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Abstract Inthis paper using the Pauli Algebrawe obtain the finiteform

of a generic proper orthocronous Lorentz transformations (denoted LL), or
in other words, we give to the exponential d ageneric generator of SL(2,2)

(theuniversal coveringgroup o EL, the proper orthocronous Lorentz group)
a closed form, which represents a generalization o the well known exponen-
tial form for pure boosts and pure rotations. We show also that there exists
a dynamical interpretation o the transformations of Ei when applied to
the relativistic four vector velocity namely, that these transformations yield
the integral solution o the equation d motion o a charged particle under
the action of electric and magnetic fieldsin many configurations.

The developmentsthat follow are mainly based on the well known fact that the
proper orthocronous L orentz transformations LIL can be described by the elements
of SL(2,&)"2. Each 2 X 2 complex matrix (an element o €(2)) can be represented
by a linear combination of the base 8 = {1,0y,02,03} where o; are the Pauli
matrices. There exists an isomorphism among the four-vectorsu € RY® (where
IRY® is the Minkowski space) and the 2x 2 matrices U that are linear combinations
o the base § with real coefficients. We have:

Rl’SBuHU:uo+ﬁzu01+ui0i€(l'(2). (1)

If g is the Lorentz metric then g(u, u) = (u°)% — (v*)? is represented by g(u, u) —
detU = (v°)% — (@)% Wewrite U = u.

377



J. Ricardo R. Zeni and Waldyr A. Rodrigues Jr.

The matrices +M E SL(2,&) will be called for short in what follows Lorentz
transformations. The action o L% on a four vector u € B3 is represented by 8

U = MUM* (2)

where M+ denotes the hermitian conjugated of M.
We can write the operator M as a linear combination o the basis # with

complex coefficients, i.e.:
M=w+H (3)

The unimodularity condition, i.e., det M = 1 is equivalent to the condition
MM =MM =1 (4)
where the operation ~ called space time reversion is defined by
M=w+HB=>M=w-H ()
A direct calculation shows that
MM = v’ - H? (6)

Now, the square of a complex vector can be calculated using the Pauli product

of two arbitrary vectors. We have the well known formula3

AF=H F+iHxF (7
where
P D
H-F= E(HF + FH) = %3 H;F; (8)
and o
iaxF = %(HF - FH) = Ef-’zliei,'H,»Fjak (9)

From these equations we have w? and H? e and eq.(4) permit usto write
w? =cosh’z ; H¥=sinh’z , z€€ (10)
We put w = cosh z and parametrize H as follows

H = Fsinh 2 (11)

378



Finite form of proper orthocronous Lorentz..
wherethe complex “normalized” vector F (’IEz =1) isgiven by
=~ sinhz?
F=_—"""" 12
| sinh z|? (12)
In this way the operator M defined by eq.(3) assumes the following formin
terms of the parameters z and F

M = cosh z + Fsinhz (13)

Thisis a finite form for the operator M € SL{2,Z) 3, This is areally conve-
nient form sinceit isthe finiteformof the exponential of a complex vector denoted
f‘, related to the parameters z and F by

Y e ~ =3 - +ﬁ
F=2zF |, FP=2 ; F=ZT;|2-, (14)
as it can be seen at once through the series expansions®
- L B2 s
M=exp(F)=1+F+—2-+3T+" (15)

The argument of the exponential, the complex vector F, defines the operator
M and issaid to be the generator of the transformation. F can be written as the
sum o two euclidian vectors E, B E R3, i.e.

F=E+iB (16)
When' the generator F o the transformation M has only area part, ie.,

F= E, the transformation is said to be a boost., In this case the operator M in
eq.(13) (z==z=|E|, F = E/E), isgiven by3

M = coshx + -I_E.— sinhz (17)
|E|

Observethat the boost operators are hermitian. When the generator F d the
transformation M has only an imaginary part, i.e., F= iﬁ, the transformation is
said to be a spatial rotation. In this case the operator M in eq.{13) (2 =iy =
i|B|, F = B/B) isgiven by

M = cosy + z'g siny (18)
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Observe that the rotation operators are unitary, M+ = M = M1,
The solution of eq.(2) for the transformation o a relativistic four-vector U

under the action of a Lorentz transformation LL € £IL is given by *:

0
Scalar part: 4% = %{]z{zlcoshzlz +(g*+ B’)[sinhzlz}

_gg. (ExB) B){s hajz+ 2 E

'z' f( ,y) , ’2 g(:z:,y)(lga)

l!2

0
Vector part : g = _“_{ Ef (z,y) T Bg(z,y) T 2B x Blsinhz[?}

— -

z|“1cosh z 2 —ziB— sin. z
Il eosh of = Fsinh o7} - 25 (z,0)

u!x‘zBf( z,y) + ﬂili:—ihz—zﬁ{(a.é)i+(a.é)é} (19b)

where the functions f(x,y) and g(z,y) are defined by

f(z,y) = zsinh2z + ysin 2y (20a)
g(z,y) =ysinh 22 — zsin2y (20b)

The variables x and y are such that z = x + ¢y can be obtained from the
equation z2 = F2, by observing that F2= F. 7= E2 - B2+ 2:E - B. We get:

