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Abstract  The mecahanisms  contributing to excitation transfer are exam- 
ined for Ni-Ni ion pairs in order to explain the delocalized character of elec- 
tronic excitations observed in CsNiF3. Using both first- and second-order 
perturbation theory and from symmetry arguments, the kind of interac- 
tions giving matrix elements between states connecting different sites for 
the position of the excitation are discussed. 

1. Introduction 

A large amount of papers has been published dealing with the analysis the low 

energy levels in CsNiF3, considered as one of the most typical one-dimensional(1D) 

ferromagnets. This 1D behavior in the magnetic order has been observed between 

TN = 2.6 K and 40 K1. However, information about the first optically excited 

state is scarce. Recently, measurements of fluorescence after selective excitation 

(3~2-3T2 transition in the notation for states of isolated P4i2+ ions) were performed 

at temperatures between 1.3 K and 20 K, in the presence of an externa1 magnetic 

fiedl from O to $5 K G ~ ~ ~ .  From these results it was concluded that fast transfer 

exists between Ni ions in the 1D chain, until the excitation is trapped at the end 

of a segment of equal Ni ions, in a slower process. 

h CsNiF3 each Ni ion is surrounded by six F ions, in a distorted octahedron of 

D3d symmetry. In our analysis we will consider a pair of Ni first neighbors,where 



- 

Ni-Ni ion pair ezcitation transfer in symmetry 

each distorted octahedron has a triangular base in common with the following one. 

The symmetry of the pair is D3h, having a reflection plane perpendicular to the 

triagonal axis. (Fig. 1). 

Fig. 1 - Schematic represeatatiou of two 
ne ighbou~g  Ni ions in CsNiF3 showing the 

_, y DJh symmetry o€ the pair. 

An isolated Ni ion (3d8 -3 F) in an octahedral field has an orbital singlet 3 ~ 2  

(or ta,ei in a strong field scheme), as  the ground state and the first excited state 

is 3 ~ 2 s  (or t ige;) .  We use the electron-hole equivalence in what follows. 

To describe the intersite transfer we assume as usual, that the effective model 

Hamiltonian appropriate for the system can be written as 

where H, is the Hamiltonian of an ion at site ai, and H, represents the interionic 

interactions. 

The delocalized excited state can be described as a kind of tight-binding 

Frenkel exciton4, in which the excitation "jumps* between sites while the number 

of electrons in each ion is conserved. 

We indicate by 11, a multielectron state in which a particul'ar ion a is in 

one of its excited states e,, while the rest of them are in the ground state f7. 

(We assume the ground state to be orbitally non-degenerate). Taking $, as the 
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antisymmetrized product of one-ion wave functions, we put I$, >= lea{f7) > 
where {f7) is a set of occupied one-electron states which will be taken as Upassive" 

within the problem under consideration (as a sort of frozen core). 

The exciton state can be written as 

where N is the number of ions, i a wave sector, and R, is the position vector from 

the origin to site a. 

The matrix elements of the Hamiltonian (1) can be expressed in this basis as 

-+ - 
with ?,p = R, - Rp and hap =< $,IHapI<Lp >; hag represents the effective energy 

transfer matrix element in wbich we are interested. 

2. The Many-electron states 

In order to examine the effective energy transfer operator we will use an analy- 

sis which is based on the theory of magnetic interactions in insulators as described 

in ref. 5. We use the nomenclature as in ref. 6 where the theory of coupled cr3+ 

pairs is treated in a similar form. 

Although our study will be based on symmetry considerations, i.e. the elec- 

tron states transforming irreducibly under the symmetry operations of the group 

coaresponding to the system, it seems appropriate to give a brief account of the 

scheme to follow in order to built up the effective Hamiltonian. 

Let us assume that we have at our disposal a set of symmetry-adapted one- 

electron states. These can be used to build up properly antisymmetrized many- 

electron states which can also be classified according with the symmetry of the 

system. Starting from these many-electron states an effective operator over a given 

manifold can be constructed as 
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where Pn is the projection operator over the selected functional subspace and 

Based on these many-electron states it is possible to set up a perturbational 

scheme to correct them or alternatively to allow a form for X which includes these 

corrections. 

