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Abstract The equations of motion of a system with spin and mass 
quadrupole moments are derived from energy-momentum conservation us- 
ing the method of Papapetrou. 

1. Introduction 

The equations of motion of a system with spin and quadrupole moments have 

been derived by Dixonl in a covariant approach using two-point tensors and for a 

more complete theory2 using also the theory of vector bundles. 

We shall derive the equations of motion following the moment method of 

Papapetrou3. Although non-covariant, this method is mathematically much more 

simple and straightforward. Instead of the arc ienght parameter s, the derivatives 

will be refered to an arbitrary parameter q which will then include the case for 

system4 in which ds2 = O and for which it seems that no covariant approach has 

yet being developed. 

The method will give also the integrated form of the energy-momentum tensor 

density and of its first and second moments. Also one sees clearly the renormal- 

ization of the momentum and spin tensors by the second order moments. 

Finally we mentiori that the definitions of the multipole moments, in this case 

of the spin and quadrupole moments, appear ín a natural way and even tising a 

quadrupole cuttoff one does not run into troubles of appropriate definitions of the 
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multipoles, as discussed by Dixon2 when analysing previous works on the subject 

by   adore^ and ~ a u b ~ .  In a natural way the method obeys the requirement that  

the higher multipoles should couple to corresponding increasing derivatives of the 

field, which is necessary for the validity of using a multipole cuttoff for bodies 

small in comparison with the length scale of the externa1 field. 

2. The Equa t ions  of M o t i o n  

We start with the covariant version of the energy-momentum conservation law, 

which in terms of the density T'j = J - g x  energy-momentum tensor reads 

Following the method of Papapetrou3 we consider an extended system with 

reference point ~ ' ( q )  as a function of the path parameter q and velocity 

We shall take moments of Ti l  up to the second order about xi and this will 

define our pole-dipole-quadrupole system. From eq. (1) we have the equations 

and 

a j ( 2 8 2 r s k ~ i ~ )  = Z r 2 k T ' ~  + Z ~ s k T i r  + s ~ Z r T l k  - Z ~ Z r 5 k r $ n ~ r n n .  (5) 

Following Papapetrou we integrate a11 these equations over the three- 

dimensional space volume of our system for constant t .  The left-hand side of 

e q . ( l )  and of (3) -(5)  become respectively, 

Next we write 

s' = X' + 6s' 
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with X O  = t ,  that is 62' = O. Then we use this equation in eq.(6) and in the 
integrated expressions of the right-hand side of eqs.(3)-(5). After we have done 
that we expand r',, (x) around X t ( q ) ,  

where aj  = a l a x j .  
Then, omitting the X dependence of the r's, we obtain the following set of 

equations up to second order in 62' (uO = d t l d s ) ,  

where 

Note that a11 moments are symmetric in the last two indices and the second 

order moment is also symmetric in the first two indjces. Also, as 62' = 0, 

Eqs.(9)-(12) contain the equations of motion of the pole-dipole-quadrupole 

particle mixed with other relations that will give the integrated form of the energy- 
momentum tensor and of their moments. They are the next order extension of the 
pole-dipole equations of Papapetrou3. 

3. The Spin Equation 

The proper definition of the momentum, the spin and quadrupole moment of 

the system arises in a natural way if you look first for the spin equation. For that 

54 
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purpose we interchange i and j in eq.(lO) and subtract the resulting equation from 

eq.(lO) itself. As M" = Mii  we obtain 

and (i, j )  stands for the preceding terrns with i and j interchanged. This quantity 

is the spin tensor in the dipole approximation. 

Now we concentrate in eq.(ii) and obtain an expression for M " ~  by the fol- 

lowing procedure3. Add to eq.(l l)  the one obtained from it by exchanging j and 

k and subtract from it the equation obtained by exchanging i and j .  Keeping in 

mind that Mijk is symmetric in the first two indices we obtain 

where 
1 ~ i j k  -(ko + Mijko - j k i o  - Likj M ) -  . 

2u0 (20) 

Substituting eq.(í9).in eq.(17) and using r dL/dq = d(rL)/dq-  L dr /dq with 

d/dq = uidi, we obtain 

and 
1 

,r' = õ ( ~ i o  + r k n ~ m n O )  
u 

sij is the spin tensor of our systern in the quadrupole approximation and Ti"  

is its momentum in the dipole approximation. 
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To calculate the third term in the left-hand side of eq.(21) we go to eq.(12). 

