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Abstract We introduce and study the critica1 properties of a self-dual 
Ising model with multispin interactions. The model is described in terms 
of two- and four-spin interactions and i a s  a global Z ( 2 )  symmetry. The 
system is studied in Euclidean and Hamiltonian formalisms. The phase di- 
agram is calculated using the self-duality of the model and finite-size scaling. 
The conformal anomaly and critica1 exponents are determined by explor- 
ing their relationship with the mass gap amplitudes predicted by conformal 
invariance. 

1. Introduction 

Ising models with multispin interactions, although less studied than those in- 

volving two-spin interactions, are known to exhibit a rich variety of critica1 be- 

havior. The most studied examples in two dimensions are the eight-vertex model' 

and the Ashkin-TeIler mode12 both of which may be formulated as Ising models 

with two- and four-spin interactions3. The multispin interactions in these cases, 

produce a Z(2) @ Z(2) nonlocal symmetry which can be spontaneously broken, 

producing a critica1 line with continuously varying critica1 exponents3. 

In this paper we introduce and study a self-dual Ising model with multispin 

interactions, having a simple Z ( 2 )  nonlocal symmetry like the standard two-body 

Ising model. The phase diagram is calculated exactly exploring the self-duality of 
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the model. Our numerical analysis shows us that the phase diagram, with positive 

couplings, has a line with the exponents of the standard Ising model. The model 

is defined explicitly in the next section. In section 3 we calculate the row-to- . row transfer matrix and using the self-duality of the model the phase diagram is 

derived. In section 4 we take the time-continuum limit to define an associated 

quantum Hamiltonian and some interesting limiting cases are analysed. 

In section 5 we exploit the consequences of conformal invariance of the infinite 

system to obtain the conforma1 anomaly and scaling dimensions (related to the 

critical exponents) in the critical line. The paper doses, in sections 6, with a 

conclusion and summary of our results. 

2. The model 

We denote the lattice points of a square lattice by a pair of integers ( i , j ) .  At 

each lattice point there is an Ising variable S(i,  j) = f 1. The model we study in 

9 this paper is defined by the Hamiltonian 

where the index i must assume only even values. This Hamiltonian describes an 

Ising model with multispin interactions and in fig. 1 we show these interactions 

schematically. There is a four-spin interaction between the spins on the corners 

of the elementary squares of the lattice (coupling J2) and two-spin interactions 

between nearest neighbours (coupling J1)  and second nearest neighbours in the 

i-direction (coupling 52). These coupling constants are chosen in order to ensure 

the self-duality of the model, as well shall see in the next section. 
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Fig. 1 - Schematic representation of the interactions in the Hamiltonian 

3. 'Jkansfer matrix and duality transformation 

To analyee the model, at firet we write the transfer matrix. The row-to-row 

transfer matrix T for the model (1) is easily derived by standard methods4q5. We 

write 

T = Ti . T2 

where 

Tl = ex~{PJl (o to t+~ + o ~ + l o ~ + 2 )  + PJzoloiZ+z} (3) 
ieven 

and 

Tz = C I11 exp (p j l (~ :  + 4,) + ~Jz(d.i+t~)) (4) 
ieven 

where o: and o: are spin-112 Pauli matrices and C is a harmless constant. The 

constant ji and jz appearing in (4) are related to the coupling constants Ji and 

In order to perform a dual transformation6 in the Hamiltonian (1) we define 

the dual operators: 



On the critical behauior of a self-dual Ising Model ... 
with i = 1,2, ..., which obey the same algebra as the original Pauli matrices O:, a:. 

In terms of these new variables the transfer matrix is still given by (2), but now 

Comparing this dual transfer matrix with the original one (2-4) we see that the 

duality transformation simply relate two different points in the parameter's space 

(Ji , J2) -+ ( j l ,  j2) .  The sef-dual line follows from the equalities 

In terms of the variables xl and x2 defined in (5, 6), this line is given by 

This self-duai line (curve (b) in fig. 2),should coincide with the critica1 line in the 

regions of the parameter's space (J1, J2) or (xl, 5 2 )  where the transition is unique. 

