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Abstract We propose that the Liquid Crystal nematic phase can be de- 
scribed by a lagrangian that also describes a Coulomb gas. Using this 
lagrangian, we show that the Coulomb charges appears as defects in the ne- 
matic state. Using this approach, we calculate the nematic isotropic phase 
transition temperature value and argue that it is a Kosterlitz-Thouless phase 
transition. 

1. Formulation of Problem 

Liquid crystals (L.C) have a variety of phases that have been studied mainly 

with the use of the Landau approximation ( or mean field approximation)1~2*3. The 

results describe eficiently the observed phenomenology, although one still lacks a 
realistic visualization of the L.C. microscopic structure. The expansion constants 

are adjusted to give the observed results. This is the essence of the mean field 

approximation. If we wish a real microscopic description, this approximation must 

be abandoned. 

This is by no means an easy task. There are so many systems with the nematic 

isotropic phase transition that, if we make a detailed study of a specific microscopic 

system, we can miss the transition's generality. In this way, if we want be in a 

general case, it is difficult to abandon the mean field approximation. 

In a sense, this work intends to present an intermediate approach. We make 

a microscopic description of the L.C, making an idealization of the nematic phase 

structure, and study the dynamics and interaction of some L.C. defects4. Using 

these defects, we make a detailed study of the nematic isotropic phase transition 

mechanism, and claim that these defects have an important role in this transiton 

mechanism. Finally, our nematic isotropic phase transition approach will explain 

why specific details of the nematic rods interaction are not important when they 

are close to the critical point. That is; why, in spite of the variety of nematic 
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molecule structures, do the nematic isotropic phase transitions appear to  be inde- 
pendent of the molecule details? 

A- The Nematic Phase 

We begin by defining what will be here understood by the L.C. nematic phase. 

The L.C. elements are assumed to be one-dimensional hard rods, with length 1, 
randomly distributed in the sample, in a way that we can say that, in the mean, 

a t  low temperatures, they are aligned in a local 2 direction, as showed in figure 
1. We impose also, that independently of its structure, the hard rods are: a-) 

~ndistin~ùishable by 180° rotations around any axis perpendicular to their center 

of mass; b-) The system is locally invariant by translations along a local axis e'=. 

1" Liquid Cristal aligned in the direction 2 

B- The Hamiltonian 

To build up the hamiltonian that describes our system, we request that it 

should have two terms. The first one describes the interaction between the nearest , 
hard rods. The second, the action on a rod, of a mean field produced by the others 

and/or the action of a externa1 field. 

To write down the first term, we look at figure 2 and suppose that, a t  the 

point = (x, ~ , z ) ,  there is a rod inclined a t  an angle 8 = 8(x, y) in relation 

to an arbitrary global direction K' ( not necessarily the direction of the director 

which will be discussed below ). We made use of the translational invariance of the 

system with relation to e'Z, supposing that 8 depends on both x and y. We will 

use the azimuthal invariance of the halmiltonian making it dependent only on 6; 
no dependence on the spherical 4 angle is assumed. We postulate that neighbour 

rods interaction, a t  low temperatures, minimizes their center of mass distances 
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and the difference between their 0  angles. Thus, the rods at the positions and 
+ 
r + 2 will contribute to this term as 

Fig. 2 - A hard hod inclined by an angle 
relation to the arbitrary direction X' . 

and, when, s 4 O, we rewrite it as 

Now we go to the second term, describing the interaction of the rod with the 
mean field produced by the others or with an externa1 field. If we knew exactly 
the internal structure of a rod we could write down this term. But we make 

no hypothesis about the rod's internal structure. So, we only use the general 

hypotheses a-) and b-) made above. 

