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Abstract We estimate the spreading width of M1 states in Ca isotopes 
for the purpose of trying to understand the missing strength specially in 
4 4 ~ a .  We do this by means of a doorway calculation, where states explicitly 
considered have a leve1 of complexity next to the independent-particle M l  
state. 

1. Introduction 

The density of nuclear levels increases rapidly with the increasing excitation 

energy, due to the greater number of nucleons that can participate in excitations. 

Therefore, even if we have a weak coupling of the motion of the individual nucleon 

with the excitation moda  involving many nucleons, this will be enough to produce 

strong mixing of nearest configurations. The nuclear stationary states then get a 

more complex structure and any such state may contain only a small amplitude 

of the simpler wave function. 

We can characterize the fragmentation of a given excitation mode involving 

simple configurations by its strength function. The simplest characterization of 

the strength functions is in terms of its mean energy and spreading width rl, due 

to mixing with more complex configurations. This width is to be distinguished 

from the escape width I't, which is associated with the decay lifetime by particle 

emission. 
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The mean energy can be calculated by means of one-body mean-field theory 

(Hartree-Fock), but its spreading width can only be calculated if we introduce 

couplings of the simple mode with more complex configurations. We will compute 

the mixing of the simple mode with excitations at the next leve1 of complexity 

in the sense of the independent particle model. These states, henceforward called 

doorways, may in turn mix with still more complicated states. However, this 

further mixing should not affect the aforementioned properties of the strength 

function for the simple modes, that is, it should change neither the mean energy 

of the distribution nor its spreading ~ i d t h ' ? ~ .  

It is well known that there is a systematic quenching factor of the M1 (Magnetic 

dipole) and Gamow-Teller (G.T.) surn rules3 if one assumes that a11 the available 

strength is exhausted in the vicinity of the mean energies of the respective collective 

modes. There are theories4 that associated the G.T. quenching to mixing of A-bole 

states with the nucleon-hole ones, while other theories5 suggest that the observed 

G.T. quenching arises from spreading effects due to coupling to two partide-two 

hole states. In the present paper we wili limit ourselves to discuss an apparent 

anomaly of the M1 strength that occurs in even Ca isotopes. Fig. ( I ) ~  shows 

identified M1 levels in even Ca isotopes. Especially striking is the case of the 44Ca 

isotope where is no detected M1 intensity in the excitation energy region around 

10 Mev, unlike what is found for 4 2 ~ a  and 4 8 ~ a .  

In what follows we estimate the spreading width of the strength function of 

the M1 mode of even Ca isotopes. It will be shown that the presence of a special 

doorway in 4 4 ~ a  considerably increases the estimated spreading width in this case. 

This leads to the suggestions that the M1 strength could be much more fragmented, 

and therefore harder to detect, in this nucleus. 

2. An overview of the theoretical model for the spreading width calcu- 

lation 

The state that dominantes the M1 excitations of the ground state of Ca is* 

topes (described as ld(7/2)n0+ >) is the spin-flip state f712 -+ f512, which we will 

designate as ID > (see fig. 2). 
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Fig. 1 - M1 transitions detected by Darmstadt in Ca isotopes6 Arrows indicate 
levels identiíied as M1. 

BROUND STATE I 0. 

Fig. 2 - M1 excitations in 4 4 ~ a .  

The 4 0 ~ a  core is assumed inert. This is clearly an approximation since 40Ca itself 

shows M1 excitations, see fig. 1. However, for the purpose of comparing the 

severa1 Ca isotopes, we assume that the correlations that might account for the 

observed M1 strength in 4 0 ~ a  vary smoothly as the shell is filled. They should 
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therefore play no relwant role in the speciãl features found in 44Ca. 

It is possible to expand the state J D  > into nuclear eigenstates li > 

since the states li > form a complete set. The problem to obtain the fragmentation 

of the state ID > into severa1 states li >, is that of obtaining the distribution of 

weights ldiI2. The resolvent function 

contains a11 the information about the fragmentation. It has simple poles at the 

energies Ei wth residues ldiI2. 