Fig. 2 - Phase diagram of the model defined by Hamiltonian (1). The parameters 
51 and 5 2  are defined in (6). Curve (a) is given by 5 2  = X: and c w e  (b) is 
the self-dual curve 5 2  = 1 - 2s1. 
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In order to calculate the phase diagram of the model (1) let us consider some 

limiting cases. In the case where J2 = 0 we recover the standard Ising model in a 

square lattice. Consequently from (5) and (6) the line x2 = x; in the (xI,x~)-space 

is the thermodynamic path of the Ising model (see curve (a) in fig. 2). The phase 

transition, which is unique in this case, is given by the crossing of (11) and the 

curve 5 2  = x: (see fig. 2). In the case xi -, O and 5 2  -, 1 we see, from (5) and 

(6), that J1 -, O and J2 -+ oo. To see the physical meaning of this limit we rewrite 

the Hamiltonian (1) as 

H = -J2 x{~(i, j)s(i + I ,  j)S(i, j + l )S( i  + 1,j + i) + S(i , j )S(i  + 2, j))  (12) 
ieven 

Consider now the following one-to-one transformation of variables {S) -t (7) 

7(i,j) = S( i , j )S ( i -1 , j )  , j E  Z! 

In term of these new variables (12) is given by 

H'(?) - J2 E { 7 ( i 9 j ) 7 ( i , j  + 1) + 7(z3j)7(i + Lj)} (14) 
'odd 

Since ?(i, j) r= f 1 the above Hamiltonian is also a standard Ising Hamilto- 

nian,however since the coordinate i assumes only odd values the lattice is decou- 

pled as shown in fig. 3. Therefore, in the limiting case x l  = O we have a unique 

phase transition point, like the Ising model in one dimension, occuring atT = O or 

2 2  = 1. Lastly, in the limit x2 -+ 0, from relation (6) we have Jl -t oo and J 2  -t oo 

and we cannot analyse this limit directly. However, due to the fact that the model 

is invariant under the nonlocal symmetry Z(2), which does not have any subgroup 

to be broken spontaneously we expect that the self-dual line coincides with the 

phase transition line along the whole parameter space (si, z2). It is interesting to 

point out here that the equations arising from the duality transformation (5) and 

(6) are the same as those obtained from the ~ ( 4 ) ~  or ~ s h k i n - ~ e l l e r ~  model in the 

square lattice. In this latter case, however two phase transitions occur due to a 

partia1 breaking of the Z(4) symmetry7. 
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Fig. 3 - Location of interactions in the Hamiltonian (14) (wavy lines). 

We want to stress that the transfer matrix has almost a11 elements non-zero, 

because it is formed by a product of operators. Consequently it is difficult to com- 

pute its spectrum, even for relatively small lattices. To circumvent this problem 

we will derive in the next section an equivalent quantum Hamiltonian (sum , of 

operators) which is expected to preserve the long-distance behavior, and whose 

spectrum determination is an easier task. 

4. The time continuum Hamiltonian 

The transfer matrix derived in the last section may be considered as a "time"- 

evolution operator 

T = exp(-TH) (15) 

where r  is the lattice spacing in the discrete "times-direction and H is the as- 

sociated quantum Hamiltonian. The operator H is complicated but assumes a 

sirnpler form in the so-called "time continuum" limit518 ( r  -t O). This limit can 

be performed in severa1 ways. Here we choose the particular parametrization 

J 1 , J 2 0 : r  , j l = X J 1  and j 2 = X J i  (16) 

which describes the model aroiind its self-dual line ( J i  = j i ,  52 = j 2 ) .  The 

parameter X plays the role of temperature and the quantum Hamiltonian is given 

by 
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Hereafter we assume that the lattice size L is an even number. The parametrization 

(16) preserves the property of self-duality of the model since, by using the dual 

operators (17), we obtain 

H ( &  Ji, Jz) = XH(l/X, JI, Jz) (18) 

The self-dual curve is given by X = 1 and we now consider some limiting cases. 

In the limit Ji = O, in the same way as in the Euclidean version of the model 

(see sec. 2) we obtain the quantum Hamiltonian associated to the standard Ising 

mode1518. In the limit Jl = 0 the situation is not so simple and some additional 

calculations should be done in order to understand this limit. We write initially 

the quantum Hamiltonian HI associated to the Ising model, on a chain of length 

We assume in (19) the boundary conditions 

where p = 1 for periodic, p = -1 for antiperiodic and p = O for free boundary 

conditions. We now define the following new variables 

In terms of these new variables the Hamiltonian (19) takes a simple form 

However, the algebra of these new variables is more complicated. From their 

definitions (21) they satisfy: 
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for a11 pairs (i, j) E {1,2, ..., L) and 

