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Abstract Using supersymmetric quantum mechanics we generalize some 
exactly solvable potentials: the particle in the box, ~oschl-~el ler  and Rosen- 
Morse. We evaluate the new potentials and indicate their eigenfunctions and 
spectra. 

1. INTRODUCTION 

We know that the number of Schrõdinger equations that have analytic solutions 

is quite small. In recent years some works have tried to increase this number, 

starting from potentials whose solutions are known (e.q. Abraham and Mosesl 

and Pursey2). Supersymmetric quantum mechanics (SQM) has also been used for 

that purpose. The superalgebra is used to construct a hierarchy of ~ami l ton ians~  

and to build new Hamiltonians from a Ricatti equation415s6. 

The method to construct new potentials from known potentials using SQM, 

which we use in this paper, was proposed by Nieto4 and Alves and Drigo Filho5. 

It is based on the factorisation method which was applied by ~ i e l n i k ?  to the 

harmonic oscillator and by Fernandez
g 

to the Coulomb potential. This method is 

also applicable to spatially limited potentials. We will see it through the example 

of the particle in the box. 
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Here, we use the superalgebra to construct new potentials from exactly SO~V- 

able potentials. This construction was used to generalize the Coulomb and the 

harmonic oscillator potentials5, as well a s  the Morse potentia16. Firstly, we present 

the method for a general potential in sec. 2. Then, we apply it to the simple po- 

tential of a particle in a box (sec. 3). We treat the Poschl-Teller and Rosen-Morse 

potentials in sec. 4 and we comment on the results in sec. 5. 

2. Generalization method 

In SQMgl10 we have two supersymrnetric charges Q and Q+; they satisfy the 

anticommutation relations 

A simple realization of this algebra is 

O d+ 
Q=(: :) and Qi= O )  

and we have 

H- is called the supersymmetric partner of H+; they have the same spectrum 

except for the zero-energy ground state which belongs to H+ only. We note that 

i.e., Q and Q+ induce transformations between the "bosonic" sector (i>+) and the 

Ufermionicn sector ( i>-) .  Then, the H- eigenfunctions can be written in terms of 

H+ eigenfunctions (i>- cx d-i>+). The reciproca1 is also true, i.e. i>+ cc d+i>- are 

the eigenfunctions of H+ with the exception of the ground-state. With operators 

df writtem in the usual form 

the supersymmetric Hamiltonian is written as 
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where 03 is the Pauli matrix, W ( x )  is called superpotential and is associated with 

the H+ ground state eigenfunctions $+,o 

W ( x )  = - ln $+,o(x) (7) 

We can construct the new potentials from a generalization of the d" operators 

d 
D* = FZ + F ( x )  

The function F ( x )  is determined when we impose that 

H- = D- DS 

and we obtain the Ricati equation 

The commutator of the new operators is 

that defines a new Hamiltonian 

d  
X+ = D+D- = D-D+ - [ D - , D + ]  = D-D+ - 2-F(x)  

dx (12) 

U+ gives a new potential which is different from the H+ and H- potentials. HOW- 

ever, from the supersymmetric algebra we know that the U+ spectrum is the same 

as that of H- and the U+ eigenfunctions ($+) are 

This map is not complete, because it excludes the U+ ground state. It is obtained 

by the equation 
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= 0 

3.Particle in t he  box 

The Hamiltonian of the one-dimensional particle in the box' is 

H+ has eigenfunctions and eigenvalues given by 

fi sin (nx) n even 

++*fl(x) = { fi cos (nz) n odd 

~ , = n ' - l  n = 1 , 2 , 3  (17) 

The constant term in (15) only displace the spectrum. It sets the eigenvalue 

of the ground state to zero, El = 0. 

We note that eq.(15) can be factorized, H+ = d+d-, by 

Thus, the supersymmetric partner of H+ is 

Defining new operators D*, as in eqs. (8), we obtain F ( s )  given by 

4 c0s2 x 
F(x) = tan x + E tanx + d(x) 

sin2x + 22 + 4 r  

Thus, the new Hamiltonian is 

d2 

M+ =D+D- =D-D+ -[D-,D+] = -- -1-  
32 cos x[(x + 2r)  sin x + cos x] 

dx2 (+ sin 2s  + 2s  + 4r)2  
(21) 

which corresponds to the generalized potential 

261 



Elso Drigo Filho 

32 cos x [ ( x  + 2I') sin x + cos x] 
V+(z) = -1 - 

(sin 2s  + 22 + 4 r 2 )  (22) 

The constant I' is arbitrary and is chosen to avoid singularitues; here we choose: 

