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Abstract The electromagnetic waves in a uniform, magnetized plasma,
bounded by a cylindrical waveguide are studied using warm plasma theory.
In the case of a cold plasma, backward electromagnetic waves are obtained
which exhibit the phenomenon of Faraday rotation, in contrast to the Trivel-
piece and Gould electrostatic modes which do not show this characteristic.
Numerical results are presented for the linear LISA machine. A general-
ization of the Ghosh and Pal dispersion relation for a warm, magnetized
plasma is derived.

1. Introduction

The study of the characteristic modesd electromagnetic oscillation in waveg-
uides has continued to be an important research topic in the last few years!=3. A
global treatment of the problem is always necessary when the wavelength of the
perturbation is of the same order as the dimensions of the system.

The purpose of the present paper is to include the electron temperature in the
Trivelpiece and Gould problem®®. Moreover, thestudy will not be restricted to the
dow wave cases (w?/k? << ¢?) and a greater number of modes will be analysed.
We study a particular case of a slow electromagnetic wave in a cold plasma and
discuss its difference to the slow electrostatic wave obtained by Trivelpiece and
Gould in the same range of frequencies. We also generalize the dispersion relation

356



High frequency electromagnetic waves in a bounded

o Ghosh and Pal®, which was obtained for a warm, magnetized plasma completely
filling a cylindrical waveguide o circular cross section.

2. The Basic Equationsand the Dielectric Tensor

The Trivelpiece and Gould problem is studied including the electron temper-
ature and the perturbed p=-t of the magnetic field. The plasmais then treated as
an adiabatic fluid in which the ions are at rest. This approximation is valid in the
highfrequency limit,w >> w,; and w >>> w,;, when the ions motion is completely
negligible. The presence of a constant external magnetic field along the waveguide,
f?o, is included in the model. A linearization process is applied, where we assume
small sinusoidal perturbations from steady state. This means that the perturba-
tions have an exp(—twt) time-dependente, where w is the angular frequency of
the electromagnetic field. The equations are obtained in the absence of an equi-
librium electrostatic field, E; = 0, and of an electron drift velocity, @ = 0. The
first order equations which describe the system are the equations of continuity, of
momentum transfer and Maxwell’s equations. With these assumptions they take

the form, respectively? 10

twpy = nomU?V - 4, (1)
twnomiiy = noe(Ey + iy x Bo) + Vpy , (2)
V x E = swpoH, , (3)
V x FII = —iweg By — noety , (4)

where p;,ng,m,U{= ('1kBTo/m)%), 7, kg, To, @1, —e, E1, Hy, po and € are, re-
spectively, the perturbed pressure, fluid density, electron mass, electron thermal
velocity, ratio of specific heats (usually v = 5/3), Boltzmann's constant, elec-
tron temperature, perturbed fluid velocity, electron charge, perturbed electric and
magnetic fields, vacuum magnetic permeability and vacuum dielectric constant.
To obtain these equationswe assumed also that the electron collision frequency is
much smaller that the wave frequency w.

In this work the propagation of electromagnetic waves in a plasma-filled cylin-
drical waveguidedf circular cross section is studied. We assume that By isin the
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direction of the waveguide axis, Z axis of the coordinate system, and suppose a
wave perturbation o the form exp(ikz — inf). Applying eq. (1) and eg. (2) and
theresult in eg. (4) yields

Vxﬁlz—iw?-ﬁl, (5)
where
3o €0 2 2. 2 2_‘£ li_l~ ‘_"_Cli -1_
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Here wy, and w, are, respectively, the electron plasma frequency and electron
cyclotron frequency given by

noe? 1/2 eBo
ap= ()" = B )
eEQm m

—
=

In (5}, € is the warm plasma dielectric tensor. Due to the global treatment
o the problem its elements have spatial derivatives which operate on the electric
field components. The usua infinite warm plasma dielectric tensor is obained
from (5) to (6) imposing 1/r — 0 and d/dr — 1k, . Theradial derivatives become
important when the wavelength o the perturbation is o the same order as the
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radiusof the waveguide. In this case a global treatment is necessary!! and a plane

wave propagation cannot occur.

