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Abstract In order to understand about the presence of different potential 
fields transforming under the same local symmetry group, this work gauge 
covariantizes an N = 112, D = 2 supersymmetric theory. Then, by relax- 
ing the, so-called, conventional constraint, a second gauge-potential field 
naturally emerges. 

1. Introduction 

Supersymmetry is a rich laboratory to unveil the meaning of the gauge 

principie'. Therefore, this work intends to  focus its different instructions through 

a very simple case: by covariantizing an U ( l ) ,  N = 112 supersymmetry in two 

dimensions213. For this we are going to explore the following two identities 

Thus, considering the superspace formulation 
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with the following supersymmetry transformations 

I 
2- = 2- + id 

O 1 = = B + €  

one gets a global U(1) action given by 

where is a complex scalar superfield defined by its component-field content 

according to 

a { 4 ( ~ ) , i 2 l / ~ $ ( ~ ) }  (6) 

where d(z) is a scalar and G(s) is a right-handed Majorana spinor. Elevating (5) 

to a local transformation 

where A(z, O )  is a real scalar superfield and q is the U(1)-charge corresponding to 

the field g[>, the gauge principle writes the following covariant derivatives 

where I'+, r and r- are superfield connections transforrning under U(l) symmetry 
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Thus, different connection superfields are generated by gauge covariantizing the 

space-time and supersymmetric covariant derivatives. In components, they are 

read as 

r+ = {A+, i23/4p) (14) 

Observe that the two components of the gauge field A+(x) and A-(x) belong to 

different superfields. p(x) and ((z) are spinors, but ((x) does not have an appro- 

priate, dimension for being interpreted as a physical field. Thus, the gaugino will 

be determined through a composition, a+[(z) + p(x), that is gauge-invariant. The 

condition that the fields must be real guides spinorial fields for both possibilities 

of being hermitean or anti-hermitean. (8)-(10) definitions have chosen the first 

case. Both physics are equivalent, although do not necessarily contain the same 

terrns. Finally, note that the space derivative d-  does not contribute to covari- 

antization process. However, it influences in the constraint mechanism that the 

theory formulates. It is the main aspect of this work. 

A study of gauge principle properties through a supersymmetric model N = 

112 in D = 2 is the motivation of this work. In this introducing we have noted 

that, preceding any dynamics, there it already exist facts such as ( I ) ,  (2), (8)-(13). 

Another intrinsic aspect that the gauge principle develops is about the possibility 

of supressing some physical regions through constraints. Sections 2 and 3 develop 

both sides of this relaxing strategy of the constraints. Finally, in the conclusion a 

comment about the nature of the physics of the gauge principle is made. 

2. Standard case 

The systematics to be followed here consists of two considerations. First, 

to impose constraints in the gauge covariant commutation relations and, then, 

to consult the Bianchi identities in order t o  stipulate relationships between the 

3 
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various superfields. From (1) and taking the torsion identically to the case with 

ordinary supersymmetric-covariant derivatives one gets, 

{V, V) = -2iV- + W (17) 

Similarly the superfields field strength W+, W- and W+- are obtained 

[V- ,V] = w- 

[V+, V-] = w+- 

Nonetheless, the determinism that symmetry generates for this model contain 

constraints. This means that it contains the property of imposing constraints. For 

this, take the following relationship 

and substitute it in (17). Then, the connection r- is eliminated through 

writing in components, such arranged dependence shows 

= -a- ( (23) 

A second limitation to be considered is that (18), (19) and (20) are related 

through the Bianchi identity. It yields, 

W+- = iDW+ 

Thus, there is only one independent field-strength 
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that in components is written as 

W+ E {23 /4qg~ ,qg~+- )  (27) 

where 

X = a + t + ~  

Observe that W+ is real, gauge invariant, accommodates the gaugino and the 

gauge field strength. 

(21) yields the standard case3, 

where 

Sgmge = -L [ d 2 x d f l ~ + ~ ~ +  
2q2g2 

(31) 

with 

considering the field contents (6) and 

= {21/4a(x), ~ ( x ) )  
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where 

D+ = a, + iqgAk 

A = Sr - i&qg€d 

B = F + 2qg<p 

with the following transformations 

For a more physical approach to analyze the quanta involved in (36), one can take 

the unitary Wess Zumino gauge. 

