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Abstract  In this paper using the Pauli Algebra we obtain the finite form 
of a generic proper orthocronous Lorentz transformations (denoted L;), or 
in other words, we give to the exponential of a generic generator of SL(2,U') 
(the universal covering group of L?:, the proper orthocronous Lorentz group) 
a closed form, which represents a generalization of the well known exponen- 
tia1 form for pure boosts and pure rotations. We show also that there exists 

t a dynamical interpretation of the transformations of L+ when applied to 
the relativistic four vector velocity namely, that these transformations yield 
the integral solution of the equation of motion of a charged particle under 
the action of electric and magnetic fields in many configurations. 

The developments that follow are mainly based on the well known fact that the 

proper orthocronous Lorentz transformations L: can be described by the elements 

of sL(2,U')'p2. Each 2 x 2 complex matrix (an element of U'(2)) can be represented 

by a linear combination of the base /3 = {I, ai, uz, a3) where a, are the Pauli 

matrices. There exists an isomorphism among the four-vectors u E IR'>3 (where 

R113 is the Minkowski space) and the 2 x 2 matrices U that are linear combinations 

of the base j3 with real coefficients. We have: 

If g is the Lorentz metric then g(u, u) = ( U O ) ~  - ( u , ) ~  is represented by g(u, u) 

det U = ( U O ) ~  - (Ü)2. We write U u. 
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The matrices f M E SL(2,U') will be called for short in what follows Lorentz 
t transformations. The action of L+ on a four vector u E IR1p3 is represented by 

where M+ denotes the hermitian conjugated of M. 

We can write the operator M as  a linear combination of the basis with 

complex coefficients, i.e.: 

M = w + H  (3) 

The unimodularity condition, i.e., det M = 1 is equivalent to the condition 

where the operation - called space time reversion is defined by 

M = w + H = + M = w - H  (5) 

A direct calculation shows that 

M M  = w2 - H2 

Now, the square of a complex vector can be calculated using the Pauli product 

of two arbitrary vectors. We have the well known formula3 

where 

and 
1 - -  ia x F = - ( H F  - F H )  = C ~ = ' = , ~ E , ~ H ~ F ~ U ~  
2 (9) 

From these equations we have w2 and H2 E C and eq.(4) permit us to write 

4 

We put w = cosh z and parametrize H as follows 

H = Fsinhz 
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C i h  

where the complex 'hormalized" vector F ( F 2  = 1 )  is given by 

sinhz+ F = -  
1 sinh zI2 

H 

In this way the operator 'M defined by eq.(3) assumes the following form in 

terms of the parameters z and 2 

M = cosh z + Psinhz (13) 

This is a finite form for the operator M E SL(2,C) This is a really conve- 

nient form since it is the finite form of the ex~onential of a complex vector denoted 

2, related to the parameters z and ?' by 

as it can be seen at once through the series expansions3 

The argument of the exponential, the complex vector 3, defines the operator 

M and is said to be the generator of the transformation. F can be written as the 

sum of two euclidian vectors I?, B E IR3, i.e. 

When'the generator 3 of the transformation M has only a real part, i.e., 

@ = E ,  the transformation is said to be a boost., In this case the operator M in 
- . A - .  

eq.(13) (z = z = (E1 , F = EIE), is given by3 

E 
M = coshx + 7 sinhx 

IEl 
(17) 

Observe that the boost operators are hermitian. When the generator of the 
-# 4 

transformation M has only an imaginary part, i.e., F = iB, the transformation is 

said to be a sp&ial rotation. In this case the operator M in eq.(13) (z = i y  = 

, F = B/B) is given by 

B 
M = cosy +i-siny 

B (18) 



J. Ricardo R. Zeni and Waldyr A.  Rodrigues Jr. 

Observe that the rotation operators are unitary, M+ = M = M-'. 

The solution of eq.(2) for the transformation of a relativistic four-vector U 

under the action of a Lorentz transformation L\ E L\ is given by 3: 

u0 
Scalar part : uO' = -{/zI2/ c o s h ~ ( ~  + (E' + ~ ~ ) / s i n h z ( ~ }  

lzl 
iz.3 iz. B 

- 2 2 .  ml sinh zI2 + I f (2, y) + -g(z, y)(194 
Iz12 Izl Iz12 

u0 
Vector part : C' = ={E f (2, y) + Bg(x, y) + 2E x BJ sinh z12) 

14 
ü E2 + B2 ü x E  + 2{)z12) coshzI2 - --- 1 sinh zI2) - -g(x, y) 

14 1zI2 1zI2 

where the functions f (x, y) and g(x, y) are defined by 

g(x, y) = y sinh 22 - x sin 2y @ob) 