This term must depend on the difference between the rods 8 angle and the 

direction of the director, which is determined by the mean direction of the other 

rods ( let us say that the director points in 0, direction). We write it as 

V = V ( B - O , ) = V ( p )  where p = B - 8 ,  (3) 

From the hypothesis a-) we know that V(p) is periodic, with period ir, that is 
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At very low temperatures, the system must be aligned with the director direc- 
tion; then a t  p = O - O, = O we have a minimum in V(cp) ,  or 

There is also the possibility of center of mass dependence in this term. There- 

fore, we shall say that this term must have the general form 

From this, we conclud~ that the hamíltonian becomes 

which can be rewritten as 

H = H,, + H*, (8) 

where the expressions for H,, and He are evident from equation 7. 
If we want to know the system therniodynamics, we have to calculate its 

partition function, 

which is separable in two terms 

This separation has some consequences in the study of many issues of the 

L.C. For example, the H,, term may be the agent for the nematic crystalline 

phase transition, while the term Hs give us the nematic isotropic phase transition. 

Obviously, the formalization and demonstration of it will require a detailed study 
of these two terrns. In this report we will concentrate on the H. term. 



Manuel Simões Filho 

C- Nematic Lotropic Phase Transit ion 

We give, now, a qualitative argument that shows how the He term can give 
the nematic isotropic phase transition. We show, below, a demonstration of this 

statement. 

Take the Ze partition function, given by eq.(iO) 

The integration that appears in the exponent can be easily . Therefore, the 

system dynamics is essentially bidimensional, a fact widely known and that seems 

to be a fundamental ingredient that characterizes the L.C. properties, as we will 
see. 

Let us cal1 the term in the exponent of eq.(i i) ,  thermal hamiltonian; we have 

where is the system's length along the 2, direction 
Changing the uariable to #J = (&)i$, eq.(12) becomes 

We emphasize that, in this hamiltonian, the temperature dependence becomes 

restricted to  the 'potentialn term. We study now what happens when we couple 

this fact to the properties given by eqs. (4) and (5). In eq. (13) we can define the 

'thermal potentialn . 

1 
and because V(6) has period p = r ,  U(4) has period P = (&)ln; therefore, the 

4 periodicity of U (4) has temperature dependence. With these elements we make 

a heuristic analysis of the high and low temperatures limits and see the indication 

of a nematic isotropic phase transition. 

If we assume that the V(6) function has upper and lower bounds, we see 

that, if T -+ 0, the potential amplitude, that is, the term of eq. (13), 

becomes arbitrarily large, which suppresses the fluctuations around the minima 
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of the potential. So when T -+ 0 the most stable configuration is fl = do, which 

suppmses the term i{(%)' + (g)2). Therefore, the potential given by (14) is 

the only relevant term in the hamiltonian: we are in the nematic phase (viz, the 

Maier-Saupe approxirnation5). 

In the other temperature limit, when T -+ oo, we see that the potential am- 
plitude goes to zero. At the same time, the potential minima get arbitrarily close 

1 
because the period, P = (k) 2, , goes to zero. So the rod's direction auctuates 

KBT 
freely around these minima. The dynamics of the system is dominated by the 

1 3 2  term i { ( a z )  + (g)2}. There is no order in the system, the Bo director's direction 
is suppressed from the hamiltonian. We have the isotropic phase. In this way, we 

see that the nematic isotropic phase transition has no dependence on the detailed 

form of V ( 0 ) ;  we only request its periodicity. 

2. Nematic Defects 

We proposed the hamiltonian, (7), to describe L.C. nematic phase. We will 

show, in this section, how this hamiltonian can be treated to describe L.C. nematic 

defects. In this way, we will analize the 4 configurations that are extrema of H. 
We will see that there are solutions that agree with some observed L.C. defects. 

A- The Defects 

We rewrite eq.(12) as 

where a = L- 
Ke 

In a L.C. sample the director direction depends on the conditions that we 

impose on the system. We will show here how we can calculate the director 

direction from these conditions. 

When we sum, in the partition function, over a11 configurations that the system 

admits, the most probable ones, at low temperatures, will be those which are 

energy extrema, and therefore are solutions of the equation 

which is the equation that determines the L.C. most probable configurations. 

Let us see how eq.(16) describes some observed configurations in L.C. The term 

V1(4 - 4,) gives the force, due to the L.C. molecule deviation from the director 
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direction, at the point (z, y). So, if the molecule is exactly in the director direction, 

we have B(z, y) = B,(z, y) and V'(@ - O,) = O. Therefore, the eq. (16) becomes 

Obviously, the solutions of (17) form a complete set for all the orientations 

of the director in a L.C. The most obvious solution is e - 0, representing a pure 

nematic state, with the hard rods completely aligned along the same direction over 

the whole sample. It is observed at high externa1 fields or/and low temperatura. 