P(.) = A(.) (39) 

Calculating the equations of motion in terms of superfields, one gets for I'+, 

For I', 
99 a+DW+ - -a+DG = - q 2 g 2 ~  
a (41) 

W here 
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i 
J = -/@(V+@)* - @*V+@] + *'i'* 

2 
For the matter superfield @, 

i 1 
-{V,V+}+ - -m* = O 
2 2 

and for 9 
m 

V * + - @ = O  
2 

In components, one reads for A+ and A- 

1 a-F-+ + -d+(d+A- + d-A+) = iqgj+ 
a 

where 

1 i 4  
j- = l14(D-4)* - m * ~ - m ]  - qqr(mil.* + 4'4) + ?($*A - $A*) 

1 
j+ = $ó(D+4)* - 4*D+4] - i h B B 8  

The dynamics for the gauginocomponents < and p fields is 

Observe that, in order to show consistency between (46) and (47) and between (50)  

and (51), theory should provide another information. The matter-field components 

4, I>, P and F yields, respectively, the following equations of motion, 
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A next information that the theory provides is the Noether current conservation. 

For a supersymmetric theory 

~ B P ( ~ P , , ~ , # , , D @ ~ ,  a+@;) (59) 

there are two independent invariances in the superspace that depend on the pa- 

rameters and A(z,8). They are 

substituting (60) in (30) one gets a continuity equation in superspace that expresses 

the invariance under supersymmetry 

with 
i 1 S- = -[(QiPe)V@ - (Q@)(V@)*]  - -(QT)DW+ 
2 9s 

s = q{+m(v+m)* - (vm)*v+ml+ $*vr + r ( v e ) * l +  

1 1 
-m(@*@ + @ V )  - -W+DW+ 
2 2g2g2 I (62) 

Using (61) in (30) one gets the following relationship from gauge invariance 



A constraint analysis for an N = 112, D = 2 supersymmetric model 

(63) coincides for A(z, 6) being global or local. Considering the global condition 

it yields, 

a+ (D J-) - ia- J I.gzo = a, J: = o (64) 

where JG r (iDJ-,  J ) J B = ~ .  In components, 

Now the information has appeared that the equations of motion for the potential 

fields were expecting. (64) shows that although the structure of the field strength 

F+- does not propitiate a conservation law, there is a combination between (46) 

and (47) such that there appears a conserved current JG(x),  whose componets are 

coupled to the potential fields A+(z), A-(x), respectively. Similarly, the spinorial 

equations (50) and (51) work consistently with (64) by showing the presence of 

only one equation of motion for the photino. These aspects show that the gauge 

principle offers a closure relation for the field-dynamics. It is important to note 

that, though the parameter d(z,B) contains two parameters a(x) and ~ ( z ) ,  the 

symmetry of the theory does not work as a U ( 1 )  x U ( 1 )  mechanism with twÓ 

conservation laws. (64) prints out the presence of just one conserved current as in 

ordinary QED. The other current, the one coupled to the photino, contains just a 

gauge invariant behaviour, as shown in (50). Again, such results carry consistency 

due to the fact that while the potential fields suffer gauge transformations, the 

gaugino is properly an invariant. 

3. Natural action 

The most immediate action taken from the gauge principle is the one for which 

no constraints are used. Practical experientes with the reality constraint, as in 

four dimensions, have been showing that degrees of freedom of the fields can be 

eliminated from the theory by imposing suitable constraints on the superfields. 

This shows that the same symmetry is realized in different layers depending on 

the constraints' nature. Thus this section intends to explore this fact by digging 

9 
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down the su.sy. region for N = 1/2, d = 2 until one finds out a symmetry layer 

with no constraint4. 

Relaxing (21), we have 

The field-strength superfields W- and W+- are fixed from (2) as 

and 

w+- = -i(;a-w- - DW+ 1 168) 

Thus (66)-(68) shows the existence of three independent potential superfields: 

I'+, r and r-. Reading off the gauge invariant W components, one gets 

where (70) informs about the existence of a second gauge potential in theory. 

A next stage is to show that (69) and (70) do not represent a version of a same 

field obtained from a linear combination. Thus, it becomes necessary to study 

the quanta and interaction between such fields. The following bilinear terrns are 

added to (31) 
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where A i ,  A2 are free coefficients. Expressing the kinetic part in momentum space, 

one gets the following set of propagators 

< A+A+ > < A+A- > < A+B- > 
< A-A+ > < A-A- > < A-B- > 
<B-A+ > < B - A - >  < B - B - >  1 

Where 

(76) is not to be diagonalized, otherwise it would loose its local interpretation. 

