  a i i  a i ,  

a~ a~ a€ 
€ ã I + v i - + ~ ( - + i , - ) +  a i ,  at  azi 
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As the choice of is free, we can made it equal to zero17. Furthermore, if we know 

an invariant, the associated symmetry can be obtained from 

. . a1 ,,. - -p-, 
I - dx, 

where gii is defined by 

For the two-dimensional systems analysed in this work, the lagrangian is 

L = k2/2 + y2/2 - V(x, y). (I2) 

In thii case, the energy is the first invariant and the existente of a second inde- 

pendent invariant guarantees the integrability of the system, We will apply the 

Noether theorem for finding general conditions on the potential V(x,y), which 

lead to the second invariant. The conditions (8) and (Q), for this case, give us the 

following equations 

where we take f = f (z,, xi) and n,(zi, l i ) ,  due to our interest on explicitly time- 

independent invariants. 

The compatibility condition between (13) and (14) leads to 

We assume now that the invariant we look for has the following polynomial 

form 
N 
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From (10) we get 

Coridition (16) is satisfied by (18) and (19). From (13), (14), (18) and (N),  we 

obtain 

By substituting (18), (19) and (20) in (15), we find the conditions to be verified 

by the Fn and by V(x, y) : 

where n = 0,1, ..., N. 

Therefore, there are (I\: + 2) relations to be satisfied; the ( N  + 1) functions Fn 

can be determined from the first (N + 1) relations in (21). The last equation in 

(21) imposes restrictions on the Fn and V(x, y). For example, the first condition, . 

for n = N, leads to 

the second condition, for n = N - 1, furnishes 

and so on. 

We can consider a more general lagrangian, with terms with a linear depen- 

dence on the velocities due to the presente, for instance, of a magnetic field: 

L = k2/2 + y2/2 + A(x, Y ) Z  + B(x,  y)y - V(x, y). (24) 

In this case, the conditions (21) will have the generalized form 
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with n = 0 , 1 ,  ..., N .  

3. Some applications 

The previous relations are too general, so we will take some particular cases. 

Let us start with N = 1. In this case, the invariant which we obtain will have a 

linear dependence on and ( 1 7 ) ,  ( 2 0 )  and ( 2 1 )  lead to 

with 

and 

Solving ( 2 7 )  and ( 2 8 ) ,  we obtain 

F o - -Yav - - d y  - -iy a h l  + h o ( x ,  i ) .  ax az 
The substitution of (31 )  and ( 3 2 )  in ( 2 9 )  will permit the determination of the 

potentials V ( x ,  y )  with a invariant ( 1 7 ) ,  when N = 1 .  They must satisfy the 

following condition: 

a 2 h l  d h o  
- i y -  +- = O .  

asa3 az 

We take our first example. The generalized Hénon-Heiles potential is given by 
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This potential, with a = b = d = e = 1, was introduced for modelling the motion 

of a star in an axial galaxy18 and turned into an important model for the study of 

the integrability of two-dimensional systems. 

From (34), (31) and (32): 

Condition (33) leads to the following expressions for Fi and Fo : 

Fl = Czizr  (37) 
r(r  - 1) 

Fo = (azy + dzy2)Czzr - k 2 y ~ 2 r z r - 1  - --- ~ ~ z ~ - ~ = ~ +  
8d 

3ar - (b - a) + ( 1 / 4 d ) ~ ~ = ~ [ 3 a r  - (b - a)]zr-I + (1/2d)C2a[ ] zr+;+ 
r + 1 

+ ( l / ( r  + 3))C~dz '+~,  (38) 

where r = - (*), and (33) will only be satisfied for the following values: 

The general form of the second invariant, from (26), is 

I = (azy + dzy2)zr - kZyrzr-' + (1/4d)(3ar - b + a)zr-'- 

The three cases in (39) have been obtained separately, through the application of 

the Painlevé test and with the utilization of the direct method for the identification 

of polynomial invariantslg. The process employed here has led us to obtain both 

of these integrable cases and we also obtain the explicit form for the generalized 
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symmetries which are associated to the invariants (40). From (18), (19), (37) and 

(38), we obtain 

In our second example, we consider the perturbed Kepler potential (4). Bgr 

using the eqs. (31), (32) and (33), two solutions arise: 

1) For N = 2 and a = b 

For this case, the second invariant of the system will be 

which is the expected conservation of the angular momentum. The associated 

symmetries are 

r)1=-c1y ; v z = C 1 z .  (45) 

Of course, in this case, the more restricted geometrical form of the Norther theorem 

would be sufficient for the identifications of this invariant. 

2) For N = 2 and b = 4a 

and the second invariant is 

I = ~ ( x y  - Xy) + (g/r)y + 2ayz2 

68 - 
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with the following associated symmetries: 

Our last example wiil be for a potential with the form 

where m and n are different from zero. Eqs. (31) and (32) give us 

and (33) leads to the following condition: 

a 2 h  
( m 2 / ( n  + 1))s2m-2y2n+1 -i 

a h  mzm- 1 2  
ai2 - I a,  + 

d2  hl d2h1] sn+i+ + ( m / ( n  + i ) ) ( n  + 2)izm-l7 + ( m / ( n  + l ) ) ( m  - l ) i ~ ~ - ~ -  asaz ai: 

with n # - 1 .  

Only for the case n = m = 1 the condition (51) is satisfied and we derive 

The second invariant is 

I = i+ + ( 1 / 2 ) ( s 2  + y2) 

with the symmetries 

v 1 = - y  ; f ) 2 = i .  
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If we consider N = 2 or, in other words, if we admit the existence of invâriants 

with a quadratic dependence on y, the system of eqs. (21) will have 4 equations 

whose solution is not trivial. However, the same procedure discussed here, for the 

case where N = 1, can be employed. For example, a nontrivial integrable case 

emerging from this analysis, for the potential (49), will occur if n = m = -1. In 

this case, the potential is 

v = ( ~ / x Y )  (55) 

and the second invariant will be 

with the following associated symmetries: 

,,i = xyy - y25 

v 2  = zyk - x2$. 

4. Concluding remarks 

A method, based on the generalized form of the Noether theorem, has been 

presented in order to find integrable two-dimensional hamiltonian systems. We 

found the conditions for the existence of a polynomial second invariant on y and 

for the determination of the associated symmetries. The restricted application to 

hamiltonian systems and the fastidious calculations are the main limitations of this 

method. The advantage of the procedure is the possibility of obtaining, jointly, 

a11 the integrable cases, for a given N,  and the determination of the associated 

symmetries, as we showed for the generalized Hénon-Heiles system. It suggests 

also a deeper analysis of the relations between the existence of symmetries, the 

integrability of the system and the verification of the Painlevé property. 
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Resumo 

Neste trabalho utilizamos a forma geral do  Teorema de Noether como um pr* 
cedimento sistemático para a identificação de sistemas bidimensionais integráveis. 
Algumas aplicações são feitas, entre as quais a análise dos casos integráveis do 
potencial de Hénon-Heiles generalizado. 


