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A b s t r a c t  The electromagnetic waves in a uniform, magnetized plasma, 
bounded by a cylindrical waveguide are studied using warm plasma theory. 
In the case of a cold plasma, backward electromagnetic waves are obtained 
which exhibit the phenomenon of Faraday rotation, in contrast to the Trivel- 
piece and Gould electrostatic modes which do not show this characteristic. 
Numerical results are presented for the linear LISA machine. A general- 
ization of the Ghosh and Pal dispersion relation for a warm, magnetized 
plasma is derived. 

1. Int roduct ion 

The study of the characteristic modes of electromagnetic oscillation in waveg- 

uides has continued to be an important research topic in the last few years1-3. A 

global treatment of the problem is always necessary when the wavelength of the 

perturbation is of the same order as the dimensions of the system. 

The purpose of the present paper is to include the electron temperature in the 

Trivelpiece and Gould problem4>5. Moreover, the study will not be restricted to  the 

slow wave cases ( w 2 / k 2  << c 2 )  and a greater number of modes will be analysed. 

We study a particular case of a siow electromagnetic wave in a cold plasma and 

discuss its difference to the slow electrostatic wave obtained by Trivelpiece and 

Gould in the same range of frequencies. We also generalize the dispersion relation 



High frequency electromagnetic waves in a bounded 

of Ghosh and pa16, which was obtained for a warm, magnetized plasma completely 

filling a cylindrical waveguide of circular cross section. 

2. The Basic Equations and the Dielectric Tensor 

The Trivelpiece and Gould problem is studied including the electron temper- 

ature and the perturbed p - t  of the magnetic field. The plasma is then treated as 

an adiabatic fluid in which the ions are at rest. This approximation is valid in the 

highfrequency limit,w >> wpi and w >> wCi, when the ions motion is completely 

negligible. The presence of a constant externa1 magnetic field along the waveguide, 

Bo, is included in the model. A linearization process is applied, where we assume 

small sinusoidal perturbations from steady state. This means that the perturba- 

tions have an exp(-iwt) time-dependente, where w is the angular frequency of 

the electromagnetic field. The equations are obtained in the absence of an equi- 

librium electrostatic field, Éo = 0, and of an electron drift velocity, í i o  = O. The 

first order equations which describe the system are the equations of continuity, of 

momentum transfer and Maxwell's equations. With these assumptions they take 

the form, respectively7-10 

1 + -4 

where pi,no,m,U(= (ykgTo/rn)z), 7, kg, TO, 21, -e, El ,  Hl ,  PO and t o  are, re- 

spectively, the perturbed pressure, fluid density, electron mass, electron thermal 

velocity, ratio of specific heats (usually 7 = 5/3), Boltzmann's constant, elec- 

tron temperature, perturbed fluid velocity, electron charge, perturbed electric and 

magnetic fields, vacuum magnetic permeability and vacuum dielectric constant. 

To obtain these equations we assumed also that the electron collision frequency is 

much smaller that the wave frequency w .  

In this work the propagation of electromagnetic waves in a plasma-filled cylin- 

drical waveguide of circular cross section is studied. We assume that & is in the 
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direction of the waveguide axis, Z axis of the coordinate system, and suppose a 

wave perturbation of the form exp(ikz - in8). Applying eq. (1) and eq. (2) and 

the result in eq. (4) yields 

where 

Here wp and w, are, respectively, the electron plasma frequency and electron 

cyclotron frequency given by 

4 

In (5), F' is the warm plasma díelectric tensor. Due to the global treatment 

of the problem its elements have spatial derivatives which operate on the electric 

field components. The usual infinite warm plasma dielectric tensor is obained 

from (5) to (6) imposing l / r  4 O and d / d r  + i k l .  The radial derivatives become 

important when the wavelength of the perturbation is of the same order as the 
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radius of the waveguide. In this case a global treatment is necessaryl1 and a plane 

wave propagation cannot occur. 