However, this is not the only solution of eq. (17). Rewriting it in polar coordinates 

and making $(r, 4)  = R(r)  .$(r$) , we get 

A(!?!!) = -k2 and - r  - a a R  * a 4  R'ar  ('.ã;) = k2 

which have, for k = 0, the solutions 

We know that the L.C. are indistinguishabe by a rotations around their center of 

mass, so we can impose the condition 

which gives us: 
n 

C = O  and A.D = - 
2 (22) 

Making B.D = 8, we arrive at  

that are the known L.C. defects ( see ref. 4, pag 33/34 ). The number, X = 4, 
is called the charge of the defects. We will now make an energy analysis of these 

solutions. Their energy is given by 

For the configurations given by (23) we get = O and = 4, therefore 

E = ( 5 )2 .2~ .  $ $. This integral has ultraviolet and infrared divergences. That is, 
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it diverges for r + O and r -, oo. To avoid this, we insert a lower, rinf, and an 
upper , rsup, cutoff, in such a way that 

In spite of the fact that we made explicit use of the inferior hard core in the 
equation above, it could be put directly in equation 18, if we had written 

This is exactly the equation of a point charge electric field. But condition (21) 

avoids this interpretation, because it makes no electrostatic sense. 

We interpret equation (25) as the necessary energy to build up, in the sample, 
the configuration given by (23). That is, to build this configuration we need to 

supply the system with this energy. 

Now we make some comments about the configuration in which k # O. With 

this condition the solutions of equation (19) are 

' 
And, imposing the condition (21), we arrive at 

therefore n = O and k = p, p = f i, f 2, f 3, ... 
Note that in addition to the walls that we had along -ee, we had too, in this 

case, walls along 7,. Furthermore, if k > 1, the distance between these walls 

becomes shorter as r iricreases, and when r -t co we have an isotropic phase. 

Obviously, this is avoided by the boundary conditions imposed on the sample. In 
the same way, if k < O, we have a singularity in the 4 configuration as r -t 0, which 

makes no physical sense. We are, thus, left with the k = 1 case to study. Finally, 

note that due to the form of equation (24), the energy of these configurations are 

zero. SO, we believe that they may be important when the flutuations become 
large. 

B- Defect Interactions 

We will study here the interaction between the defects given by equation (23). 
We will adopt the following strategy: this equation gives us the defects at the 

point (0,O). Working with it, we will look for the expression of a defect a t  the 
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point (-1, O). Once we find it, we have the solution for two defects, one a t  (0,O) 

and another at ( - 1 , O ) .  The sum of these two solutions is a solution too, due to 

the linear structure of 18. This new solution will be utilized in the study of the 
defect interactions. 

From figure 3, we see that - 

Fig. 3 - Figure used to build up a deffect at the poimt ( - 1 , O ) .  

and 
12 11 4 - 4, = arctg-  + arctg- 
h h 

Therefore. 

So, from eq. (23), 

gives us an equation for a defect a t  the point (-1,O). 

Our derivation was rather geometrical; we just wanted to be sure that we 

obtain the same kind of solution as (23). Nevertheless, it must be shown that (30) 

is, indeed, solution of (17). This will not be done here, because it is obviously 

true. 

We now study the ixiteraction between two defects. Let Bi be a defect given 

by (30) and 82 another one given by (23), then 
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will be a solution of (17) too. Therefore 

represents two defects with charges S and 2 ,  a distance 1 appart. 
From eq. (32)  we can get the interaction energy of the defects. TO see this we 

define, for simplicity, 

ae 2 i ae 2 
E = / e(r, d ) r d r d 4  where ( r ,  4 )  = ( )  + . ( )  (33) 

Taking (31) we get the energy density 

The two first terms give the defects' self-energy; its contribution has already 

been calculated in (25). The relevant term, showing defect interaction, is given by 

Using the expressions of B1 and 82 given above, we arrive at 

where r,,, is the upper limit defined in eq.(25) 

In this equation we see that defects with the same sign are repelled, i.e; we have 

the lowest energy with the greatest separation. Obviously, when we have charges 

with opposite sign, the lowest energy corresponds to the shortest separation. As 

already noted, if it were not for the possibility of semi-integer charges, it c o ~ l d  be 

said that the defects interact like electrostatic charges in two dimensions. 

