Alternative off-shell k-symmetry for supermembranes

R. Amorim and J. Barcelos-Neto*
Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, 219.45, RJ, Brasil

Received August 8, 1989
Abstract The verification of the on-shell kappa-syrnmetry for supermembranes is usually done by means of a projector operator. In the off-shell case (Polyakov-like action) this verification is more subtle and that one found in literature does not make use of such operators. In this work we show that the off-shell kappa-symmetry can also be achieved by means of a projector operator.

The action for supermembranes, in its Polyakov form ${ }^{1}$, is given by 2

$$
\begin{equation*}
S=S_{1}+S_{W Z} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{1}=-\frac{T}{2} \int d^{3} \xi \sqrt{-g}\left(g^{a b} Z_{a} \cdot Z_{b}-1\right) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{W Z}=-\frac{i T}{2} \int d^{3} \xi \epsilon^{a b c} \bar{\theta} \Gamma_{\mu \nu} \partial_{a} \theta\left(Z_{b}^{\mu} Z_{c}^{\nu}+i Z_{b}^{\mu} \bar{\theta} \gamma^{\nu} \partial_{c} \theta-\frac{1}{3} \bar{\theta} \gamma^{\mu} \partial_{b} \theta \bar{\theta} \gamma^{\nu} \partial_{c} \theta\right) \tag{3}
\end{equation*}
$$

is a Wess-Zumino term.
In expressions (1) and (2), the superspace tangent is defined as

$$
\begin{equation*}
Z_{a}^{\mu}=\partial_{a} X^{\mu}-i \bar{\theta} \gamma^{\mu} \partial_{a} \theta \tag{4}
\end{equation*}
$$

where indices a, b, \ldots vãry from 0 to 2 . γ^{μ} and ứ are respectively $\mathrm{D}=\mathbf{1 1}$ Dirac matrices and Majorana spinors, since only in this spacetime dimension supermenibranes can be consistently formuiated. The convention and notation we are * Bitnet address: ift03001 at ufrj.

Alternative off-shell κ-symmetry for supermembrates
following, as well as some identities which are used throughout, are listed in the appendix.

In eq.(2), $g_{a b}$ can be considered as an auxiliary field, since it has no dynamics. Actually, an independent variation of the action with respect to $g_{a b}$ gives the embedding relation

$$
\begin{equation*}
g_{a b}=Z_{a} \cdot Z_{b} \tag{5}
\end{equation*}
$$

If (5) is substituted in (2), one gets the on-shell form of the supermembrane action (Nambu-Goto-Dirac) 3

$$
\begin{equation*}
S_{1}^{\prime}=-\frac{T}{2} \int d^{3} \xi\left[-\left.\operatorname{det}\left(Z_{a} \cdot Z_{b}\right)\right|^{1 / 2}\right. \tag{6}
\end{equation*}
$$

Of course, this is a classical equivalence.
The fermionic or к-symmetry ${ }^{4}$ is related to the following transformations

$$
\begin{align*}
\delta \theta & =(1+\Gamma) \kappa \tag{7}\\
\delta X_{\mu} & =i \bar{\theta} \gamma_{\mu} \delta \theta \tag{8}
\end{align*}
$$

where $\kappa=\kappa(\xi)$ is an arbitrary Majorana spinor and ($1 \pm \Gamma$) are projection operators, since

$$
\begin{equation*}
\Gamma=\frac{1}{3!\sqrt{-g}} \epsilon^{a b c} \not \psi_{a} \not Z_{b} \not \psi_{c} \tag{9}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
\Gamma^{2}=\mathbf{1} \tag{10}
\end{equation*}
$$

if (5) holds. This is the on-shell κ-symmetry, and the starting action is $S_{1}^{\prime}+S_{W}{ }_{Z}^{5}$.
In the off-shell case, eq. (10) does not hold with Γ given by (9). Even in this case, the к-symmetry still holds ${ }^{6}$, since the metric tensor transfornis as ${ }^{7}$

$$
\begin{align*}
& \delta\left(\sqrt{-g} g^{a b}\right)=2 i g^{c(a} \epsilon^{b) d e} \bar{\kappa}(1+\Gamma) \not Z_{d} Z_{e} \partial_{c} \theta \\
& +\frac{2 i}{3 \sqrt{-g}} \epsilon^{c d(a} \epsilon^{b) e f} \overline{\bar{\kappa}}^{l} \ddot{q}^{l} \partial_{l} \theta\left(Z_{c} \cdot Z_{e} Z_{d} \cdot Z_{f}+g_{d f} Z_{c} \cdot Z_{e}+g_{c \epsilon} g_{d f}\right) \tag{11}
\end{align*}
$$