3. Equations for the Field Components 
-+ 

With (1) and (4) we obtain pl and ui in terms of El and 2 1 .  Applying this 

result in (2) yields 

where 
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Applying (8) to (11) and (I) in (2) yields 

From (8)-(14) we see that a11 the transverse field components and a11 the 

components of the fluid velocity are obtained in terms of E, and H,. 

Applying the rotational operator to both sides of equation (7) and using (3) 

y ields 

Applying the divergent operator to both sides of equation (7) and using the 

rotational operator of both sides of equation (3) yields 
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From (15) we obtain the equations for H ,  when Bo = O and also the equation 

for E, when Bo + oo, namely 

(V: -t k z )  Hz = 0, (17) 

(v; + k h )  E ,  = O , (18) 

where 

From (16) we obtain the equation for H, when Bo -, cx> and also the equation 

for E,  when Bo = 0, namely 

where 
1 

w 2  - wp 2 

k. = (.i - k') 

In the case of a nonzero and finite magnetic field we can combine equations 

(15) and (16) to obtain 

where 
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Equation (21) shows that E, and H, are coupled in the situation of a finite 

magnetic field. As a consequence, the waves cannot be separated into TE and TM 

modes and only hybrid modes can propagate. 

Applying the operator (V: + kz) to both sides of equation (21) and using (15) 

yields 
6 (v1 + v: + b2 v: + b3)Ez = 0, (22) 

where 

Equation (22) can also be obtained directly using (3) and (5). Thís sixth order 

equation for the longitudinal component of the electric field is more general than 

that obtained by Ghosh and Pa16 . Those auhors, beginning from the same set of 

equations (1) to (4), arrived at a fourth order equation for E,, due to simplifying 

assumptions (not specified). Moreover they only studied the circularly symmetric 

waves, n = O, while the analysis of this paper is valid for any mode n. 

Equation (22) can be written in the form 

where ki, k2 and k3 are analytic functions of bi, b2 and b3, obtained by Cardan's 

formula. Cardan's formula gives algebraically the values of the roots of a cubic 

equation as a function of its coeffi~ients'~. 

4. Dispersion Relations 

In order to obtain the dispersion relations we need to specify the boundary 

conditions. Assuming a perfectly conducting metallic cylinder of radius R limiting 

the plasma we havel3>l4 : 

Ez(R) = O, &(R) = O, H, (R) = O, ur(R) = 0. (24) 
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These are the boundary conditions for this problem. They require that the tan- 

gentia1 components of the electric field and the normal component of the magnetic 

field vanish at the perfectly conducting wall. They also require that the normal 

component of the fluid velocity vanishes at the rigid metallic wall. It should be 
I 

noted that the boundary condition for the magnetic field in equation (24) is differ- 

ent from the one utilized by Ghosh and pa16, namely, H,(R) = O. Our boundary 

condition, H,(R) = O, is justified because we have a metallic boundary2'. 

The dispersion relations obtained in this paper are for the situation of a finite 

magnetic field or for the situation when the magnetic field goes to zero. The 

dispersion relation for the case of infinite magnetic field and a cold or warm plasma 

can be easily obtained using (18) and (24). This is a known resultI5, and will not 

be presented here. 

4.1 Case of Zero Magnetic Field 

There are three regions in the w versus k plane. Region I: k: > O and k: > 0. 

Regon 11: ka > O and ke < O. Region 111: kg < 0 and ke < O. These regions are 

presented in Figure 1. The solutions of ( 2 0 )  and (17)  which are finite at the axis 

are 

Region I:E, = AI, Jn(rke) + Bl, J,(rk,) , 

Hz = Cin Jn (rke) , 
Region II:E, = AznIn(rke2) -i- Ban Jn(rks) , 

= CznIn(rk,2) , 
Region III:E, = A3nIn(tkeZ) + B3nIn(rks2) , 

Hz = C3nln(rke2), 

whera 

and where Jn(x) and In(x) are, respectively, th nth-order Bessel function and 

modified Bessel function of first kínd. 
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a4 

* 
o k 

Fig. 1 - Distinct regions in the w versus k diagram. Case of zero magnetic field. 

