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Abstract We present a "pedestriann approach to some aspects of the the- 
ory of infinite dimensional Lie groups which is currently applied in mathe- 
matical physics. 

1. Introduction 

Infinite dimensional Lie groups and Lie algebras play an increasing role in 

today's mathematical physics. In classical continuum physics it started with the 

seminal paper of Arnold on the hydrodynamics of incompressible fl~ids'3~ and 

later on, an infinite dimensional Hamiltonian formalism was applied to plasma 

physics3$4. In the study of nonlinear completely integrable systems of the Lax type, 

a connection was discovered with Kirillov's orbit method in representation theory 

and provided more geometric i n ~ i ~ h t ~ > ~ .  In gauge field theory, symmetry groups 

must be extended by the group of gauge transforrnations and this led to a geometric 

interpretation of a n o m a l i e ~ ~ ? ~ .  In two-dimensional conformally invariant quantum 

field theory, with its outstanding successes in statistical mechanics, the (extended) 

Virasoro algebra classifies possible m o d e l ~ ~ l ' ~ .  More specifically, in string theory 

the infinite dimensional Kãhler structure of coset spaces of diffeomorphism groups 

provides a quantisation scheme for the (bosonic closed) string field t h e ~ r y " ~ ' ~ ? ' ~ .  

From the mathematical point of view, a rigorous theory of infinite dimensional 

Lie groups requires powerful tools from functional analysis and group theory. Lie 

groups modelled locally on Banach or Hilbert spaces do not cover many inter- 

esting examples such as the diffeomorphism groups. These are locally modelled 

on Fréchet spaces and are studied as inverse limits of Banach or Hilbert spaces 
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(introduced by Omori). We refer to Kirillov's and Milnor's lectures notes1"*15 and 

to the review article of Adams et a1.16 for details. The recent diffeology approach 

of Souriau and c o ~ o r k e r s ' ~ ~ ' ~  seems to be more suited for quantisation, which is 

more interesting from a physicist's point of view. 

Physics however cannot wait for a rigorous theory , and in this paper we 

present an alternative "pedestrian" way to recover known results and, hopefully, 

make them accessible to a wider class of physicists. For this purpose we do not 

worry about what is the right differentiability condition to impose or what is 

the right topology to use, but simply apply the formal differential calculus on 

generalised functions. Many results can be obtained in this way, using the theory 

of finite Lie groups in local coordinates replacing discrete by continuous indices 

and summation by integration. 

From the examples cited above it appears that the most important infinite 

dimensional Lie groups arising in physics are: 

a) the diffeormorphism group of a manifolf, Diff (M), with the composition of 

mappings as group law. 

b) the current group, C(M,H), of smooth maps from a manifold M to a Lie 

group H with pointwise multiplication, which has the current algebra of quantum 

field theory as Lie algebra. 

c) the group of fibre automorphism of a principal fibre bundle and its normal 

subgroup of gauge transformations (locally it is the semi-direct product of the two 

groups above) . 
We restrict ourselves to the Diff(M)'s. They are introduced with their Lie 

algebra Diff (M) in $2. The adjoint and co-adjoint representations of Diff (M) are 

constructed in $3. We consider possible central extensions in 54 (see the review 

of Tuynman 19). In $5 we define the Poisson structure on Diff(M)* through 

the symplectic structure on each ceadjoint orbit according the Kirillov-Kostant- 

Souriau prescription. Finally in $6 we apply the obtained formulae to ~ i f f ( ~ ' )  

extended by the Gelfand-Fuks-Bott c ~ c ~ c l e ~ ~ ~ ~ ' .  

A discussion of the classification of the generic orbits and their quantisation13.22 

is postponed to later work. 
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2. Diffeomorphism groups and their Lie algebrae 

Ignoring a11 smoothness conditions, as explained in the introduction, let us 

cal1 G = Diff+(M) the group of a11 orientation preserving diffeomorphism of the 

n-dimensional compact orientable manifold M. Elements of G are maps 

and a curve in G is given by a one-parameter family of diffeomorphism &. TWO 

curves 4t and $t are said to be equivalent at t = O if, for a11 

and 

A tangent vector Xo at is an equivalence class of such curves. It is a map from 

M to the tangent bundle T M  : 

such that T&f O Xo = , where r~ : T M  -+ M  is the canonical projection map. 