Our purpose in this letter is to show the off-shell κ-symmetry in an alternative way. First we construct another gamma matrix, denoted by Γ^{\prime}, in such a way that $\left(\Gamma^{\prime}\right)^{2}=1$, independently of (5). One can see that

$$
\begin{equation*}
\Gamma^{\prime}=\frac{1}{3!\sqrt{-h}} \epsilon^{a b c} \psi_{a} \not \psi_{b} \psi_{c} \tag{12}
\end{equation*}
$$

R. Amorim and J. Barcelos-Neto

where

$$
\begin{equation*}
\mathrm{h}=\operatorname{det} Z_{a} \cdot Z_{b} \tag{13}
\end{equation*}
$$

satisfies this requirement. We thus consider that $\boldsymbol{\theta}$ has, instead of (7), the following transformation

$$
\begin{equation*}
\delta \theta=\left(1+\Gamma^{\prime}\right) \kappa \tag{14}
\end{equation*}
$$

So, the k-symrnetry will be verified if we can show that the variation of action (1) is proportional to $\left(\mathbf{1}-\Gamma^{\prime}\right) \delta \boldsymbol{\theta}$.

From (4) and (8), with an arbitrary variation 68 , we see that

$$
\begin{equation*}
\delta Z_{a}^{\mu}=2 i \partial_{a} \bar{\theta} \gamma^{\mu} \delta \theta \tag{15}
\end{equation*}
$$

With this result and using the identity

$$
\begin{equation*}
\epsilon^{a b c}\left[\Gamma_{\mu \nu} \psi_{a}\left(\bar{\psi}_{b} \gamma^{\mu} \psi_{c}\right)+\gamma^{\mu} \psi_{a}\left(\bar{\psi}_{b} \Gamma_{\mu \nu} \psi_{c}\right)\right]=0 \tag{16}
\end{equation*}
$$

which holds only for $\mathrm{D}=11$, in the case of Majorana spinors, we obtain, after a long algebraic calculation

$$
\begin{equation*}
\delta L_{W Z}=i T \epsilon^{a b c} \partial_{a} \bar{\theta} \not \psi_{b} Z_{c} \delta \theta \tag{17}
\end{equation*}
$$

modulo exact differentials. We assume that frontier terms can be eliminated with a proper choice of $\kappa{ }^{6}$.

Considering (15) and (17) we obtain that the total variation of the Lagrangian corresponding to action S is

$$
\begin{equation*}
\delta L=\frac{\mathrm{T}}{2}\left(g_{a b}-Z_{a} \cdot Z_{b}\right) \delta\left(\sqrt{-g} g^{a b}\right)-2 i T \sqrt{-g} g^{a b} \partial_{a} \bar{\theta} \not \psi_{b} \delta \theta+i T \epsilon^{a b c} \partial_{a} \bar{\theta} \not_{b} Z_{c} 68 \tag{18}
\end{equation*}
$$

Incidentally, we notice that on-shell, i.e., when (5) is used, we simply have

$$
\begin{align*}
\delta L & =-2 i T \sqrt{-g} g^{a b} \partial_{a} \bar{\theta} \not Z_{b} \delta \theta+i T \epsilon^{a b c} \partial_{a} \bar{\theta} \not Z_{b} Z_{c} \delta \theta \\
& =-2 i T \sqrt{-g} g^{a b} \partial_{a} \bar{\theta} \not Z_{b}(1-\Gamma) \delta \theta \tag{19}
\end{align*}
$$

which vanishes for 68 given by (7).
To obtain the off-shell case, we consider the following general transformation

$$
\begin{equation*}
\delta\left(\sqrt{-g} g^{a b}\right)=A g^{c(a} \epsilon^{b) d e} \partial_{c} \bar{\theta} \not Z_{d} \not \psi_{e} \delta \theta+B \epsilon^{c d(a} \epsilon^{b) e f} \partial_{c} \bar{\theta} Z_{d} Z_{e} Z_{f} \delta \theta+X^{a b} \tag{20}
\end{equation*}
$$

Alternative off-shell n-symmetry for supermembranes

where A, B and $X^{a b}$ are respectively two scalars and a symmetric parameter space tensor which have to be calculated.