Up to second order in the real Hamiltonian U ,  Ueff can be written as 

where X contains in principle a11 the microscopic interactions which are considered 

relevant for the problem under consideration. As far as its convergence properties 

are concerned, this perturbative procedure rests heavily on the proper selection of 

the states, rather than on seeking a way to separate U into some unperturbed Uo 

plus a perturbation U' as it is more commonly practiced. 

The model is based mainly on symmetry considerations, where the wave func- 

tions are defined by their transformation pro~erties under the symmetry operations 

of the group corresponding to the ion pairs. 

Now suppose that we have already classified the states forming Pn according to 

their symmetry properties as will be shortly described. The effective Hamiltonian 

within that manifold can then be written as 

where nr7k is a function transforming as the component k of irreducible represen- 

tation r7 and n distinguishes between repeated representations of the same kind. 

Naturally this Hamiltonian should be invariant under the operations of D3h. The 

number of parameters in this effective theory is given by the non-vanishing n n f ~ , k  

and follows the symmetry of the system. Thus the externals leryk >< n'r7kl 

are only reflecting the symmetry behavior of the states with no reference to their 
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interna1 structure, while the whole information about the proposed structure for 

the many-electron states, will be contained in the parameters A$ through 

We start constructing the functions of the Ni-Ni pairs by defining first the 

one-electron functions as shown in table 1. 

Table 1 - One-electron orbital wave function transformation properties in &h. 

1 electron 
orbital 

E c; 0; 0: Transforms as 

w = exp(2~i/3)  cose = ,/$ 
IML >r eigenfunction of angular momentum L = 2, ML 

The operations considered are: C:, a rotation of 120' around the trigonal axis 

O, a:, a reflection by a plane containing the c axis, and ai, a reflection by a plane 

perpendicular to c containing the three F ions. The index o indicates that they 

operate on the orbital part, while s will indicate operators acting on the spin part. 

The last column, in table 1, serves as a definition of the wave functions for those 

electrons of the second Ni of the pair. In this way we avoid ambiguities in the 

definition of the direction of coordinates in each site. We indicate with lowecase 

characters the one-electron orbitals obtained by operating with o: on the orbitals 

of the first Ni, written with capital letter 

We will label the many-electron one-ion ground-state functions as &,O0 and 

0-1 (see table 2) to distinguish the M, value for the components of the orbital 
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singlet and the first excited state wave functions $AMs, $BMd,$CMs, where the 

first sub-index indicates the transformation properties of the orbital part. 

Table 2 - Single-ion determinantal functions (spin-orbit not included) excited states 
corresponding to M, = 1. 

+ +  + +  I$& i= -&(EA+DB) 

I$AMS > $A transforrns as A, Ms = 1,0, -1 

Including spin orbit coupling: 

ground state 

Thus, we have 3 functions for the ground state and 9 for the excited state mak- 

ing a total of 54 functions for the pair with one excited ion. For the excited states 

we shall keep only those corresponding to the lowest energy after the spin orbit 

interaction and the triagonal distortion of the crystal field have been considered 

(aD and aE) .  

For the wave functions of the pair we shall take the antisymmetrized product 

of the functions of each ion which already are antisymmetrized products of one- 

electron states. If (A, D) indicates the determinantal state of one ion at site a and 

(a, b) is the same for an ion at site ,f?, the function of the pair is represented by 

(A, D, a, b) and the antisymmetry is guaranteed. 

Now we can write the functions of the pair. Defining 

1 ui = -(V + o  
2 ' hU,) such that ohU; = U; 



M. C. Terrile and M. C. G. Passeggi 

1 
U n .  - -(Vi - ohU,) S U C ~  that ahUni = -Un

i 
' - 2  

where Ui 

These functions transform as  shown in table 3. 

Table 3 - Transformation properties of the functions U' and U" under symmetry 
operations of Dsh group. 

Representation Degeneracy 

The functions U' and Un have the correct transforrnation properties but they 

are not necessarily eigenstates. 

The interactions we are interested in, can be represented by the effective Hamil- 

tonian of eq. (1) operating on the subspace of the family functions Ui, U n
i .  Note 

that functions differing in parity under oh, will never mix. 

