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Abstract In this paper we perform the simulation of XG4 theory on a 
fractal lattice. We present the results obtained for the behavior of this 
theory in a Sierpinski carpet when we vary the number of generations, for 
a fixed Hausdorf dimension, and when we keep the number of generations 
fixed, vary ing the Hausdorf dimension itself. 

Introduction 

In the last few years, there has been much interest in the study of phase 

transitions on fractals. One of the reasons for such interest is the idea of using 

fractals, or certain kinds of fractals, to inter~olate between integer dimensions in 

order to study the critical properties of statistical systems, since, until now, non 

integer dimensions only entered physics in a formal way,by means of continuous C 

expansions near an integer dimension in the theory of critica1 phenomenal. 

The critica1 behavior of Ising-like models on fractal lattices has been studied 

by way 3f Real Space Renormalization Group2~3~4, High Temperature expansions5 

and Numerical simulations6. Both Z(3) gauge7 and Ising gauge8 theories have also 

been studied on fractal lattices by means of numerical simulations. Much effort has 

also been devoted, r e ~ e n t l ~ ~ ~ ' ~ ,  to the question of how to characterize universality, 

if it exists, and also what is the more appropriate expression for lacunarity, which is 

a measure of the extent of the failure of a fractal to be translationally invariant ' O .  
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Renormalization Group techniques applied to Ising model spins on several self- 

similar lattices2 have shown that the critical properties of these models depend 

not only on the fractal dimensionality but, also, on several topological factors0, 

like the order of ramification, the connectivity Q, the lacunarity, etc . . . . 
Xp4 theory, with integer dimension d ranging from 1 to 4, has been intensively 

studied in the last years. This theory, which provides an excellent laboratory 

for the study of more complex field theories, is known to  have only one sym- 

metric pharje when d = 1 (Quantum ~echanics)" ,  having two phases for d > 1 

'2,13,14,15. For d = 2 it has been shown that  is has no finite temperature phase 

transition12, that is, the critica1 temperature occurs a t  T' = O. As it is known that  

p4 is a non trivial theory for d = 2 and 3 and, probably, trivial for d = 4 12,131'4, 

it would be very interesting to study the behavior of the renormalized coupling 

constant when d varied from 3 to 4, if the critica1 properties of this theory could 

be smoothly interpolated between integer dimensions. Besides being an alterna- 

tive method for studying the question of triviality, it has the advantage that ,  as 

in a fractal lattice the nurnber of actíve sítes is smaller than in a normal lattice, 

the computations require less CPU time and memory storage. As there are many 

open points in the way of studying p4 on a fractal lattice, namely, how to define in 

an appropriate way the field derivatives and which boundary conditions are more 

adequate, we are going, first, to study this theory when d varies from 1 to 2, before 

going to the more difficult task of approaching the question of triviality of p:. 

We will study in this work the lattice version of the Euclidean Lagrangian, 

Scaling up the scalar field, defining it by 0 = fi$, then, the lattice partition 

function can be written as, 

where y, = mzi and j is the scaled current, given by j = & J  
m3 

18 
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In the discrete version of this theory, fields $(C) are defined at the lattice sites, 

labelled by the nurnber vector C .  The lattice sites are separated by a íked distance 

a. The lattice version of the derivative is, 

where ê; is the unit vector in the direction i. 

If we identify P = $, then, the lattice version of the partition function, 

has the Euclidean Hamiltonian defined by, 

in a space of integer dimension b. 
The expressions for the quantities that we will be interested in calculating,the 

average value of the fields (magnetization) and the two-point connected Green 

Function (which is the analogous of a susceptibility in a spin system), can be 

easily obtained by defining the connected partition function in the usual way, 

Z = exp(-W ( j ) )  (6) 

Using the fact that we use a constant current j over the whole lattice, the 

derivative of the connected partition function as a function of j yields, 

where N is the number of sites on the lattice and Cn < e ( Z ) / N  >,= 8 is the 

average value of the fields over the entire volume. 

The susceptibility x(j,P) is given by, 
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and it is related to the second derivative of the effective potencial [15]. 

Sierpinski carpets are usually defined on an embedding two dimensional space, 

but they can be generalized to spaces of any dimensionality ' 0 .  They are con- 

structed, in an embedding space of dimension d, in the following way; we start 

with a hypercube in this space (the initiator), divide it in bd hypercubes and elim- 

b a t e  ld of these hypercubes from the central section. We repeat this procedure 

n times (each procedure in which a certain nurnber of hypercubes are decimated 

is called a generation, the initiator being the O-th generation of the Sierpinski 

carpet), and at  each generation the carpet is rescaled, in order that the smaller 

hypercubes remain of unit volume. A fractal is obtained by making the number 

of generations n -+ oo - 5. 