By using gamma-matrix algebra and some identities listed in the appendix, we arrive at

$$
\begin{align*}
& \delta L=-2 i T \sqrt{-g} g^{a b} \partial_{a} \bar{\theta} \not \ddot{\psi}_{b} \delta \theta-3 A T \sqrt{-h} g^{a b} \partial_{a} \bar{\theta} \not \mathcal{Z}_{b} \Gamma^{\prime} \delta \theta \\
& +i T \epsilon^{a b c} \partial_{a} \bar{\theta} \bar{\psi}_{b} \mathcal{Z}_{c} \delta \theta-3 B T \sqrt{-h} \epsilon^{a b c} \partial_{a} \bar{\theta} \mathcal{Z}_{b} \mathcal{Z}_{c} \Gamma^{\prime} \delta \theta+A T \epsilon^{a b c} \partial_{a} \bar{\theta} \mathcal{Z}_{b} \psi_{c} \delta \theta \\
& -\frac{1}{2} A T\left(2 g^{b e} \epsilon^{a c d}+g^{a b} \epsilon^{e d c}\right) \partial_{c} \bar{\theta} \not \psi_{d} Z_{e} Z_{a} . Z_{b} \delta \theta \\
& -B T g g^{c e}\left(g^{a f} g^{b d}-g^{a b} g^{d f}\right) \partial_{c} \bar{\theta} Z_{d} Z_{e} Z_{f} Z_{a} \cdot Z_{b} 68 \\
& +2 B T g\left(g^{a c} g^{b d}-g^{a b} g^{c d}\right) \partial_{c} \bar{\theta} \ddot{\psi}_{d} Z_{a} \cdot Z_{b} \delta \theta \\
& +\frac{1}{2} T\left(g_{a b}-Z_{a} \cdot Z_{b}\right) X^{a b} \tag{21}
\end{align*}
$$

If we choose

$$
\begin{align*}
X^{a b}= & -A\left(g^{e(a} \epsilon^{b) c d}+2 g^{a b} \epsilon^{e d c}\right) \partial_{c} \bar{\theta} \psi_{d} \psi_{e} \delta \theta \\
& -B g g^{c e}\left(g^{f(a} g^{b) d}-2 g^{a b} g^{d f}\right) \partial_{c} \bar{\theta} \mathcal{Z}_{d} Z_{e} Z_{f} \delta \theta \\
& +2 B g\left(3 g^{c(a} g^{b) d}-4 g^{a b} g^{c d}\right) \partial_{c} \bar{\theta} \ddot{\psi}_{d} \delta \theta \tag{22}
\end{align*}
$$

several terms cancel and we yet

$$
\begin{align*}
\delta L= & -2 T(i \sqrt{-g}+3 B g) g^{a b} \partial_{a} \bar{\theta} \not \psi_{b} \delta \theta-3 A T \sqrt{-h} g^{a b} \partial_{a} \bar{\theta} \not Z_{b} \Gamma^{\prime} \delta \theta \\
& +T\left(i+\frac{3}{2} A\right) \epsilon^{a b c} \partial_{a} \bar{\theta} \not \ddot{Z}_{b} \not \psi_{c} \delta \theta-3 B T \sqrt{-h} \epsilon^{a b c} \partial_{a} \bar{\theta} \not_{b} \ddot{\psi}_{c} \Gamma^{\prime} \delta \theta \tag{23}
\end{align*}
$$

which will be proportional to $\left(1-\Gamma^{\prime}\right) \delta \theta$ if

$$
\begin{align*}
& 3 A \sqrt{-h}=-2 i \sqrt{-g}-6 B g \\
& 3 B \sqrt{-h}=i+\frac{3}{2} A \tag{24}
\end{align*}
$$

whose solution is

$$
\begin{align*}
& A=-\frac{2 i}{3} \frac{\sqrt{-g}}{\sqrt{-g}+\sqrt{-h}} \\
& B=\frac{i}{3} \frac{1}{\sqrt{-g}+\sqrt{-h}} \tag{25}
\end{align*}
$$