The variables x and y are such that z = x + iy can be obtained from the 

equation z2 = F2, by observing that F2 = F. F = E2 - B2 + 2iE B. We get: 

and also 

Eqs(l9a) and (19b) reduce to well known formulas in the cases 3 = O (rotation) 

and B = O (pure b o o ~ t ) ~ .  
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The result we want to show now is that a transformation of L! conveniently 

parametrized gives the integral solution for the motion of a charged particle un- 

der the action of an electric and magnetic field. This result is due to the fact 

that the electromagnetic field (which as weg known, is represented by a two-form) 

is represented by objects of the same mathematical nature as the generators of 

SL(2,U').* The electric field can be written as a linear combination of boost gen- 

erators, whereas the magnetic field can be written as a linear combination of the 

rotation generators, which makes this representation of the fields significative
g
, 

since we know that a charged particle in the presence of a constant electric field 

suffers an acceleration in the direction of the field, and in the presence of a constant 

magnetic field the charged particle suffers a rotation315. In resume, in the Pauli 

algebra which is isomorphic to C(2) 319~10 the electromagnetic field is represented 

by a complex vector analogous to the one given by eq.(16). 

We must comment here that the result quoted above has already been discussed 

in the literature415 using the space-time algebra However due to the lack of 

the formula for a general Lorentz transformation (eq.(13)) in 4>5 the authors work 

with the generic Lorentz transformation written as a product of a boost and a 

rotation. The final formulas obtained in4 eqs. (2.25), (2.26), (2.27) are equivalent 

to our eqs.(l9). The results obtained in are only an approximation obtained with 

the ~ambell-~aker-~ausdorff  formula. 

We now show the validity of the above statement. We start by writing the 

generator of the Lorentz transformation as 

where @ = 2 + i2 is the electromagnetic field, o! E R is a constant and 7 is an 

appropriate real parameter. We denote by M( r )  the-transformation generated by 

* The proof of this result involves knowledge of the structure of the Clifford algebra and 

the fact that Spin+(l,3) 2 SL(2,C) C E P z @(2) (P is the Pauli-algebra and 

is the even subalgebra of For more details see referencesu1718~9~10111112. 
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j and rewrite eq.(2) as 

~ ( 7 )  = M(T)UM+(T) (23) 

where U(T) = (uO(r), <(r)) and U = (uO, ií). 

Observe that in eq.(23) the initial four-vector U does not depend on the pa- 

rameter T .  

By differentiating both msmbers of eq.(23) in relation to r we have 

= n ( $ ~ ( r )  + u ( r ) F + )  
dr 2 (24) 

Now, from the Pauli product of two vectors (eq.(7)), taking into account that 
-, 
F+ = ,!? - iB, it follows that the right hand side of eq.(24) is the Lorentz force, 

i.e. 

A(&+ (i?+) = UOÉ+" - É + P  x z 
2 (25) 

We can then write the scalar and vector parts of eq.(24) as: 

From eq.(26) we see that a! = q/mc, where q is the charge of the particle, m 

its mass, c is the velocity of light and r  must be identified with the proper time 

parameter along the world line of the charged particle. With these identifications, 

the velocity four- vector U given by eq.(23) is indeed the integral solution of 

eq.(26) for constant electric and magnetic fields. 

In eq.(23) U is interpreted, of course, as the initial four-vector velocity since 

for r = 0 it is M(0) = n and U(O) = U. 

We mention that there are another simple problems that can be solved with 

the above techniqce. These are the cases where there exists only the electric field 

or only the magnetic field and in both cases the fields have a constant direction 

varying only their intensity and in a convenient way such that from Maxwell's 

equations no other fields arise. In these cases the solution of the motions equations 

(eq.(23)) are given by transformations M E SL(2,CC) in which the generator has 

the form 7 = drz(7)F and the electric or rnagnetic field is given by F = z ( T ) ? .  
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We emphasize also that the above technique can be extended to deal with the 

general problem of motion of a charged particle in presence of an arbitrary electro- 

magnetic field, i.e., the solution of the motion's equations still can be written as a 

Lorentz transformation as in eq.(23). We must only change the generator of the 

Lorentz transformation (eq.(22)) ~ o n v e n i e n t l ~ ' ~ 3 ~ ~ .  With this new technique we 

will study some approximations14 that can be useful in some practice applications. 
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Resumo 

Neste trabalho usando-se a álgebra de Pauli obtemos a forma finita de uma 
t transformação de Lorentz própria e ortócrona genérica (denotada L+), ou em 

outras,palavras, damos à exponencial de um gerador genérico do SL(2,C) (o grupo 
t de recobrimento universal de C+,  o grupo de Lorentz próprio e ortócrono) uma 

forma fechada, que representa uma generalizqão das formas exponenciais bem 
conhecidas para boosts e rotações puras. Mostramos também que existe uma 

t interpretação dinâmica das transformações de C+ quando aplicadas ao quadrivetor 
velocidade relativista, i.e., que estas transformações fornecem a solução integral da 
equação de movimento de uma partícula carregada sob a ação de campos elétrico 
e magnético em muitas configurações. 