Clearly the set fo a11 vectors at do form a vector space To(G), the tangent space 

at 40 and formally we may construct the tangent bundle 

where Xo C To(G), with the canonical projection 7G : TG -+ G. A vector field on 

G is a section of this tangent bundle i.e. a map X : G -+ TG : 4 -* X(4) such 

that rç: 0 X = idc. X(+)  itself is the map M  -+ T M  : x --+ (4(x), Ü(4; x]), where 

u[4;x] is the value of a vector field on M  at 4(x) depending functionally on 4. 
Vector fields can also be considered as functional derivatives acting on functionals 
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where dx is a suitable volume form on M and where 4 ( z )  and ui[4; x] are coordi- 

nates and components in a coordinate neighbourhood. The functional derivative 

is defined as : 

where 

(4 + (v) = (Y) + ~6!6(5, Y) 

The Dirac density 6(x,y) is related to the choice of the volume dx by 

dyG(x, y)g(y) = g(x) for any reasonable function g on M. 

Introducing a mixed discrete-continuous index cr = (i, x), with i  = 1,2, ..., n 

and x E M ,we write eq.(l) as : 

The Lie bracket of two vector fields X and Y, given respectively by ua and va 

, is the vector field Z = [X, Y] given by 

Left and right multiplication in G is defined by : 

and their differentials at 11 are: 



An approach to infinite dimensional Lie groups 

Left and right invariarit vector fields are defined by their value a t  the identity 

diffeomorphisrn id : 

XL('$) = Lb*;idXid (sa) 

XR('$) = R@';idXid 

where Xid E Tid(G) is a vector field on M : 

Xid : M -+ T M  : x  -+ (x, C(z)) . 

The components of the left- and right-invariant vector fields are: 

Lie brackets of (right-) left-invariant vector fields are (right-) left-invariant: 

and, if X L  and YL are given by the vector fields ii(x) and ü(x)  then ZL is given by 

W ( x )  = - [U(x) ,  ü (x) ]  . (8) 

with the same Zid as above. The Lie algebra of G, given by the algebra of the 

left invariant vector fields, is thus isomorphic to the Lie algebra of vector fields on 

M with the Lie product given by minus the usual Lie bracket of vector fields on 

M. A generalised local basis of the Lie algebra is given by : 

and any left-invariant vector field can be written as : 
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The "structure constants" are defined by : 

with: 
q z ,  2) 

(klz) =6;6(z,y)- - - -  Y )  
f(i,z),(j,Y) 

s; s (2, x) --- 
a ~ j  azi ' 

(W 
The dual $* of the Lie algebra is the space of linear functionals on 

(j, identified with the vector fields on M. Elements of $*, are covariant vector 

densities of weight one, in cooxdinates given by &(x) and paired with elements of 

(j, through: 

(12) 

This dual $* can also be defined as the space of left-invariant one-forms 

on G. A oneform at 4 is a linear functional on the vectors of Tb(G) : 

where the basis one-forms 6mi(z) are duals of 6 /6@(y ) ,  so that the pairing is: 

The one-forms at q5 generate the cotangent space Ti(G) and the pull-back of L+ 

which reads in components : 

with 

Left-invariant one-forms are given by: 
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In components: 

where [,(z) are the components of the covariant vector density of weight one 

introduced above. 

The dual basis of {E(,,z)(4)) is given by: 

and any left-invariant one-form is given by : 

3. The adjoint and co-adjoint representation 

These representations of G in G, respectively $, are fundamental in Kirillov's 

method of orbits. Let C+ = L4 o R4-i be the map G + G : I I ,  -+ 4 o I I ,  o 4-', its 

derivative at the identity of G is : 

which is an automorphism of $. The adjoint representation of G in $ is: 

In coordinates : 

The adjoint action of q5 transforms the representative vector field Ü(x) of X;d 

into : 

The coadjoint representation is similarly defined as: 
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It satisfies : 

< .K(4)BL,XL > = < sL,  ~ d ( 4 - l ) ~ ~  > 

The covariant density &(x) is transformed as: 

( W - W ) '  
(K(4) € ) i (%)  = C ~'(4-' (.I) ,, det {v) x ( 2 1 ~ )  

j 

The adjoint and coadjoint representations of the Lie algebra are given by the 

differentials of Ad(4) and K(4) : 

where ad(XL) is the map: 

On the representative vector field V, it acts as: 

where LrV is the Lie derivative along ii of the vector field V. The coadjoint repre- 

sentation is obtained in the same way and satisfies: 

which yields: 

k(ü)€ = -Lc( 

with the Lie derivative along u of the vector density 6 : 