3. Equationsfor the Field Components

With (1) and (4) we obtain p; and 43 in terms of Ey and Hy. Applying this
result in (2) yields

~ ; " " w? —wk) Lo
vV X H = - e (V X Hl) X Bg — iweoL——Z—lel + e_ngl X By
mw w m
eU? -
“*O—V (V'E1)- (M

Applying (3) in (7) yields

GE, = nA\E, + nB,H, +clddE +D1d§’ (8)
iGEy = "—CIE +"D‘H +rA1df +r Bxdf", (9)
dFE dH.
GH, —nAgEz+nB2Hz+C'2 z =+ Dy - (10)
dH
r r dr
where
2
_ 4 Y4
G =kl - =2k,
w? 1/2
k== —&?
=(5-+)
2 2 1/2
ke - ((w 2wP) k2) ,
[4
_ ik We 2 62U2 k2 2
A=l [w”+( U?)kz(vﬁk) ’
w 2
B = po— [kﬁ— ( c) k}} )
. 2 [73) 2 2 U2k2 2
Dl uow;wp 5
C

359



A K T. Assis and P H Sakanaka

Ay = _eo(wz - w;‘;) e wfk} l<:Zc2U2(v?L + k2)
o L o v R o e e 0] I
kw.w?
By = —i—ol |
rwe

C; = —eqwe | k2 ~ k3 (w? ~ w;‘,’) _ k}cZUz(vi +k})
L A w?(c? — U?)

Dy =ik [kf - (%)Zk}] ,

& 1d w
drr " rdr 12

b

vi=

Applying (8) to (11) and (1) in (2) yields

—tew

= m(w? — w?)

2772( 2 L 12 2772( o2 4 k2
x [E _i%eg, et UV KB, | UV +k5)dEz} , (12)
w w rkwi(c?-U?) kwl{c? - U?) dr

wn = —tew
= m(w? - w?)

2772 (2 2
We me*U* (7% + kZ)
X [i—<E RAARSI S 4% SELERACR T
[z r + Eg + s 3(62 07) E,

te [1 _ c2U2(VfL + k%)

we ?UX (VA + kZ) dE;, (13)
w kwl(c?2-U?) dr |’

= e e i) e B a4

From (8)-(14) we see that all the transverse field components and all the
components o the fluid velocity are obtained in terms o E and H,

Applying the rotational operator to both sides of equation (7) and using (3)
yields

(V?L + kez)Hz =

o2 2 _ 2072 2 2 2
—igpc W, wt — kU, gy Wp et =U
k(c? — U?) [ o2 (Vi+k)+ sz 2 E,. (15)

Applying the divergent operator to both sides of equation (7) and using the
rotational operator o both sides of equation (3) yields
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—s U2 62
VZ 2 - 4
(VL +kp)He uowc[k c? vi k(cZ—Uz)
Uk, 2 2 wz—w;‘,’ 2 U?
x(:z—Vl+ke)(Vl+ 5 -k—g)]Ez. (16)

From (15) we obtain the equations for H, when By = 0 and also the equation

for E, when By — oo, namely
(V2 +k2) H, =0, (17)
(Vi+kL)E, =0, (18)

where

w2 _ k262) (w2 . kZUZ _ w:) %
e (w? — k2U?)
From (16) we obtain the equation for H, when By — oo and also the equation
for £, when By = 0, namely

km:

(Vi+k)H. =0, (19)

(V2 + k) (V2 + ) E. =0, (20)

1
k:(wz_wg~k2)2
38 U2

In the case of a nonzero and finite magnetic field we can combine equations
(15) and (16) to obtain

where

H, = uokw;}fgi 9 (V2 + k) (VY +#)E., (21)
where
K2 = 2 (2 - 4y)}
5 ;
z =kl + k- :’TCZEZ_%’;?_Z )
y=88 - (Z) {kw__;_]k_i Y it
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Equation (21) shows that E, and H, are coupled in the situation o a finite
magnetic field. As a consequence, the waves cannot be separated into TE and TM
modes and only hybrid modes can propagate.

Applying the operator (3% +£2) to both sides of equation (21) and using (15)
yields

(V8 + 6Vt +0vE + 6B =0, 22)
where
by = 2k} + K} ~ (%)232—:,%2—[]“2 ’
by = k% + 2k2K% — (%)2 {(kf + k%) 82———5];—2?1 + kzwg%g—z] ’
by = kik? — (%)2k} (kf‘i’.z:ilgz_qz + kzwgciz—_ylzjz) )

Equation (22) can also be obtained directly using (3) and (5). Thissixth order
equation for the longitudinal component of the electric field is more genera than
that obtained by Ghosh and Pal® . Those auhors, beginning from the same set of
equations (1)to (4), arrived at afourth order equation for E,, due to simplifying
assumptions (not specified). Moreover they only studied the circularly symmetric
waves, n = 0, while the analysis of this paper is valid for any mode n.