Now, we define the projectors 

and 

Q l - i ,  

so that 

and then we can see that the state ID > is not an eigenstate of H when there is a 

coupling between (D > and its orthogonal subspace. Making use of the operator 

identity 

we may show the effects of HQD, explicitly in the resolvent function 
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When HQD # 0, the state ) D  > is not an eigenstate of H and the poles of 

RD(Z) ,  that are the energies E, of the stationary states li >, will be the solutions 

of the dispersion equation 

and 

Q = C l 9 > < 9 1  
9 

The desired mean properties of the strength function can readily be obtained 

by evaluating the resolvent function at complex energy E + iI. This amounts 

essentially to taking an energy average of RD(Z)  with a Lorentzian weight function 

The result is 

where the energy shift AD is 

and 

This form is appropriate in situations involving a clense spectrum of back- 

ground states Iq >, in the sense ,that one may choose I large as compared to the 

mean leve1 spacing but still small as compared to the spreading width l?. The 

averaged resolvent function displays now a complex pole that characterizes the 

position and the spreading of the strength distribution associated with the mode 

) D  > . The essential observation for estimating I? is that one does not need in 

fact to use the actual complicated background states Iq > . Actually, only those 
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Fig. 3 - ID > and doorways states in 4 2 ~ a .  

components of the ( q  > which are simple enough to couple to ID > via H (which 

contains at most two-body operators) will be relevant. Therefore, we estimate I'l 

by taking an inventory of the doorway states of relevant complexity in the Q sub- 

space, and use them, together with the corresponding level density, in the above 

expression for rl. The validity of this procedure can be maintained to the extent 

that the strength of the doorways is itself not strongly displaced by spreading 

effects in the next level of complexity. 

The point that must be emphasized is that this method for obtaining the 

spreading width does not ignore the possible effects of other more complex con- 

figurations, although they are not dealt with explicitly. In fact, the degree of 

fragrnentation is described only in terms of average parameters which are essen- 

tially determined at the doorway level via the distribution of coupling strength. 

3. Calculations and results 

We will estimate the width r-1 of the 42Ca and 4 4 ~ a  isotopes, treating 4 0 ~ a  as 

a hard core. We will consider as relevant doorways a11 the 1' states in the p - f 
shell with energies near 10 Mev, having nonzero coupling to the M1 state ID > . 
Experimental single-particle energies were used. 

In the case of 4 2 ~ a ,  we have the situatiuii ~ h w n  i r i  fig. (3). 
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Using the realistic twebody interaction for this mass region derived by Kuo and 

Brown8, we obtain 

< DIHIq1 >e 80 Kev 

< DIHlq2 >e 35 Kev 

which yields 

I'1 E 10 Kev 

In the case of 4 4 ~ a ,  we have the situation shown in fig. (4). 

E = 10 Mev 

Using the Kuo and Brown interaction, we can evaluate the matrix elements 

< DIH(qi >, with the result 

< DIHIqi >c= 70 Kev < DIHlq6 >= 10 Kev 

<D(H(q2>=40Kev <DIH1q7>=90Kev 

< DIHlq3 >? 90 Kev < DIHlq8 >= 150 Kev 

< DIHJq4 >E 1.9 Kev < DJHJq9 >= 20 Kev 

< DIHJqs >= 10 Kev < DIHlqlo >= 10 Kev 

The spreading comes out in this case as 

r1 1 Mev 

The most important contribution to this value comes from Iq4 > . We can 

see that the spreading width of 44Ca is about 100 times that of 4 2 ~ a .  This ratio 

is perhaps more significant than the values of the spreading widths themselves, 

which depend on the specific interaction used and may be more sensitive to the 

fact that we did not take the 4 0 ~ a  correlations into account. 

The spreading.widths for 48Ca and 4 6 ~ a  can be related to those of 42Ca and 

4 4 ~ a  respectively by using particle-hole conjugation. One should therefore expect 

a spreading width for 4 6 ~ a  which is also about 100 times larger than that of 48Ca. 
9 
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Fig. 4 - ID > and doorways states in 4 4 ~ a .  

4. Conclusions 

The above estimates of the spreading widths for the M1 states in the even 

Ca isotopes indicate values for 44Ca and 4 6 ~ a  which are two orders of magnitude 

larger than for the remaining isotopes. This suggests that the M1 strength is, 

in these nuclei, much more fragmented than in the other isotopes, and favors 

the interpretation of fig. 1 in terms of the ensuing difficulty in identifying M1 

transitions experimentally in 4 4 ~ a .  
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Resumo 

Estimamos a largura da transição M1 nos isótopos do Ca com o objetivo de 
tentar explicar as atenuações das intensidades observadas, especialmente no 44Ca. 
Fizemos isso através de um cálculo com doorways onde são considerados os níveis 
mais próximos de complexidade ao estado de ~artícula independente responsável 
pela transição M1. 