4. Central extensions 

A group & is a central extension of the group G by the abelian 

group A, + ,on which G acts trivially, if there is an exact sequence of group 
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homomorphisrns: 

O -+ A ' L G A G  -+ 1 , and Ker n = I ~ ( L )  

such that '(A) belongs to the centre of 6 and G = G/L(A), where 

K : G -+ GIL(A) is the canonical projection. An extension defines, and is defined 

by a cohomology class of H2(G, A) i.e. an equivalence class of two-cocycles 

differing by a coboundary. A two-cocycle is a map: 

with zero coboundary: 

and a two-coboundary is a twcxocycle of the form: 

where the one-cochain C is a function on G with values in A. As a set, 2 is 

identified with G x A and has elements <P = ( d , ~ ) ,  Q  = ($,.y); the group law is 

defined by: 

@ * Q =  ( 4 0 * , ~ + 9 - Z ( 4 , $ ) )  - (26) 

The above cocycle condition guarantees that this is effectively a group law and 

it can be shown that two-cocycles differing by a coboundary yield equivalent 

extensions. 

The cocycle condition implies that 

Zo := Z(id,idj = Z(4,id) = Z(id,d) and ~ ( 4 - ' , 4 )  = ~ ( 4 ~ 4 - ' )  . 
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The neutra1 element of 6 is Id = (id, Zo) and the inverse of the group element 

@ = (4,  p) is given by 

Let {pa), a = 1,2, ..., d, be coordinates of p E A , then 

are coordinates of cP and a vector X* tangent to 6 at @ is given by the derivation: 

AI1 the considerations of the preceding paragraphs can be repeated with d more 

entries for the auxiliary matrices L@,;* and R*,;*. The results for the relevant 

matrix elements are given below: 

Left invariant vector fields are 

given in component form by: 

and 
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They are identified with T ~ ~ ( G )  = $, which is the corresponding extension of $ 

by , the Lie algebra of A. Elements of 3 are given by vector fields on M and 

by vectors of Tz, ( A )  , in components uA = ( u i ( s ) ,  u a) .  A generalised local basis 

of $ is given by the left invariant vector fields EA(@)  : 

a 
E,(@) = - . 

apa 

They define the structure constants FL through: 

The Lie bracket of two elements of $ defined by (u i (x ) ,  ua)  and ( v i (x ) ,  v a )  is given 

by: 

wi(x)  = -[C, q i ( x )  ( 3 3 4  

In fact, wa is the value of a two-cocycle Z(ii,C) on the Lie algebra $ with values 

in R ~ ,  on which $ acts trivially, and defines a Lie algebra extension 3 of the Lie 

algebra $, the commutation relations (11) being replaced by (32).  

The adjoint representation of & on 3 is given in matrix forrn by: 
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A one-form on 6 at @ = (4, p) is given by: 

and left-invariant one-forms have components: 

An element of $* is thus given by its components EA = {Ei(x), cal, so that: 

With the dual basis of E(A)(@) given by: 

The coadjoint action of & on such an elernent transforrns it into : 
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The adjoint and coadjoint representations of the Lie algebra 5 ,  respectively in 3 
and J*, are obtained taking derivatives. Let elements of J and $* be given by 

uA = { u i ( z ) ,  u a) ,  v A  = {vi ( x ) ,  v")  and tA = { t i ( % ) ,  ta), one obtains: 

and, for the coadjoint action: 

5. Symplectic structure on the coadjoint orbits 

Let 

be the left-invariant one-form on G corresponding to the covariant density 6 E $*. 

Fixing t , the coadjoint action of G defines the map: 

where O( is the orbit of t in $* . Also let Gç be the isotropy group of 6 i.e. 

and 

?r, : G -+ G/Gt : 4 --+ [4] := 4 Gf 

the canonical projection on the left coset space . The Lie algebra $ç of GC is given 

by the Killing vector fields of the density E , since 
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Going pver to the guotient one obtains a diffeomorphism : 

where 9' is an element of the left coset [9]. 
The Kirillov-Kostant-Souriau construction asserts the existence of a unique 

two-form wc on G/GE such that: 

This two-form is non-degenerate and closed , so it defines a symplectic structure on 

G/Ge which is pushed forward by the diffeomorphism K( to a symplectic structure 

on the orbit O(. An outline of this construction is given below. 