Equation (22) can be written in the form

(V3 +K)(VE +K)(VE +K3)E; =0, (23)

where k1, k2 and ks are analytic functions of 4y, 8; and b3, obtained by Cardan’s
formula. Cardan's formula gives algebraicaly the values of the roots of a cubic

equation as a function o its coefficients!?.

4. Dispersion Relations

In order to obtain the dispersion relations we need to specify the boundary
conditions. Assuming a perfectly conducting metallic cylinder o radius R limiting
the plasma we have!3:14 :

E,(R) =0, Eg(R) =0, H,(R)=Q u,(R) =0. (24)
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These are the boundary conditionsfor this problem. They require that the tan-
gential components of the electric fidld and the normal component of the magnetic
field vanish at the perfectly conducting wall. They also require that the normal
component of the fluid velocity vanishes at the rigid metallic wall. It should be
noted that the boundary condition for the miagnetic field in equation (24) is differ-
ent from the one utilized by Ghosh and Pal®, namely, H,(R) = 0. Our boundary
condition, H,(R) = 0, is justified because we have a metallic boundary?!.

The dispersion relations obtained in this paper are for the situation o afinite
magnetic field or for the situation when the magnetic field goes to zero. The
dispersion relation for the case o infinite magnetic field and a cold or warm plasma
can be easily obtained using (18) and (24). This is a known result!®, and will not

be presented here.

4.1 Case of Zero Magnetic Field

There are three regionsin thew versus k plane. Region I: £ > 0 and &2 > 0.
Region II: k7 > 0 and k2 < 0. Region IIT: k2 < 0 and k2 < 0. These regions are
presented in Figure 1. The solutions o (20) and (17) which are finite at the axis
are

Region LE, = Ay, Jn(rke) T BiaJu(rks) ,
(

H; = Cipi (rke) , (25)
Region ILE, = Agy I (rkes) + Bandu(rks)

H, = Conln(rkea) , (26)
Region HL:E; = Az, In(rkes) T Bapln(rksz) ,

H; = Cypln(rke2), (27)

whera

1 R 1
W —wi\? w? —w? 2
kgzz(k2~ o~ , y k2= k2————U21 ,

and where J,(z) and In(z) are, respectively, th nth-order Bessel function and
modified Bessd function of first kind.
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W}

WS +k2c?

W= CO% +k22

~Y

Fig. 1- Distinct regionsin thew versusk diagram. Case of zero magnetic field.

Application of the boundary conditions yields the dispersion relations

Region I:
w? Iy (Rks)J;, (Rke) + k*wj J12(Rk,) _ n’(w? - wi)wy =0
Ju(Rk)Jy(Rke) — kok. J2(RE,) ksk3c? R ’
Region II:
2Jo(RE) L (RRe)  Bw] L2 (REa) | (@ —wio}
Jn(Rks) In(Rkes)  kskey 12(Rkes) kokl,c2R2 7
Region I11:

TRkl (Rkey)  K'wy L}(Rkep) | m*(w’ — wh)w? =0
Ians2In(Rk52) ks2ke2 I,%(Rkez) ksgk::ZCsz ’

where J}(z) and 7} (z) mean derivatives with respect to the argument.

(28)

(29)

(30)

Figures

(2) and (3) show the graphs o frequency versus wavenumber for (28) to (30). The

valuesd the density, guide radius and plasma temperature are those of the linear

LISA machine, of Universidade Federal Fluminense, Brazil*®17. In regions| and II

there are infinitely many curves and from Figure 2 we see that they pass smoothly

fromregion | to region II. In region III there is only one dispersion curve for each

temperature, which tends asymptotically to the plasmafrequency for & — oo.
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< P Fig. 2- Dispersionrelation when B¢ =
53 ¢ o 0.n =0 kpTo = 40¢V, wp =
o012 ' 5.040 X 10'° s7!, R = 0.085m.
’ Modes p1,1; P1,55 P1,10: P15 and
p1,20. Initial points obtained from
1.0008 Ji(Rks) = 0. Region w > wp.
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1.0000 L L ' 1 J
o 17 34 51 68 85  to2
Rxk
.25
1.00 |-
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3 0.75 |~
~
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Fig. 3 - Dispersion relation when By = 0, n = 0, w, = 5.040 x
101° s~ R = 0.085m. Region w < wy. The lower curve is for the LISA
temperature: kpTp = 40eV . The upper curveisfor kgTo = 1.37keV.