Application of the boundary conditions yields the dispersion relations 

Region I: 

Region II: 

Region 111: 

where Jh(x) and Ih(x) mean derivatives with respect to the argument. Figures 

(2) and (3) show the graphs of frequency versus wavenumber for (28) to (30). The 

values of the density, guide radius and plasma temperature are those of the linear 

LISA machine, of Universidade Federal Fluminense, ~ r a z i l ' ~ " ~ .  In regions I and I1 

there are infinitely many curves and from Figure 2 we see that they pass smoothly 

from region I to region 11. In region I11 there is only one dispersion curve for each 

temperature, which tends asymptotically to the plasma frequency for k -+ oo. 
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Fig. 2 - Dispersion relation when &I = 
O, n = O, kBTo = 40eV, wp = 
5.040 x 10'' s-', R = 0.085m. 
Medes pi.1; ~ 1 , s ;  p1,io; Pi,i5 and 
p1,20. Initial points obtained from 
J1 (Rk,) = O. Region w > wp. 

R x k  

Fig. 3 - Dispersion relation when Bo = O, n = O, wp = 5.040 X 

10" = 0 . 0 8 5 ~ ~ .  Region w < wp. The lower curve is for the LISA 
temperature: k ~ T o  = 40eV. The upper curve is for k ~ T o  = 1.37keV. 

Results (28) to (30) are a generalization of the results obtained by Ghosh and 

Pa16. Their dispersion relation is only valid for the lowest circularly symmetric 
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mode, n = O. When n # O only hybrid modes can propagate because the TE 

and TM modes cannot satisfy simultaneously a11 the boundary conditions (24) .  

This case of zero DC magnetic field was alço studied by Azakami, Narita and Aye 

Theinl8, who showed that when n = O the waves can be separated into transverse 

electric and transverse magnetic modes. 

4.2 Case of a Cold Magnetized Plasma 

From (21)  and (22)  we obtain, in the limit To -+ O: 

where 

Accepting complex arguments, the solution of (32)  which is finite at the axis 

is given by 

E, = An J n ( r k ~ )  + Bn J n ( r k ~ )  e (33)  

Applying (24)  in ( 3 3 ) ,  (9)  and (12)  yields the dispersion relation 



High frequency electromagnetic waves in a bounded 

This is the dispersion relation for a hybrid electromagnetic mode. As this is an 

odd function of n, Faraday rotation of the plane of polarization will happen. This is 

due to the different phase velocities of the n = + N  and n - - N  modes, where N  is 

any natural number. A superposition of these two modes yields a composite wave 

in which the direction of polarization will be rotated as a function of distance along 

the guidelg. Trivelpiece concluded that an electrostatic wave does not present 

Faraday rotation when excited in a cold plasma-filled waveguide, although it will 

present this rotation if the cold plasma only fills the waveguide partially5. Here 

we see that an electromagnetic wave in a cold plasma-filled waveguide presents 

Faraday rotation. 

In the limit of slow waves (wlk << c), eq. (34) yields 

J' (RT) I' (Rk) nw, T L - k L - - -  
Jn (RT) In (Rk) RW 

- o, 

where 
(w" wW,2)(wC - w2) 

T  = [kl 
w2(w2 - w; - w;) I - 

Here we see that Faraday rotation will also be present for these slow electro- 

magnetic waves. A qualitative graph of this dispersion relation is presented in 

Fig. 4 for te case w, < wp. Tdere we can see that backward electromagnetic 

;aves are predicted in the region wp < w < WUH, where w u ~  = (w: + w:);. This 

is confirmed in the numerical computation presented in Figs. 5 and 6 with the 

values of the density, guide radius and DC magnetic field of the linear machine 

 LISA'^^'^. There are infinitely many curves in the region w < w, and in the region 

wp < w < WUH, but we only present 5 curves in Fig. 5 and 3 curves in Fig. 6. If 

wp < w, then the backward waves will be in the region w, < w < WUH, while the 

passband for the forward waves will be in the region O < w < wp. 