I' < -q or r > $. The spectrum of this Hamiltonian is the same of the particle 

in the box (17).  Its eigenfunctions are 

*+,n(x) - D++-,n(x) = D+d-++,n(x) (23) 

with $+,, given by (16) and the ground state ($+) is evaluated by nsing (14) 

4. Other potentials 

Using the Põschl-TeIler potentialll we write the Hamiltonian 

d 2 k(k - 1) A(A - 1) HY*) = --+ T +  -- - (k- , z = as 
dz2  sin z cos2 z 

(25) 

where a, k and A are constants. The eigenfunctions and eigenvalues are" 

where 

are the Jacobi polynomials and N ( a ,  k, A ,  n) is the normalization constant. The 

factor [- ( k  + A)'] in (25) sets the ground state eigenvalue to zero. 

The Hamiltonian (25) is factorized by 

and the supersymmetric partner is 
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The generalization of the operators (28), as indicated in (8), leaves us with 

[(sin z)2k + (COS z)~']-' 
F p ~ ( z )  = -k cotgz + Xtg z + rpT + JO[(sin z ) ~ ~  + (cos ~ ) ~ ~ ] - l d z  

= -k cot z + X tan +C#JPT(Z) (30) 

U7e choose r p ~  > O to avoid singularities . Thus, the new Hamiltonian is 

and the potential is 

X(A + 1) k(k + 1) d 
VPT(Z) = + 7 + ( A  + k)2 - ~ - ~ P T ( z )  

sin z dz 
(32) 

This Hamiltonian has the spectrum given by (27) and its eigenfunctions are 

+ d- e P T  *ZT (2) = DPT pT n 

and the ground state (GPT(z)) is 

The other potential that we treat is the Rosen-Morse one13. It  was recently 

studied by Nieto12 and Aragão de Carvalhd4. Its Hamiltonian be written in the 

form 
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where z = kpoz; @ = 2p/k2po; 7+ = (1 + k)/k2; k ,po and p are constants. The 

eigenvalues and the eigenfunctions of this Hamiltonian are 

and 

it - d 
dRN - ~ k p o -  i p o  tanh z + p 

d z  

that satisfy the commutation relation 

[d&, d h ]  = 2kp&ech2z 

The supersymmetric partner of (35)  is 

We can factorize the Hamiltonian (35)  by the operators 

where 

From the generalized operators (8) we obtain 

e2P(cosh z)  - 
FRM(z)  = tanh z + p + - - rm + S: e-2Pz(cosh ~ ) - ~ p o d ~  

To avoid singularities we choose rILM > O. Then, the new Hamiltonian is 
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d2 2 d 2 2 
= i":{ - - + ,í3 tanhz - -y+sechz - - - - & ~ ( z ) )  + P + 90 

dz2 kvo dz  

whose potential is 

d 
VRM = 2pop tanhz - po(k -t l)sech2z - 2kpo-&~(z) dz (43) 

We note that the new Hamiltonian (42) has the spectrum given by (37) and tis 

eigenfunctions are given in terms of the functions $i!) (36): 

with ground state 

5. Conclusion 

From the potentials studied (particle in the box, Poschl-Teller and Rosen- 

Morse) we obtained new potentials (eq. (22), (32) and (43)), which are different 

from the original ones, but whose spectra and eigenfunctions are known. The 

relation between the old system and the new one is established through the SQM. 

As the spectrum of one potential is the same as that of its generalized version, 

some papers have appeared trying to distinguish these systems through the scat- 

tering produced by them. Cooper et a115 and Kare and sukhatme16 have worked 

in this direction but they use a generalization method different from the one we 

used here. 

Nieto4 explored the link between the generalization of the potential from super- 

symmetry and from the inverse scattering method. Using this result, the potential 

obtained in (22) should be the same (up to integration constants) as the potential 
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found by Abraham and Mosesl for the particle in the box. Unfortunately, these 

potentials are different. However, we can see that in ref. 1 eq. (44) is not a solu- 

tion of eq. (10) and also that eq. (45) is not derived from eq. (44); these mistakes 

justify the difference between the results. 

The author wishes to thank Dr. M. A. Manna for helpful discussions about 

the paper of AM and Drs. R. M. Ricotta e V. Pleitez for their useful suggestions 

to this paper. 
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Resumo 

Usando a mecânica quântica supersimétrica vamos generalizar os potenciais: 
da partícula em uma caixa, Põchl-Teller e Rosen-Morse. Calculamos os novos 
potenciais e indicamos suas respectivas autofunções e espectro. 