Results (28) to (30) are a generalization of the results obtained by Ghosh and
Pal®. Their dispersion relation is only valid for the lowest circularly symmetric
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mode, n = 0. When n # 0 only hybrid modes can propagate because the TE
and TM modes cannot satisfy simultaneously all the boundary conditions (24).
This case of zero DC magnetic field was also studied by Azakami, Narita and Aye
Thein'®, who showed that when n = 0 the waves can be separated into transverse

electric and transverse magnetic modes.

4.2 Case of a Cold Magnetized Plasma

From (21) and (22) we obtain, in the limit 10 — O

(W? - w? — w?)
H,=—~———P _¢(o? L \E, 31
z 2 ﬂokwcwg (V_L'f‘ R) z ( )
(V2 + KR (VL + kB)E: =0, (32)
where
1
w2_w2 w2k2—-w2k2 2
kg = 2 ’ z - 2 : fz ’
w (w? ~ wk — w?)
1
L. |4a-Dt]?
A= F )
1 1
p = | AT D2 :
B — F [
A:—wfwz(wz—f—kzcz)+2w2(w2—wz—k2c2)(w2*w§—wf),

D = wjwiwl(w? ~ k%) + 40k (w? Wi},

= 92020,2 (2 _ o2
F =20 (w? —wl —w?) .

Accepting complex arguments, the solution of (32) which isfinite at the axis
is given by
E, = Aan(rkA) + Ban(rkB) . (33)
Applying (24) in (33), (9)and (12) yields the dispersion relation

JI
kg — — =
AJn(RkA) BJn(RkB) wwiw,Rk?c?

(Rka) , J.(Rkg) nD? (34)
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Thisis the dispersion relation for a hybrid electromagnetic mode. Asthisis an
odd functiond n, Faraday rotation of the planeof polarization will happen. This is
due to the different phase velocitiesof then = +N and n = —N modes, where N is
any natural number. A superposition of these two modes yields a composite wave
in which the direction o polarization will be rotated as a function of distance along
the guide!®. Trivelpiece concluded that an electrostatic wave does not present
Faraday rotation when excited in a cold plasmafilled waveguide, although it will
present this rotation if the cold plasma only fills the waveguide partially®. Here
we see that an electromagnetic wave in a cold plasma-filled waveguide presents
Faraday rotation.

In the limit of dow waves (w/k << c), eq. (34) yields

(RT '
FI8(BT) _ L(RK) .

T.RT) LRK) Rw = (35)

where
W™ " wl)(W? - w3

w?{w? — wg - w?)

T =k

Here we see that Faraday rotation will also be present for these dow electro-
magnetic waves. A qualitative graph of this dispersion relation is presented in
Fig. 4 for te case w, < wy. There we can see that backward electromagnetic
waves are predicted in the region w, <w < wyg, where wyg = (w? + w?)%. This
is confirmed in the numerical compﬁtation presented in Figs. 5 and 6 with the
values of the density, guide radius and DC magnetic field of the linear machine
LISA%!7, There areinfinitely many curves in the region w < w, and in the region
wp < w < wyg, but we only present 5 curves in Fig. 5 and 3 curves in Fig. 6. If
wp < w, then the backward waves will be in the region w. < w < wyg, while the
passband for the forward waves will be in the region 0 < w < wy.

Waves in these ranges of frequencies were detected experimentally by Triv-
elpiece and Gould*®. They interpreted their result as being electrostatic waves
satisfying the dispersion relation

Jo(RT) =0, (36)
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“un ‘\:

0 k
Fig. 4- Dispersion relation for slow electrornagnetic wavesin a cold plasma-filled

1
waveguide. Wy g = (wf, + wf) 2. Case in which w, < wp. Whistler waves in
theregion w < w, and backward waves in the region wp <w < wyg-
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nm