First of all let us recall that tangent vectors at 141 to the manifold G/GC 

are equivalence classes [XIl4] on the tangent bundle TG, restricted to 4Gi , with 

respect to the equivalence relation: 

where 

~ k ( 4 ' )  = L(*;id Ü 

is the left invariant vector field on G corresponding to a Ü E gl. 
From the Maurer-Cartan structure equations it follows that: 

~ O ~ ( X , Y )  = - < ~,[-%+,b] > (45) 

where 2 4  = L4-i*;4X(q5) belongs to 5. Choosing another representative of [X]141 

one has: 

*Ídti = L4t-~*;r~~'(4') = ~d(x-')X, + 5 
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so that 

we([xl, [y]) pl = d&f(~ ,  y), = d$'(xl, yl>,f 

is well defined on G/GC. 

It is clearly non-degenerate and 

implies that it is closed, since ne and its derivative are surjective. 

The tangent space at V = K(4)E to Ot is spanned by the infinitesimal gener- 

ators of the coadjoint action on $*. As vector fields on the linear space $* they 

can be identified with elements (vectors) of $* : 

Now Ker(K,wiid) = 5, so that $/$, is isomorphic with ~ ~ ( 0 , )  under the isomor- 

phism: 

where V = K(q5)E and where (4, X(4)) is a representative of the equivalence class 

IXIl,,. 
The inverse isomorphism sends c E T,(Ot) in the equivalence class [X][dl of 

(d,X(d)) where 4 is a solution , modulo Gt ,of V = K(4) t  and where X(4) = 

Rp;idÜ, with Ü solution of c = - Ljq defined modulo $, . 
The push-forward of we, f l ,  = &* wt ,  is defined on vectors of the form c = 

r(;, V )  by: 

where 

i ]  = ( )  1 and K0 = ~d(b-')Ül 
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so that finally: 

~,(sl ,c2)q = - < )7,[iil,ü2] > 

This symplectic structure on each orbit defines a Poisson structure on $* , 
which is a Lie algebra structiire on the ring of functions on $* such that the 

bracket is a derivation on the ring. It is defined by: 

where the functional derivative is viewed as a map: 

defined by: 

In components, the Poisson bracket reads: 

Naturally,the symplectic structure on the coadjoint orbits of an element of the 

dual $* of the extended Lie algebra $ under the action of the extended group 

can be constructed in a similar way with the help of the formulae of Chapter 4. 

In the next paragraph we apply this to the diffeomorphism group of the circle. 

6. The circle S1 

Elements of the group ~ i f f (S ' )  are smooth functions from S' to S' with 

nowhere vanishing derivative ( positive if orientation- preserving). The group 

has a non trivial central extension by R with Bott's two-cocycle: 

where c is a real parameter and where t denotes derivative. It can be rewritten as: 
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The associated Gelfand-Fuks two cocycle on the Lie algebra of ~ i f f  (s') is calcu- 

lated using (32c): 

ao that the two-cocycle (33b) reads: 

The Lie algebra of the extended group and its dual have elements represented 

by u = (u(z) ,uo)  and 6 = ( ( ( z ) , c o ) ,  on which a group element @ = ( 4 , ~ )  acts 

trough the adjoint and co-adjoint representation: 

where 

is the Schwarzian of 4 

The property of the Schwarzian: 

guarantees that < K ( @ ) € ,  Ad(@)u >=< E ,  u > . 
The isotropy group of a íixed element ( = (E(z), €0) is given by a11 @ = ( 4 , ~ )  

solutions of 

E ( 4  = ( (d - ' ) ' (4 )2  €(d-'(x))  - c ~ [ 4 - ' 1 ( 4  b . (60) 

Its Lie algebra is given by a11 u = (u ( s ) ,  u O)  solutions of k(u)( = 0,  which according 

to (39b) becomes: 

-(uQ + 2uf() + Z C U " ' ~ ~  = O . (61) 
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The orbit 0, is given by 

and vectors ( = (((c), (o), tangent to Ot at a point of the orbit, are of the form 

C(%) = -- (u$' + 2ufq) $ ~ c u " ~ ~ O ]  (x) 

$ o = O .  (63) 

The symplectic structure on the orbit O( is defined by 

- v0c / dz (u: (z)u:(z) - u~(z)u>1 (x)) (64) 

where u1 and u2 are defined by (63) up to an element of the Lie algebra of the 

isotropy group of q,i.e. a solution of 
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Resumo 
Apresentamos uma abordagem não rigorosa, mas simples de certos aspectos 

da teoria dos grupos de Lie infinitos que está sendo comumente usada em física 
matemática. 