The ~ausdorf@imension for a fractal, like the ones described above, is given 

When studying Xp4 on a Sierpinski carpet, we have put a field 8, at the 

center of each live unit cell on the carpet, and no fields where the cells have been 

eliminated.We could also have put the fields on the corners of the cells instead of 

the center. In the limit of infinite number of generations this will not make any 

difference6. As a consequence of this choice, we will have to eliminate from eq. 

(5) all the contributions to the Hamiltonian coming from the fields that have been 

decimated. In other words if, in a given direction, one or both nearest neighbors 

of a field Bi are sitting on decimated cells, then their contribution to the field 

derivative, in that direction, must be equal to zero. This will modify eqs. (3) and 

(5 )  

When doing the Monte Carlo simulation we will move from live site to live 

site, so that in eqs. (7) and (8) the N appearing stands now for the total number 

of active sites in each generation. 

We have tested both periodic (PBC) and Mean Field (MF) boundary condi- 

tions ' 6 .  In this last type of boundary conditions the fields externa1 to the border 

of the fractal are replaced by the average magnetization of the system and these 
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values of the externa1 fields are updated each few Monte Carlo steps. To compare 

finite size effects caused by the introduction of each type of boundary condition, 

we have calculated the magnetization and susceptibility as functions of B for the 

44 theory on a two dimensional square lattice with 64' sites. The agreement be- 

tween PBC and MF is very good, the only difference being that the susceptibility 

peak is less pronounced in the case of MF boundary conditions. During ali the 

Monte Carlo simulations we have controlled the field configurations and we have 

not found any enhancement of the magnetization of the surface fields compared 

to that of the fields which are in the interior of the lattice. As a fractal is not 

a translationally invariant object and not a periodic one, we considered that the 

MF boundary conditions would be more appropriate to the investigation of these 

objects. 

We have used the Metropolis algorithml' to implement the Monte Carlo nu- 

merical simulation on finite area lattices. We generated a new random field using 

the relation e? = (2s - 1) * A, where is uniformly distributed in the intenral 

[O : 11 and A is an empirically chosen constant. We have usually performed, for a11 

points, from 4 to 7 runs with the same set of pararneters, only changing the seed 

of the random number generator to check the consistency of our data. The error 

bars in each graph are obtained from runs with different seeds. 

The value of the field at each site was updated once at a time and we ran over 

a11 sites in a sequential way until a Monte Carlo sweep was completed. We did 10 

trials to change the field at a single site, before going to the next site. With this 

procedure, the correlation among different configurations was reduced, the rate 

of change of the fields at each sweep was increased and, in addition, the system 

converged to the equilibriurn at a faster rate. 

We have used the variance reduction method18 in order to reduce the statis- 

tical errors in the determination of the average value of the fields for each lattice 

configuration. The value of the new field at each site was taken to be the average 

over trials at each update. In this way, we obtain configurations with the same ex- 

pected value for the fields, but with less deviation as compared with the procedure 

where the new field is taken to be the 1 s t  trial value at each update. 
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In this numerical simulation we ran from 5000 to 80000 Monte Carlo steps with 

10 updates at each lattice site (this is roughly equivalent to performing from 50000 

to 800000 Monte Carlo steps). We discarded about 25% of the initial sweeps due 

to thermalization. The remaining configurations were separated in groups of 25. 

We stored the central configurations of each group to use in the measurements of 

physical quantities, and used the rest to do statistics and to measure correlations 

in the sample. 

We have used a small constant externa1 current [ j  = 0.01) over all the fields 

during the simulations. The introduction of this small ciirrent is very useful since 

it allows us to obtain reliable results without having to use so many Monte Carlo 

steps as one would have to use with j = 0.0. We have also used m = 1 and a = 1 

during a11 our calculations. 

In order to verify if our assumptions concerning the field derivatives and the 

boundary conditions were correct, we have studied the behavior of X p 4  theory 

in two different situations. We have first, for a fixed fractal dimension, varied 

the number of generations from 1 to 4. In figure 1 we show the behavior of the 

susceptibility against P for a fractal with b = 3,1 = 1 and n = 1,3 and 4. We can 

observe in this figure that, as the number of generations grows, the susceptibility 

peak gets higher and the value of the critica1 coupling PC moves in the direction 

of higher values of P.  For n = 1 it is nearly impossible at all to identify a peak in 

the susceptibility curve since it is too flat. As a complete study of the n = 5 case 

would involve a very large amount of CPU time, we have performed some runs in 

the case of n = 5, to check if the influence of finite size effects was still relevant. 