Eq. (36) can be generalized to the case where the two charges (or defects) are 

in 7 1  and T2. The interaction energy is 

where (26) becomes v 2 8  = ;.6(T - T1) + 5.6(T - 7 2 ) .  Finally, the two defects' 
total energy is 

E = ( 2  + E )  '.2n. ln (r,.,) - ( ( E )  + ( f ) 2, .2n. ln(~;.~) 
2 2 
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With the aid of these equations, it is easy to see that the interaction energy 

of N defects, where the i-th term has semi integer charge A,, is given by 

When rdup -t cx, the energy diverges. That cannot happen because, as we 

said, this is the necessary energy to construct the configuration. A way to avoid 
this problem is to impose 

which discards infrared divergences. The ultraviolet ones (r inf  -t 0) are inevitable, 
although not real, because we always have rinf # 0. That is, the system really 

builds up a cutoff. At distances shorter than r,,f the nematic state does not exist 

and the hamiltonian that we postulate makes no sense. That is, we expect that 
r,,f x I ,  where 1 is the rod's length. 

Equation (39) may also have another divergence, that has not been mentioned 
above. It happens when 7 ,  -t ti. To avoid it, we make h(\?, - r j \ )  -t 

ln(l7, - T'j + r i j l ) .  Then 

wbich is the energy of an assembly of defects. In the next section, when we will 

study the nematic isotropic phase transition, we will find again this expression( See, 

for example, equation (49)). We will suggest that these defects play an important 

role in this phase transition. 

3 - The Nematic Isotropic Transition 

We will propose an interpretation of the nematic isotropic phase transition. 
Through our approch we will be able to calculate exactly the critical temperature 

and also some thermodynamical variables. We will show that the L.C. system can 

be thermodynamically represented by the defects discussed above. 
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A- The Generalized Sine-Gordon Model 

We will now show that the hamiltonian, (13), is equivalent to a sim-Gordon 
(S.G.) mode16. 

We make use the periodicity of U(4)  to write 

The periodicity of the potential ( U (4 + P) = U(4) ) implies that 

271. 
k = -.n, n = O ,  1 1 ,  +2, ... that is U(4)  = C e i ' f  ' . '  

P 
Qk 

n 

From the condition y j ~ @ z o  = O we get an = a-, which gives 

U ( 4 )  = a, cos ( g . n . 4 )  
n > O  

The condition v / + = o  > O (eq. 5 )  can be satisfied if we put 

1 2 n 
- - C a. cos ( p . n . 4 )  }dx.dy 

n>o 

Therefore our model can be written a s  a generalization of the S.G. model 

(46) 

Our 

aim here will be to study the nematic isotropic phase transition through this 

generalized S.G. model. 

B- The Coulomb gas 

It is well known that the S.G. is equivalent to the bidimensional Coulomb 

gas778. This equivalence can be extended to eq. (46). In'the appendix we review 
how this can be done. 

The L.C. thermodynamics can be obtained from the following partition func- 
tion. 

(47) 
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where H is given by (46) 

In the appendix of this work we show that this partition function can be 

written as 

where ai = & 
This is the grand canonical partition function of a charged gas, whose charges, 

given by Ai, are interacting through a logarithmic potential in a two dimensional 

worid. Its total charge is zero (Ci Ai = O), in exact analogy to eq. (40); k is 

the absolute value of the charges ( or the k-th term in the expansion (42)), and 
L ak = (a) is the fugacity of this plasma, which is known as Coulomb gas. 