unless i = j, i = j + 1, or (i, j )  = (1, L), in which cases 

Nevertheless, in the case of toroidal boundary conditions (p = f i) imposed, the 

variables (p;, p:, i = 1,2, ..., L) are not independent but should satisfy the con- 

straint 
L 

p; = a~u;o;u3" . . . ~&-~,J&pu&uf = p (26) 
i= l 

In the case of free ends this constraint does not exist and the variables are 

independent. It is important to observe that the Ising Hamiltonian (19) commutes 

with the parity operator 

On the other hand, in the case Jl = O the Hamiltonian (17), for J2 = 1, with 

the boundary condition (?O), i? given by 

and defining the following variables 

it takes the simple f o ~ m  

From (29) we easily verify that the variables {c:, c;} obey the same algebra 

as the variables (p?.p5) defined in (21) and also they satisfy the same constraint 
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( 2 6 ) .  Comparing (22)  and ( 3 0 )  we thus conclude that the Hamiltonian (28)  or 

(30) is equivalent to that of an Ising quantum chain with L / 2  sites. This can also 

be seen directly in fig. 4 where we show schematically the interactions in ( 2 8 ) .  It 

is interesting to note that the Hamiltonian ( 2 8 )  has a Z ( 2 )  local gauge symmetry, 

because it commutes with any operator a:, with i an even number, i.e. 

Fig. 4 - Schematic representation of the interactions on the quantum chain (28). The 
dashed lines encloses the elementary variables. 

Consequently, in the az-basis we can separate the Hilbert space associated with 

the Hamiltonian (28)  into zL l2  block disjoint sectors labeled by the eigenvalues 

(f 1)  of the spin operat,ors a& (i = 1 , 2 , .  . . , L / 2 ) .  Each sector can still the separated 

into two other sectors corresponding to the eigenvalues (p = f 1) of the parity 

operator 

because [H, P ]  = O. 

To a given choice of gauge, which corresponds to fixing the variables 

we can make the following canonical transformation 

which gives 
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Consequently the 2L/2 disjoint sectors of the Hilbert space are degenerate and 

have the spectrum identical to that of the Ising Hamiltonian on a chain of L / 2  

sites. 

5. Numerical Results 

In this section we present our numerical analysis for the model (1). Our 

calculation will be done by using finite-size scaling and exploring the predictions 

of conforma1 invariance for the finite-size behavior of critica1 statistical systems. 

Instead of using the transfer matrix (2-4) we use the quantum Hamiltonian (17) 

with periodic boundaries for our spectral analysis. For a recent review of numerical 

methods of spectral calculations see ref. 10. 

In order to present our numerical results let us state our notations for the 

eigenenergies. As we clearly see, Hamiltonian (17) cornrnutes with the parity 

operator (27) and consequently its Hilbert space is block separated into two disjoint 

sectors according to the eigenvalue P = f l  of this parity operator. We denote by 
{ P }  E, (L, p) the n-excited state (n = 0,1,2, .,) with momentum p (in units of 2n/L) 

in the sector of parity P(f 1) of the L sites chain. The ground-state is E~')(L,o). 

The phase diagram of (17) with Jl, J2 5 0 was calculated using standard finite- 

size scaling. If we denote by GL(X) = E;(L,O) - EÕ'(L,O) the mass gap of the 

size-L chain, the critica1 coupling A,, for a given pair of values (Jl, J 2 )  is found 

by extrapolating the sequence of values X for which successive ratios of GL(X) and 

GL-2(X) exactly scale
g
, i.e., the values of X for which 

Our results reveal that for Ji, J2 > O the Hamiltonian (17) has a unique phase 

transition located at the self-dual point A, = 1. 

Statistical mechanical systems at criticality are believed to be conformally 

invariant12. In two dimensions, this assumption is particularly significant (for a 

review see ref. 12). Specifically, Cardyl21l3 has derived a set of remarkable relations 

between the eigenspectrum of the transfer matrix on a strip of finite width and 

anomalous dimensions of the operator algebra describing the critica1 behavior of 
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the infinite system. These results can be transcribed to the quantum Hamiltonian 

formalism and we will use them to determine the universality class of the critical 

behavior of Hamiltonian (17). 