2 = {lef? + (B - B (21a)
¥ = S {jaf* - (B7 - B) (216)

and also
of? = (B2 — B 4 4(B - B (21¢)

Eqgs(192) and (19b) reduce to well knownformulasin thecasesE =0 (rotation)
and B =0 (pure boost)3.
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The result we want to show now is that a transformation of £! conveniently
parametrized gives the integral solution for the motion of a charged particle un-
der the action of an electric and magnetic field. This result is due to the fact
that the electromagnetic field (whichas well known, is represented by a two—form)
is represented by objects o the same mathematical nature as the generators o
SL(2,&).* The eectric field can be written as a linear combination of boost gen-
erators, whereas the magnetic field can be written as a linear combination of the
rotation generators, which makes this representation of the fields significativeg,
since we know that a charged particle in the presence o a constant electric fied
suffersan acceleration in the direction o thefield, and in the presence of aconstant
magnetic field the charged particle suffers a rotation®°. In resume, in the Pauli
algebra which is isomorphic to @(2) 3%° the electromagnetic field is represented
by a complex vector analogous to the one given by eq.(16). 3

We must comment herethat the result quoted abovehas already been discussed
in the literature®® using the space-time algebra IR; 3. However due to the lack of
the formulafor a general Lorentz transformation (eq.(13)) in %5 the authors work
with the generic Lorentz transformation written as a product o a boost and a
rotation. The final formulas obtained in* egs. (2.25), (2.26), (2.27) are equivalent
toour egs.(19). Theresultsobtained in® are only an approximation obtained with
the Cambell-Baker-Hausdorff formula

We now show the validity o the above statement. We start by writing the
generator o the Lorentz transformation as

=

7= gFT (22)

where F = E +iB is the electromagnetic field, o E R is a constant and 7 is an

appropriate real parameter. We denote by M(7) the transformation generated by

* The proof o this result involves knowledge & the structure o the Clifford algebra R 3 and

the fact that Spin(1,3) ~ SL(2,&) C R, ~ P ~ @(2) (P is the Pauli-algebra and

Ri‘:s is the even subalgebra of IRy 3). For more details see references®7:8:9,10,1L,12
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f and rewrite eq.(2) as
U(r) = M{r)UM*(7) (23)
where U(r) = (u%(r),&(s)) and U = (u°,%).
Observe that in eq.(23) the initial four—vector U does not depend on the pa-
rameter .
By differentiating both msmbers o eq.{23) in relation to r we have
U«

== E(FU(T) +U(r)FT) (24)

Now, from the Pauli product of two vectors (eq.(7)), taking into account that
F* = E — B, it follows that the right hand side o eq.(24) is the Lorentz force,

i.e.

%(F‘U+UF’+):u°E’+E-E+E><E (25)

We can then write the scalar and vector parts of eq.(24) as:

du® L o= d 08 - B
-‘anu-E,&;u:a(uE—kuxB) (26)

From eq.(26) we see that « = ¢/mc, where q is the charge of the particle, m
its mass, ¢ is the velocity of light and 7 must be identified with the proper time
parameter along the world lined the charged particle. With these identifications,
the velocity four- vector U given by eq.(23) is indeed the integral solution of
eq.(26) for constant electric and magnetic fields.

In eq.{23) U isinterpreted, of course, as the initial four-vector velocity since
forr =0itis M(0) =1 and U(0) = U.

We mention that there are another simple problems that can be solved with
the above technique. These are the caseswhere there exists only the electric field
or only the magnetic fidd and in both cases the fields have a constant direction
varying only their intensity and in a convenient way such that from Maxwell’s
equations no other fieldsarise. In these casesthe solution o the motions equations
(eq.(23)) are given by transformations M € SL(2,&) in which the generator has
theform f = fdrz(f)f? and the electric or rnagnetic field is given by F = z(r)f‘.
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We emphasize also that the above technique can be extended to deal with the
general problem of motion of a charged particle in presence of an arbitrary electro-
magnetic field, i.e., the solution of the motion’s equations still can be written as a
Lorentz transformation as in eq.(23}. We must only change the generator of the
Lorentz transformation {eq.(22)) conveniently'®!4. With this new technique we

will study some approximations4 that can be useful in some practice applications.
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Resumo

Neste trabalho usando-se a algebra de Pauli obtemos a forma finita de uma
transformacdo de Lorentz préopria e ortocrona genérica (denotada LIi-), ou em
outra.s’pa.la.vras, damos a exponencial de um gerador genéricodo SL(2,C) (ogrupo
de recobrimento universal de El, 0 grupo de Lorentz proprio e ortdcrono) uma
forma fechada, que representa uma generalizagao das formas exponenciais bem
conhecidas para boosts e rotagBes puras. Mostramos também que existe uma
interpretac8o dinémicadas transformagtes de IIL quando aplicadas ao quadrivetor
velocidaderel ativista, i.e., que estas transformagdes fornecem a solugéo integral da
equacdo de movimento de uma particula carregada sob a agcdo de campos €elétrico
€ magnético em muitas configuracoes.
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