3.06 |~

2.04 L—

W/We

0.51 |~

0.00 1 1 L
) 8.5 7 255 34 425 51

Rxk
Fig. 5 - Dispersion relation for kgTy = 0, B = 0.085m, w, = 1.57 X
100 71w, =5.04x 10'° 57!, wyy =528 X 101 571, n=0.
that is, RT = p,. But some remarks should be made. Thefirst isthat (36) was
obtained by Trivelpiece applying the boundary condition ¢;(R) = O, where ¢; is
the electrostatic potential (for electrostatic waves the electric field is derived from
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3.38

3.35

i | \ 4

8.5 t? 25.5 34 42.5 51
Rxk

Fig. 6 - Backward waves for kT = O, R = 0.085m, N = 0, wp, =

504 x 101° 571, wy g = 5.28 x 1010 571,
ascalar potential). Thisyields E,(R) = 0 and E¢(R) = 0, as can be seen from
equations (111.23) to (111.26) of Trivelpice's work (1967). But ¢;(R) = 0 does not
yield u,(R) = 0 as can be seen from equation (I11.6) of his work. However, it was
shown by Ferrari?® that the electrostatic approximation is reasonably accurate and
can describe the waves very wdll.

Our interpretation is that the waves detected were dow electromagnetic waves
satisfying (36) and not slow electrostatic waves satisfying (35). Eq. (35) satisfies
all the boundary conditions {24), while (36) does not. We suggest a way to resolve
this question: the measurement of Faraday rotation for the backward and forward
waves. Trivelpieceand Gould did not report any measurement of this kind in the
experiment in which the plasma completely fills the cylindrical waveguide. The
dispersion relation (36) does not predict any Faraday rotation when the modes
n = =1 are excited simultaneously. But according to (35) this should happen.
However, the magnitude of this Faraday rotation, if it exists, should be quite

small in most cases.
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4.3 Case of a Warm Magnetized Plasm

The solution of (23) which isfinite at the axis is
E, = Apndn(rky) + BpJy(rke) + Cadn(rks) . (37)

Applying (37) in (21) yields

H, = —ic?U? [A k2 — k2)(k2 —~ k2)Jn(rk
z ﬂokwcw2(62~U2) n(ky ~ k) (k2 — k1) ﬂ(r 1)
+ By (k2 — k) (k% — k2)J, (rk2)

+ Cu(k2 — K2)(k2 — k2)J, (rk;;)J . (38)

Applying (37), (38) and (8)-(14) in (24) yidds

n?|Fy(Ly — L3) + F3(Ls = Ly) + F3(Ly — Ly)] + n[Py(Fs — F3) + Q1(Ls — Ls)]
% j 8;1]: ; +n[Py(Fy — F3) + Qy(Ls — LI))%%
+n(Ps(F — Fy) + Q3(L1 Ly)] T g/’z;
J,,(Rk1 n(Rkz)
AL

)

),

)
Z)Jn( 3

)

)

+ Q1P ~ P1Q, )

+ (QaP3 ~ PzQa)

)
J’ (Rka J!(Rki1)

+(QsP1 - Pscl)m

-0, (39)

where
U2[k? (k2 ~ k2) + (k2 — k}) (k2 — k2)]
Rk(c? - U?) ’

F; =

—k;
Pi= —d
T kwwlG(e? - Uz)[

+ k:“"wf,(c2 - U (w?k? - wfk}) + U2w2w§(k_2,, - ka)(k?__ - kf)] ,

WU (K2 — K2)(*G + KZuw})

U2
L=
7 Rkwwew?G(e? — U?)
x W2k = KE) (G + KBl + e2(wPk? — w2k) (KL — D)k — D)
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Q= Bl
T e2(e? - Uz)o.)f,lc:wwc

X [kPwiwy(c® — U?) + Wl kiU wlic? (k2 — Kk2)

+ AU (WKE - W) (KD — kD) (K2 — kD))

and where j =1, 2 or 3.

Thisisthedispersion relation for a warm magnetized plasmacompletely filling
acylindrical waveguide. Eg. (39) is the most general result of this paper.

As this equation has odd powers o n the phenomenon of Faraday rotation
appears again. Another point to note is that this dispersion relation refersto the
hybrid modes due to the coupling between H, and E, in eq. (21).

This dispersion relation is moregeneral than that obtained by Ghosh and Pal®.
Eq. (39) is validfor any integer n and was obtained without further simplifications
besides those required by the model. Eqs. (1) to (4), solution (37) and boundary
conditions (24) yield, after a long algebraic manipulation, the dispersion relation
(39. No other simplifications were made. Applying the limit To — 0 in (39) yields
(34), as expected.