We have verified that the values of P, that come from the n = 4 and n = 5 lattices 

are, within the error bars, pratically identical and, as a consequence, we have not 

calculated the whole phase diagram for n = 5. 

In a second step we have varied, for a fixed fractal generation, the fractal 

dimension and have studied the behavior of the susceptibility and the average 

value of the fields as a function of /3 (which plays the role of the inverse of a 

"temperaturem, even though, strictly speaking, we are studying p4 at T = O). in 

figures 2 and 3 we show the behavior of the magnetization and susceptibility as 

22 



a4 Theory on  a Fractal Lattice 

Fig. 1 - Behavior of the susceptibility as a function of the critica1 coupling, j3,, 
for a Sierpinski carpet with b = 3 and 1 = 1 and n = 1 , 3  and 4. V stands for 

n = 1, O for n = 3 and 0 for N = 4. 

functions of p when n = 2 for the following dimensions: d = 2, 1.976, 1.936 and 

1.796. From both figures we can observe that as the d decreases from 2 to 1, 

Dc --+ cm. This behavior is in agreement with what one should expect if there were 

a kind of interpolation of the critica1 coupling between integer dimensions, since 

DC moves in the direction of larger values of /3 from the d = 2 critical value to 

PC = W, which is the critica1 coupling when d = 1, for in this case there is only a 

symmetric phasell@. Even though we have used a small generation number, this 

fact will not modify qualitatively our results, since from fig. 1 we have verified that 

the effect of using lattices with larger generation number is to move the critica1 

coupling in the direction of laiger values of P ,  that is, away from the value of Pc 
obtained in the d = 2 lattice. When d = 2, pc will also move in the same direction, 
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but it will be less shifted than the other ones because we have used a much larger 

lattice in this case. In this way, even though the true behavior of fractal is only 

achieved in the limit n 4 oo, we expect that  we can obtain a good hint of the 

behavior of a (p4 theory working with n = 2 fractals. 

Fig. 2 - Behavior of the magnetization as a function of the critica1 couplingJ,, 
for different kinds of Sierpinski carpets when n = 2. a) V stands for b = 64 and 

1 = 0, O stands for b = 6 and 1 = 2 and A for b = 4 and 1 = 2. 

In figure 4 we show the behavior of p, as a function of the fractal dimensiun 

dh.  As we can verify, even though we are using n = 2 we can perfectly observe that  

as we move away from d = 2, in the direction of d = 1, the values of p, move very 

fast in the right direction and that the results indicate that the critica1 coupling 

/3, seems to interpolate smoothly between integer dimensions. 

24 
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Fig. 3 - Behavior of the susceptibility as a function of the critical coupling, B,, 
for different kinds of Sierpinski carpets, when n = 2. V stands for b = 64 and 

1 = 0, 0 stands for b = 5 and 1 = 1, O stands for b = 6 and 1 = 2 and A stands 
for b = 4 and 1 = 2. 

In the case of Ising models in Sierpinski carpets with dimensions ranging from 1 

to 2, it was proposed in previous papers6, that a smooth inter~olation for the crit- 

ical coupling /3 and the critica1 exponent 7 (related to the susceptibility) between 

integer dimensions was better described if was better described if one used, instead 

of the usual Hausdorf dimension, a more physical dimension dnn defined via the 

average number of bonds connecting nearest neighbor live hypercubes, dnn = N O  

of live bonds / N O  of live hypercubes. In spite of the fact that there have been 

some suggestions for more adequate definition of the physical dimension6119, this 

question is still an open one. On the other hand, as we do not have enough data 

to discuss the appropriateness of different definitions, we will restrict ourselves to 

the HausdÒrf dimension. 
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Fig. 4 - Behavior of /3, as a function of the Hausdorffdimension. 

Our next task is to do a more detailed study of this question of interpolation be- 

tween higher integer dimensions, calculating the critica1 exponents and discussing 

the question of the triviality of (p4 in four dimensions, as well as the question of 

the physical dirnension. 
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Resumo 

Fazemos a simulqão de Monte Carlo da  teoria d4 em uma rede fractal. Apre- 
sentamos os resultados obtidos para o comportamento desta teoria em um tapete 
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de Sierpinski quando variamos o número de gerações, para uma dada dimensão de 
Hausdorff, e quando variamos a dimensão de Hausdorff mantendo fixo o número 
de gerações. 