The pertinent results for our purposes are as foll~ws'~. Corresponding to each 

primary operator 4, in the operator algebra of the infinite system, there exists a 

set of eigenstates of the quantum Hamiltonian on a periodic chain of L sites with 

energies, given, at X = A,, by 

EN,N = EO + (2n/L)c(x4 + N + N') + O(L-I), N, N' = 0,1,2 ... (37) 

a s  L + oo, where x4 is the anomalous dimension of 4. In addition to these predic- 

tions conformal invariance also predicts'4 that the ground-state energy Eo of H ,  

at X = A, and with periodic boundary conditions, should behave as 

as L -t oo, where e) is the infinite-lattice value, is model dependent and C is 

the central charge or conformal anomaly of the appropriate conformal class of the 

transition in the bulk system. Hence finite-lattice calculations can, in principie, 

allow c to be direclty estimated. In order to do this we have to estimate the 

constant 5, which can be done, from (37), by comparng energy levels belonging to 

the same conformal tower of a given primary operator. Assuming that like in the 

Ising model the two first levels in the sector P = -1 belong to the same conformal 

tower, the constant c is evaluated from the sequence 

Using the ground-state energy of two lattice sizes L and L' the relations (38) 

and (39) give us a finite-size sequence 

which in the bulk limit L, L' 4 oo will give us the conformal anomaly c. In table 

1 we show two of these sequences together with the extrapolated results. Our 
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calculations indicate that the Hamiltonian (17)  is governed by an Ising conformal 

field theory having c = 1 / 2  for a11 values of Ji, J2 5 O. Consequently we should 

expect, like the standard Ising chain12, the existente of energy and magnetic op- 

erators with dimensions x ,  = 1  and x ,  = 1 / 8 ,  respectively. In order to calculate 

these conformal dimensions we used the relations ( 3 7 ) .  Because of the Z ( 2 )  sym- 

metry of the model the structure of eigenenergies is the same as that of the Ising 

model. The eigenenergies in the sector with parity P = $1 are associated to the 

conformal towers of the identity ( x I  = 0 )  and to the energy operators, those in the 

sector with parity P = - 1 to the conformal tower of the magnetic operator. The 

dimensions x : ( ~ )  associated to the energy leve1 E ~ ( L ,  P) are calculated from the 

sequence 

(E(L ,  P )  - E ( L , O ) ) / Z L  -+ &P) ( 4 1 )  

In table 2  we show some of these sequences together with the extrapolated 

results. The dimensions of the energy and magnetic operators are given by x ,  = 

x ~ ( o )  and x ,  = x i l ( 0 )  and our extrapolated results give us the Ising values x ,  = 1 

and X, = 118 = 0.125. We have also computed some other sequence related to 

secondary operators of the identity, energy and magnetic conformal blocks. 

Table 1  - Finite-size sequences CL,L+2 for the conformal anomaly, together 
with the extrapolated results. 

6 
8  
10 
12 
14 

Extr. 

6 
8  
10 
12 
14 

Extr. 
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Table 2 - Finite-size sequences (42) corresponding to the scaling dimensions x, and 
xm of the energy and magnetic operators of the Hamiltonian (17). The extrapo- 
lated results are also presented. 

14 
16 16 

Extr. 1.000 0.125 Extr. 1.005 0.125 

6. Conclusion a n d  Summary  

In this paper we have introduced and studied a particular multispin Ising model 

in the Euclidean (1) and Hamiltonian (17) formalisms. In both formulations the 

model has the useful property of self-duality. Using this property and analysing 

some limiting cases of the model the phase diagram is derived. 

Exploring the consequence of conforma1 invariance we calculate, using finite- 

size calculations in the Hamiltonian formalism, the conformal anomaly and di- 

mensions of operators governing the critica1 fluctuations. Our results show that, 

for ferromagnetic couplings, the model is in the Ising universality class, having 

a conformal anomaly c = 1 and energy and magnetic operators with dimensions 

x, = 1 and xm = 1/8, respectívely. 
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Resumo 

Introduzimos e estudamos as propriedades críticas de um modelo de Ising auto- 
dual com interações de multispins. O modelo é descrito em termos de interações de 
dois e quatro corpos possuindo uma simetria global Z(2). O sistema é estudado no 
formalismo Euclideano e Hamiltoniano. O diagrama de fases é calculado usando 
a auto-dualidade do modelo e transformações de escala para sistemas finitos. A 
anomalia conforme e os expoentes críticos são determinados explorando-se as suas 
relqões com as lacunas de massas, preditas pela invariância conforme. 