The main point of this section was to obtain the general dispersion relation
eg. (39). In Figuresfigs. 7 to 9 we present the dispersion relations, eq. (39), for
modes with n = 0, n = 1, n = —1, respectively. We present in each figure the
six lowest modesin each case. The parameter L indicates the number of times the
component E;(r) goestozerofor0 < r < R. We utilized the following parameters:
kgTo =40V, wp, =1.20x 100 s71, w, = 1.50 x 101% 571,

In Fig. 10 we plotted the Faraday rotation for the case n = %1, eq. (39).
This was obtained for L = 1 (see above). From it we can see that although “the
electrostatic theory is reasonably accurate”?? | our model indicates that Faraday
rotation at this temperature can be detected in the laboratory. For instance, for
afrequency w ~ 1.14 w, we expect a Faraday rotation o ~ 3 rad if the waveguide
length is ten times its radius.
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i.30

1.27

Fig. 7 -Backward waves for kgTy =
3 40 eV, R = 0.085m, n = O,

[ E-1

a2 wp = 1.20 X 101° ™1, w, = 1.50 X
2 10 s~ The parameter £ indicates

109 the number of times E,(r) = Ofor

. 0<r<R.

1.06 :

103 f=0

Fig. 8 - Backward waves for kgTp =
40 ¢V, R = 0.085m, n = 1,
wp =1.20X 1019 57 w, = 1.50 x
10%° s~!. The parameter £ indicates
the number o times E,{r) = O for
0<r<R.

W/ e
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I.ZSO[~

W We
s

1.09

Fig. 9 - Backward waves for kgTp =
40 ¢V, R = 0.085mn = -1,
wp =1.20%10% 571 w, =150 x

1.06

{03
101% s~1. The parameter £ indicates
.00 L1 1 N feo the number of times Ez(r) = 0 for
3 [ 9R 12 is 18 21 0<r <R
%K

Conclusions

In this paper we studied the propagation o electromagnetic wavesin a plasma-
filled cylindrical waveguidedf circular cross section. We obtained the global dielec-
tric tensor d a warm magnetized plasma and showed that its elements have spatial
derivatives which operate on the electric field components. With the solution of
the equations for E, and H,, together with the appropriate boundary conditions
we obtained the dispersion relations in several situations.

In the case of zero magnetic field we concluded that only hybrid modes can
propagate when n # 0. In the case of a cold magnetized plasma we obtained a
dispersion relation which is an odd function of n, indicating Faraday rotation for
the electromagnetic waves. For dow waves we arrived at two passbands where
excitation o the modes can occur: if w, < w, when the passbands arew < w, and

wp < w < wyg; if wp < we then the passbands arew < w, and w, <w <wyg. We
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Fig. 10 - Faraday rotation for kgTy = 40 €V, R = 0.085m, n = =1,

wp = 120 x 1010 571, w. = 150 x 10! s7}, £ = 1.

then showed numerically that in the upper passbands we have backward waves.
To distinguish what the waves detected experimentally by Trivelpiece and Gould
in this range of frequencies were, i.e., to determine if they were electrostatic or
electromagnetic in nature, we propose the measurement of the Faraday rotation
o these waves. A rotation of the plane of polarization would indicate that they
were electromagnetic waves while a fixed polarization would indicate that they
were electrostatic waves. Finally, in the case of a warm magnetized plasma we

generalized the results of Ghosh and Pal. The general dispersion relation came

from a sixth order equation and is valid for any angular mode n.

We presented three curves for this general dispersion relation and also one

curve for Faraday rotation indicating its magnitude in a typical situation.
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Resumo

S80 estudadas as ondas eletromagnéticas em um plasma uniforme, magne-
tizado e limitado por uma guia de onda cilindrica usando a teoria de plasma
morno. No caso de um plasma frio, séo obtidas ondas el etromagnéticas retrogadas
gue exibem o fendmeno de rotagdo de Faraday, em contraste com os modos elet-
rostéaticos de Trivelpiece e Gould que ndo apresentam esta caracterfstica. Resul-
tados numéricos sdo apresentados para a maguina linear LISA. E derivada uma
generalizacdo darelacdo de dispersdo de Ghosh e Pal para um plasma magnetizado
€ morno.
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