When we compare this system's energy to the energy of the defects constructed 
in the previous section, we arrive at  the maim point of this paper. They are 

the same! Therefore, we claim that the defects that  we obtained as solution of 

Laplace equation are now generated by the theory, when we take into account 

the inhomogeneous term and, besides that ,  we get the statistical mechanics of the 

defects. So, it is completely equivalent to describe the L.C. by the hard rod's 

orientations, a s  in equation (13), or by the statistical mechanics of the defects, 

as in equation (47). Besides describing the same systems, they also emphasizes 

different views of the same problem. Therefore, the results that  we get in one 

formulation could be analyzed by the other formulation. That will be our strategy 

here. 

C- The phase transition 

We will now show how equation (7) can lead us to understand the nematic 

isotropic phase tran~ition'l'~. Consider the expression 
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in eq. 48. It can be written as 

One can see that 

So, we can rewrite the equation (48) in a way that incorporates the self-energy 
that we have in equation (50). Thus, 

P ,2 where ãk = akcr~ 

The fact that the activity takes care of the charges' self-energy cannot surprise 

us, because it is given by the exponential of the chemical potential, which gives 
the system energy variation when we change the number of charges. Equation 

2 
(53) tells that the chemical potential transforms as j i  + p + &k2 ln(r), that is, it 

takes care of the defect self-energy. 

By transforming (48), we find the infrared behavior of the system. Making the 
-+ 

scaling transformation r i  = R. r i where R gives us an arbitrary scale change in 
the system, we get 

But, from xi Ai = O ( see the appendix or equation (40) ), we have 
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Therefore 

which is the basic equation to understand the nematic-isotropic phase transition. 

From eq.(57), we see that a change of scale gives us a renormalized activity 
given by 

p2 2 &, = & , ~ ( 2 - ~ k  (59) 

Making the identification R2 + V (volume), we get 

We are now in position to understand the heuristic arguments presented in 

section I of this paper. Remember that the ak9s, which appear in equation (44), 

are the expansion coefficient of the potential in cosines. But, from equation (61), 

we see that a t  low temperatures each ak goes as some positive power of the volume. 

SO, at these temperatures we have a big ak, and the system is aligned with the 

director, due to the predominance of the potential term in the hamiltonian. As the 

temperature increases, the volume dependence of ak diminishes, but it is positive 

for T < --). We have a completely diferent situation when T > 3, because 
K B ~  

we can say that ak goes to zero as V + oo. 

Therefore13, the change of scale gives a dependence of the ak coefficients on 
2LaK 

the temperature. At temperatures greater than Tk = -2 the ak expansion 
K B ~  

coefficient goes to zero. 

From this, we see that for every coefficient there is a temperature a t  which it 

goes to zero. And the greater the k index, the lower is the corresponding tem- 

perature. So, we can conclude that, as we rise the temperature, the largest k 
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coefficients become negligible, which explains the generality of nematic isotropic 

phase transition. At higher temperatures, only the lowest k terms survive, which 
shows that, at  these temperatures, the details of rod's potential interaction, which 

is given by the highest order k terms, are not important . That is, the potential 

U(4) , which is restricted to describe a particular rod interaction a t  lov~ tempera- 

tures, becomes nearly identical when we are close to the nematic isotropic phase 
transition. 

Obviously, the critica1 temperature is given by the point in which the first 
(k = 1) coefficient goes to zero 

Note that this temperature depends only on Ko. 

Near the critica1 temperat,ure only the first term (al) survives. Therefore, 

around this point the partition function is given by 

but, due to the neutrality, we have pi = nl. So, making pl = nl = n and gk = 

a we have 

'=C=/ (n!) " j =o  i+ j 

With equation (48) we were able to predict the temperature of the nematic 

isotropic phase transition, as well as the mechanism of suppression of the potential 

that makes the rods aligned. Now we discuss other properties related to the the 

phase transition. As we know, as the system changes scale, we can calculate its 
pressure, because 

So, using (61) and (64) we get 

where < n >=< ni + pi > 
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Therefore, a t  the critica1 temperature, the system pressure goes to zero. It is 
easy to understand this result as due to the end of the nematic phase. At this 

ternperature we have no more the aligned struture of hard rods near thc system 
walls. The force of this organized structure goes to zero. The same equation 

applied to the second of the equations (64) gives. 