This is due to the fact that its eigenvalues would be determined in terms of non- 

polynomial functions of the momentum. Nevertheless, (76) is enough to inform 
-. 

about the theory spectrum. From the first line, one reads that there is a probability 

related to the residue p to create a quantum of A+.  Similarly, the A- and B+ 

quanta are determined with probabilities related to p and p +  q.  In order to obtain 

the mass eigenvalue, that is expressed from the square of a quadrimomentum 

operator, it is necessary to read off the pole of a corresponding two-point Green 

function. Thus, observing (76), we note that each line contain at least one term 

whose denominator is in the Lorentz manifest form k+k-. This yields that the 

quanta associated with A+,  A-, B are massless. Note that a massive term might 

be obtained from (69) and (To), but it would violate Lorentz covariance. 

Thus, (70) and (76) show that B-(x) does not belong to the class of compen- 

sating fields. However it is still necessary to analyse its physical consistency. First, 
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the inclusion of a B - ( x )  field without a partner B+(x)  does not break the manifest 

Lorentz covariance. However, the propagator is able to reproduce a well-defined 

mass term. Second, aboiit the presence of ghosts: considering that residues p and 

p + q depend on parameters Ai, X 2 ,  a, the theory is provided with enough con- 

straints to build up probabilities with same sign. Thus, a healthy quantum for 

B- (z) exists. 

Now, we should understand the presence of this non-covariant B - ( x )  field 

through its interactions. Selection rules brought in by Lorentz weight, dimensional 

analysis and renormalizability are guiding aspects for possible interacting terms. 

As an example t,o show how the interaction terms are selected, we are going to 

study the case involving the field-strengths W+ and W .  The general expression is 

Then, considering the above conditions, respectively, this yields 

and including the interaction condition. 

one gets only one possibility. It is the non-abelian term 

Similarly, through explicity breaking the abelian supersymmetric case, one obtains 

Matter couplings involving T- are also obtained by breaking supersymmetry, 
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(85) 

Finally, there is a massive term 

The new equations of motion for this, considered as the natural region, are: 

For @. 

For \k, 
1 ;@A5 

VQ + + T p - [ ~ ( w ) T 1  + (v-*)(@m*)r} = o 
2 

(88) 

For r+, 

where 
A 4 0  J ;  = 3- + -[@(v-@)' - @'v-@](@@*)" 
2 (92) 
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Are  J: = -[@(V+@)* - @*V+@](@@*)" + iA&(Q*Q) (@@*)  
2 (93) 

J' = J (94) 

Finally, the Noether theorem gives the following conserved current 

4. Conclusion 

The main effort in this work has been an attempt at understanding some 

of the instructions that the gauge principle displays. Whenever combined with 

supersymmetry, their discussion becomes more enlighthening as the latter touches 

clearly the organization of the degrees of freedom of theory. 

Here, we have adopted to work with a sypersymmetry of the (1,O) - type in 

order to illustrate that the gauge principle does not compel us to necessarily fk the 

number of vector potentials appearing in a given gauge model. We have explicitly 

constructed an (1,O) - supersymmetric Abelian gauge theory characterized by the 

preserve of two gauge potential transforming similarly, under a common U(1) 

group. This has been achieved upon the relaxation of typical superspace constraint 

imposed on the algebra of gauge-covariant derivatives: the so-called conventional 

constraint . 
In our study, we have been able to identify three independent gauge connection 

superfields that accomodate two independent component-field gauge potentials, 

Ar(%) and B,,(z). Though in terms of light-cone coordinates only the component 

B- (z) of Bc,(z) appears in the superspace expansion for the superfield r-(z,O), the 

model can be shown to exhibit manifest Lorentz covariance and the propagators 

< Ac, Av >, < B,, B, > and < Ar B, > for the vectors can be written down 

which display the right structure of poles5. 

The question of explicit soft breakings of (1,O) - supersymmetry has also been 

addressed to and possible interactions for the extra potential, B-(x),  have been 

found out and written down based on general grounds. It is noterworthy to stress 

14 
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that such interactions respect supersymmetry for the non-Abelian case: the need 

for a soft breaking is a peculiarity of the U(1) version of the (1,O) gauge model. 

The next step of our investigation concerns the study of more general (p, q )  - 
supersyrnmetric gauge models, once we have found a less constrained (1,O) gauge 

theory. The possibility of extending the results found in this work to  the more 

interesting case of (2,0) and (4,0) supersymmetries is now under consideration and 

we shall soon report on the results elsewhere. 
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Resumo 

Para entender-se sobre a existência de diferentes potenciais de calibre 
transformando-se sob um mesmo grupo local de simetria, este trabalho estuda 
a teoria supersimétrica N = 112, D = 2. Então, relaxando-se o assim chamado 
vínculo convencional, um segundo potencial de calibre emerge naturalmente. 