Waves in these ranges of frequencies were detected experimentally by Triv- 

elpiece and G o ~ l d ~ * ~ .  They interpreted their result as being electrostatic waves 

satisfying the dispersion relation 
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Fig. 4 - Dispersion relation for slow electrornagnetic waves in a cold plasma-filled 
1 

waveguide. WUH = (w; + w:) 2.  Case in which wc < wp. Whistler waves in 
the region w < W, and backward waves in the region wp < w < WUH. 

R a k  

Fig. 5 - Dispersion relation for kgTo = O, R = 0.085m, w, = 1.57 X 

10" s-', w, = 5.04 x 101° s-l, w u ~  = 5.28 x 10'' s-l, n = 0. 

that is, RT = p,,. But some remarks should be made. The first is that (36) was 

obtained by Trivelpiece applying the boundary condition &(R)  = 0, where 41 is 

the electrostatic potential (for electrostatic waves the electric field is derived from 
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3.20 I I I I I I J 
O 8.5 17 25.5 34 42.5 51 

R i k  

Fig. 6 - Backward waves for kgTo = O, R = 0.085m, n = O, w, = 
5.04 x 10'' s-',  w u ~  = 5.28 x 10" s- ' .  

a scalar potential). This yields E,(R) = O and Ee(R) = O, as can be seen from 

3 equations (111.23) to (111.26) of Trivelpice's work (1967). But &(R)  = O does not 

yield u,(R) = O as can be seen from equation (111.6) of his work. However, it was 

shown by Ferrari20 that the electrostatic approximation is reasonably accurate and 

can describe the waves very well. 

Our interpretation is that the waves detected were slow electromagnetic waves 

satisfying (36) and not slow electrostatic waves satisfying (35). Eq. (35) satisfies 

a11 the boundary conditions (24), while (36) does not. We suggest a way to resolve 

this question: the measurement of Faraday rotation for the backward and forward 

waves. Trivelpiece and Gould did not report any measurement of this kind in the 

experiment in which the plasma completely fills the cylindrical waveguide. The 

dispersion relation (36) does not predict any Faraday rotation when the modes 

n = f 1 are excited simultaneously. But according to (35) this should happen. 

However, the magnitude of this Faraday rotation, if it exists, should be quite 

small in most cases. 
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4.3 Case of a Warm Magnetized Plasm 

The solution of (23) which is finite at the axis is 

Applying (37) in (21) yields 

Applying (37), (38) and (8)-(14) in (24) yields 

where 



High frequency electromagnetic waves in a bounded 

and where j = 1, 2 or 3. 

This is the dispersion relation for a warm magnetized plasma completely filling 

a cylindrical waveguide. Eq. (39) is the most general result of this paper. 

As this equation has odd powers of n the phenomenon of Faraday rotation 

appears again. Another point to note is that this dispersion relation refers to the 

hybrid modes due to the coupling between H, and E, in eq. (21). 

This dispersion relation is more general than that obtained by Ghosh and pa16, 

Eq. (39) is valid for any integer n and was obtained without further simplifications 

besides those required by the model. Eqs. (1) to (4), solution (37) and boundary 

conditions (24) yield, after a long algebraic manipulation, the dispersion relation 

(39. NO other simplifications were made. Applying the limit To -+ O in (39) yields 

(34), as expected. 

The main point of this section was to obtain the general dispersion relation 

eq. (39). In Figures figs. 7 to 9 we present the dispersion relations, eq. (39), for 

modes with n = O, n = 1, n = -1, respectively. We present in each figure the 

six lowest modes in each case. The parameter L indicates the nurnber of times the 

component E,(r) goes to zero for O < r < R. We utilized the following parameters: 

kBTo = 40 eV,  wp = 1.20 x 10'~s- ' ,  w, = 1.50 x 10lOs-'. 