R. Amorim and J. Barcelos-Neto

Combining (23) and (25), we finally obtain

$$
\begin{equation*}
\delta L=i T \overline{\sqrt{-g}+\sqrt{-h}}\left(\epsilon^{a b c} \partial_{a} \bar{\theta} \bar{\psi}_{b} \bar{\psi}_{c}-2 \sqrt{-g} g^{a b} \partial_{a} \bar{\theta} \not_{b}\right)\left(1-\Gamma^{\prime}\right) \delta \theta \tag{26}
\end{equation*}
$$

which has the desired form and vanishes given by (14).
If we collect all the terms, we obtain that the variation of the metric tensor is given by

$$
\begin{align*}
\delta\left(\sqrt{-g} g^{a b}\right)= & -\frac{2 i}{3} \frac{\sqrt{-g}}{\sqrt{-g}+\sqrt{-h}}\left\{\sqrt{-g}\left(3 g^{c(a} g^{b) d}-4 g^{a b} g^{c d}\right) \partial_{c} \bar{\theta} \not \mathcal{Z}_{d}\right. \\
& +\left(g^{c(a} \epsilon^{b) d e}+g^{e(a} \epsilon^{b) d c}+g^{a b} \epsilon^{c d e}\right) \partial_{c} \bar{\theta} \not Z_{d} \not \mathcal{Z}_{\epsilon} \\
& \left.+\left[\sqrt{-g}\left(g^{a b} g^{d f}-\frac{1}{2} g^{f(a} g^{b) d}\right) g^{c e}-\frac{1}{2 \sqrt{-g}} \epsilon^{c d(a} \epsilon^{b) e f}\right] \partial_{c} \bar{\theta} \not Z_{d} \not \mathcal{Z}_{e} \not \mathcal{Z}_{f}\right\} \delta \theta \tag{27}
\end{align*}
$$

In conclusion, we have discussed an alternative way of obtaining the off-shell κ-symmetry for supermembranes by means of a projector operator. We observe that the transformation for the metric field given by (27) has a different expression of the corresponding one presented in ref. 7. This is an acceptable result since the initial transformations for the theta field are not the same in both cases.

Appendix

We present here the convention and some identities which we have been used through this paper.

$$
\begin{aligned}
& \eta_{\mu \nu}=\text { diag. }(-1,1, \cdots 1) \\
& \text { Signature of } g_{a b}=(-,+,+) \\
& \epsilon 012=1 \\
& \left\{\gamma_{\mu}, \gamma_{\nu}\right\}=2 \eta_{\mu \nu}, \quad\left[\gamma_{\mu}, \gamma_{\nu}\right]=\frac{1}{2} \Gamma_{\mu \nu} \\
& g^{a b} \epsilon^{c d e}=\frac{1}{3} g^{a \mid c} \epsilon^{d e \mid b} \\
& \epsilon^{a b c} \epsilon^{d e f}=g\left(g^{a[d} g^{|b| e} g^{f] c}-g^{a j d} g^{|b| f} g^{e \mid c}\right)
\end{aligned}
$$

Alternative off-shell n -symmetry for supermembranes

Acknowledgment

This work is supported in part by Conselho Nacional de Desenvolvimento Científico e Tecnológico- CNPq (Brazilian Research Agency).

References

1. A.M. Polyakov, Phys. Lett. 103B, 207 (1981); P.S. Tucker, J. Phys. A10, L155 (1977).
2. A. Sugamoto, Nucl. Phys. B215, 381 (1983).
3. Y. Nambu, Lectures at the Copenhagen Summer Symposium, 1970; T. Goto, Prog. Theor. Phys. 461560 (1971); P.A.M. Dirac, Proc. R. Soc. London 268A, 57 (1962); 270A 354 (1962).
4. W. Siegel, Phys. Lett. 128B (1983) 397; Class. Quantum Grav. 2, L95 (1985).
5. For a general review, see M. Ruiz-Altaba, Supermembranes, Preprint CERN-TH 5048/88 and references therein.
6. J. Hughes, J. Liu and J. Polchinski, Phys. Lett. 180B 370 (1986); E. Bershoeff, E. Sezgin and P.K. Townsend, Phys. Lett. 189B, 75 (1987); A. Achúcarro, J.M. Evans, P.K. Townsend and D.L. Wiltshire, Phys. Lett. 198B, 441 (1987).
7. E. Bergshoeff, E. Sezgin and P.K. Townsend, Ann. Phys. (NY) 185, 330 (1988).

Resumo
A verificação da simetria kapa "on-shell" para supermembrana é geralmente feita por meio de um operador de projeção. No caso "off-shell ${ }^{\text {n }}$ (ação tipo Polyakov), esta verificação é mais delicada e a que é encontrada na literatura não faz uso de tais operadores. Neste trabalho, mostramos que a simetria kapa "off-shell" pode também ser obtida por meio de um operador de projeção.