We add to this equation the one obtain from it by exchanging i and s, and sub- 

tract from it the two equations obtained from it by the exchange of r and i, and 

afterwards k and i .  The final result is, using eq.(20), 

~ r k i s  - ~ i s r k  - .- U k L r i s  + U r ~ k i s  - u i ~ s r k  - i l ~ ~ i r k  (24) 

Taking this result in (21) and using (22) we obtain 

where 

is the covariant derivative of S'3. 

We shall now try to obtain from the second factor in the second term of the 

right-hand side of eq.(25) a quantity which is antisymmetric in k and n, whích will 

them combine with the Riemann curvature tensor 

Using eq.(24) we have, remembering eq. (20), 

Now we add to this the term r $ n ~ ~ k m n  itself and also the one obtained from 

it by maicing use of eq.(12). In this way we obtain 

where 
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This quantity has the same symmetry properties of the Riemann curvature 

tensor. It is the mass quadrupole moment introduced by ~ i x o n ' l ~ .  

Using eq.(29) in eq.(25) we obtain 

where 
1 

pi = ri + -(akr',, + riar;,) (~mk.0 - ymnko) . 
u0 2 

(3'4 

This quantity is the momentum of the system in the quadrupole appraxima- 

tion. 

As Jjmkn is antisymmetric in k , n  we can write with the help of eq. (27), 

D S ~ J  
- = p'uj - S R i  jlmnk - 
DQ 3 mnk (i, 3 )  

This is the equation of motion for the spin tensor. It coincides with the equa- 

tion obtained by D i ~ o n ' > ~ .  From eqs.(22) and (32) one sees clearly the renor- 

malization of the spin and momentum tensors of the system by the second order 

moments of T'J. 

4. The Momentum Equation 

From eq. (10) we shall derive an expression for Mij that will be used in eq. 

(9). Using eq.(19) ir1 (10) and making use of eqs.(22), (23), (29) and (32) we obtain 

By making use of eqs.(l9) and (22) the third term on the left-hand side of 

eq.(9) can be written as 

1 
- r> (UmL*ab - Mkmab)] + -ymno k 

' 

u0 
u akrkn 

+ ~ ~ a , ( a ~ r i ~ ~ ~ ~ ~ )  - L ~ ~ ~ u ~ ~  a a k ri 
mn' (35) 

Substitution of eqs.(34) and (35) in eq.(Q) give, using eq.(29), 
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The term arnakr:, indicates the presence of v m R i  ,jk where V, is the co- 
variant derivative with respect to m. Using the symmetry properties of Jjkmr we 
have 

Using this result in eq.(36) and remembering eq.(27) we obtain 

By making using of the Rianchi identities we can write eq.(38) in a slightly 
different way. We have 

Therefore eq.(38) can be written as 

This formula agrees with Dixon's equation for the momentum. 

5. The Integrated Energy-Momentum Tensor and its Moments 

Now we shall express the quantities written in eqs.(13)-(15) in terms of 
pi, ui, and J'kmj. 

We shall start with the second moment. We add to eq.(30) the one obtained 

from it by the exchange of m and k and use eq.(12) for Mjkmn + ~j~~~ and 

for this sum with j and n interchanged. Using afterwards eq.(24) for Mjnkrn we 

obtain 
~ j m k n  + ~ j k m n  = - 6 ( ~ k m i n  - u m ~ k j n  - U k ~ m n j ) .  (41) 

Putting k = O and using eq.(20) together with 6z0 = O then 

Putting m = O in this last equation then 
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Taking this result in the previous equation one gets 

Substituting this result in eq.(41) we obtain the following expression for the 

second moment of the energy-moment tensor 

1 um u ~ k m j n  = - [ J j m n k  + - ( j n k ~  + j n o k j  + - p j o ) ]  + (m, k). 
6 uO uO (45) 

Next we consider the first moment. Using eqs. (22) and (29) in eq. (19) we 
obtain 

Putting k = O in this equation and using eqs. (18), (20) and (43) one gets 

Using this result and eq. (44) in eqs. (34) and (46) we obtain M i j  and MGk 
. . 

in terms of u', p', s i j  and J i j k m .  
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Resumo 

As equações de movimento de um sistema com spin e momentos de quadrupolo 
de massa são obtidos da  conserva<;ão do momentum-energia, usando o método de 
Papapetrou. 