In Fig. 10 we plotted the Faraday rotation for the case n = Jrl ,  eq. (39). 

This was obtained for L = 1 (see above). From it we can see that although "the 

electrostatic theory is reasonably a c c ~ r a t e " ~ ~  , our model indicates that Faraday 

rotation at this temperature can be detected in the laboratory. For instante, for 

a frequency w = 1.14 w, we expect a Faraday rotation of 3 rad if the waveguide 

length is ten times its radius. 
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r 

Fig. 7 -Backward waves for kBTo = 
40 eV ,  R = 0.085m, n = 0, 
w, = 1.20 x 10'' s-', w, = 1.50 x 
101° S- ' .  The parameter e indicates 
the number of times E,(r) = O for 
O < r < R .  

Fig. 8 - Backward waves for kBTo = 
40 elr ,  R = 0.085rn, n = 1, 
wp  = 1.20 x 10" s-', w e  = 1.50 x 
10'' S- ' .  The parameter indicates 
the nuniber of times E,(r) = O for 
O < r < R .  

1.00 
O 3 6 9 12 I 5  18 21 

R x k  



High frequency electromagnetic waves in a bounded 

Fig. 9 - Backward waves for kBTO = 
40 eV, R = 0.085mp = -1, 

I 
w, = 1.20 x 10'' s-l, w, = 1.50 X 

Conclusions 

In this paper we studied the propagation of electromagnetic waves in a plasma- 

filled cylindrical waveguide of circular cross section. We obtained the global dielec- 

tric tensor of a warm magnetized plasma and showed that its elements have spatial 

derivatives which operate on the electric field components. With the solution of 

the equations for E, and H,, together with the appropriate boundary conditions 

we obtained the dispersion relations in severa1 situations. 

In the case of zero magnetic field we concluded that only hybrid modes can 

propagate when n # O. In the case of a cold magnetized plasma we obtained a 

dispersion relation which is an odd function of n, indicating Faraday rotation for 

the electromagnetic waves. For slow waves we arrived at two passbands where 

excitation of the modes can occur: if w, < wp when the passbands are w < w, and 

wp < w < WUH; if wp < wc then the passbands are w < wp and w, < w < WUH. We 
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Fig. 10 - Faraday rotation for kgTO = 40 eV, R = 0 .085~2 ,  n = f 1, 
wp = 1.20 X 1 0 ' ~ s - l ,  w, = 1.50 x 10lOs-I ,  e = 1.  

then showed numerically that in the upper passbands we have backward waves. 

To distinguish what the waves detected ex~erimentally by Trivelpiece and G o d d  

in this range of frequencies were, i.e., to determine if they were electrostatic or 

electromagnetic in nature, we propose the measurement of the Faraday rotation 

of these waves. A rotation of the plane of ~olarization would indicate that  they 

were electromagnetic waves while a fixed polarization would indicate that  they 

were electrostatic waves. Finally, in the case of a warm magnetized plasma we 

generalized the results of Ghosh and Pal. The general dispersion reiation came 

from a sixth order equation and is valid for any angular rnode n. 

We presented three curves for this general dispersion relation and also one 

curve for Faraday rotation indicating its magnitude in a typical situation. 
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Resumo 

São estudadas as ondas eletromagnéticas em um plasma uniforme, magne- 
tizado e limitado por uma guia de onda cilíndrica usando a teoria de plasma 
morno. No caso de um plasma frio, são obtidas ondas eletromagnéticas retrógadas 
que exibem o fenômeno de rotação de Faraday, em contraste com os modos elet- 
rostáticos de Trivelpiece e Gould que não apresentam esta caract,erística. R q d -  
tados numéricos são apresentados para a máquina linear LISA. E derivada uma 
generalização da relação de dispersão de Ghosh e Pal para um plasma magnetizado 
e morno. 