The interpretation of this equation is same as (66), but now we can conclude 
that  

Making the change of scale in (68), we see that  

because < n > is proportional to a1 

Conclusion 

We have proposed a model that describes the nematic phase of a Liquid Crys- 
tal. We have shown that the hamiltonian proposed is equivalent to a Coulomb gas, 
in which the chages describe exactly the interaction of the defects of the nematic 

phase. So, the partition function of the Liquid Crystal can be written a t  least 

in two ways, one stressing the nematic alignement, and the other the interaction 

between the nematic defects. We have also shown t,hat our model allows a nematic 

isotropic transition and argued that it is a kind of Kosterlitz-Thouless transition. 

I acknowledge Prof. L. R.  Evangelista for introducing me to this fascinating 
subject and, mainly, for his continuous encouragement. 

Appendix 

We will show in this appendix, that  the generalized Sine-Gordon model is 
equivalent to a Coulomb gas. 

Let 

( A 4  

We have, thus, a term like 
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Eq. (A.2) is of the form eCiz i ,  and can be rewritten as 

But (Ci z;)" can be rewritten, using the multinomial expansion, as 

where C k n k  = n, and the notation C{,k} means a sum over a11 the possibles 
values in the set { n k ) .  From (A.2), (A.3) and (A.4) we arrive at 

Noting that 

where pnk,l(z) = CiZo l6 (z  - z; )  - Cj=l+i nk6(z - xi) e B = 

We arrive at 
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Substituting (A.8) in (A.5) we get 

For every value of nk we have, through eq. A.9, that 1 is the number of positive 

poles and nk - 1 is the number of negatives ones. In equation (A.9) the set { n k )  
is unsconstrained, because in this equation the explicit n dependence disappeared: 
So we can rewrite it as 

exp ({h 1 C an cos (%.n.p))úx.úy) = 
n>O 

Ck n k + ~ k  

" J  5 d2zj ~ X P  (ZB  C / pnk . l ( z ) ~ ( z ) d ~ r )  (A.  10) 
k 

Substituting this in the equation A.l  we arrive a t  

We take, in this equation, the integral 

where we have used p(x) = zk kpnkVl(x). As is well known, equation A.12 can be 

rewritten as 



where we made use of equation A.14. Making now 

where A(z  - y) is solution of the equation 

a 2 h ( z  - y) + 6(z - y) = O 

We conclude that 

P2 
r (@)  = =(O). exp (l 1 P ( z ) A ( ~  - Y)P(Y)PZPY) 

Our aim now is to  calculate A ( z  - y). Fourier transforming 

and using the trick 

a 2 ~ ( z )  = lim (a2 - P')A(x) = -6(z) 
P-+O 

We have ( leaving out the notation lim,,o) 

i 

d k )  = - (t2 + p2) 

In this way 

(A.19) 

(A. 20) 
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where Ko(h(r ( )  is a modified second class Bessel function of zero order. But 

Therefore 
1 

A<.) = iim - I. ($ir\)  
p-o 2a 

We are now ready to calculate 

p(x)A(z  - y ) p ( y ) d 2 z d 2 ~  (A.26) 

But 

where the set {Ai) is given by a11 the charge's possible values, with 

xk k(pk + nk) elements. 
So' 

1 3 =L lim (C Ai)' in ($) + - C 1n(lTi - r  j l )  (A.28) 2x p-+O 
i 27F i , j  

Therefore we have 

But 
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For the theory to  make sense, we need to  impose Ci A, = 0, which is the same 

That is, the total charge of the system is zero! 

Therefore we have 

Finally 

Where we used a ultraviolet cutoff E .  That is exactly where we wanted to  arrive. 

SO, the system describing the nematic state of a L.C. is equivalent to  a Coulomb 
gas with charges f k, where, k = 1,2,3, ... 
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Resumo 

Propomos neste trabalho, que a fase nemática de um Cristal Liquido pode ser 
descrita por uma lagrangeana que também descreve um g& de Coulomb. Usando 
essa lagrangeana, mostramos que as cargas do de Coulomb aparecem como 
defeitos na fase nemática dos C.L. Calculamos então, usando essa abordagem, a 
temperatura da  transição nemática isotrópica e concluimos que se trata de uma 
transição do tipo Kosterlitz Thouless. 