Using the functions of table 3 the unperturbed Hamiltonian Uo is defined as 

to have those functions as eigenstates 

where P, is the projection operator on the farnily of sublevels we are concerned 

with, and E, is the mean value of energy for the family. This Hamiltonian Ho has 

the symmetry properties of H 
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At this stage it must be pointed out that eq. (2) gives the overall effective 

Hamiltonian for the coupled pair according with symmetry requirements although 

not ali the terms involved in the products lnr7k >< n'r7k) will represent twesite 

excitation transfers. 

These can be recognized after decomposing the functions JnrVk > into their 

uncoupled components as given in tables 3 and 2. 

Thus the calculation of n n ' ~ , k  includes matrix elements such as: 

and 

Notice that H commutes with a h .  

Here the second term < U,lHuh lU, > contains the matrix elements we are look- 

ing for, i.e., those meaning transfer of an excitation from one ion to its neighbors, 

namely 

< @ i ( ~ ) @ ~ ( P ) l l @ ~ ( ~ ) @ i ( B )  > 

Integrais such as < @l(~)@D(b)I  (@,(a) > represent intraionic excita- 

tion (at site 8) and they will not be considered. 

We are now in a position to examine what are the microscopic mechanisms 

contributing to the effective parameters by going into the perturbative treatment 

described in ref. 5. 

As usual, we separate the microscopic Hamiltonian as a sum of: one- 

electron spin independent operators hi (kinetic energy for example); one-electron 

spin-dependent operators h:, (as the spin orbit interaction); two-electron spin- 

independent operators g,,, (as electron-electron interaction); and two-electron 

spin-dependent operators g;, (as dipolar spin interactions). 

3. First order perturbation theory 

In first order perturbation theory, one-electron operators as h, and h: can not 

contribute to the excitation transfer, which involves simultaneous changes in the 
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states of two electrons, one for each ion of the pair. Only gij and g,dj must be 

considered. The first g,j, being spin-independent, connects states with the same 

total M,. The resulting integrals are of the type 

When the operator is e2/riz, the first integral is Coulomb-like, and represents 

the electrostatic interaction of two charge distributions at sites a and P as given 

by the excitation process. The second is an exchange integral (direct exchange). 

It depends on the overlap of electronic wave functions centered at different sites. 

Some overlap can be expectated for functions with a maximum of charge density 

along the axis joining the two ions of the pair, c. They are invariant for rotations 

around c and thus transform like A (or a).  Matrix elements like (DalIdA) (like 

oã bonding) should be more important than those like (DblldB) (as R ~ T  bonding). 

Notice that gi, has matrix elements relating states differing in one electron too, 

which are not of interest in our case. 

The same kind of matrix elements appears for spin-dependent tweelectron 

operators gf,, but adding in this case matrix elements between functions with 

different M,. An example of this kind of contributions is provided by the spin 

dipole-dipole interaction. Because of the rf2 denominators these integrals are 

expeeted to be much smaller than the Coulomb and exchange discussed before. 

The existence of both kinds of integrals implies that an ion can oscillate be- 

tween the ground and excited states, interchanging energy with one of the first 

neighbors, as well as exchanging energy accompanied by spin-flip process respec- 

tively. 

Severa1 final states are possible. The excited state includes spin up and down 

(spin orbit interaction was already included) and we can have final state with 

different spin on the ground state. For example (A+ dll D+ a). This means that 

excitation can be transferred with or without changing the spin on the ground 

state. 
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4. Second order perturbation theory 

Operator h : h 

In the second-order perturbation theory those operators can connect states 

differing in two electron states, for example 

(AdlhlDd)(Ddlh(Da) (Adlh(Aa)(Aalh(Da) + 
Ed - EO EA - ED 

Both terms are always together and cancel each other because Ed - E, = 

(EA - ED) if the ions and their environment are identical. 

Elements like 

(AdlhlDd)(DdlhlDb) + (AdlhlAb)(AblhlDb) 
Ed - E, EA - ED 

such that the occupied orbital changes from one ion to the other, will not cancel 

but the energy levels being quasi degenerate, their contribution may be small. 

The intermediate state can be one in which one electron is transferred from 

one ion to the other, the denominator U is always positive. Where U is the 

repulsion between two electrons on the same ion. They are essentially equivalent 

to Anderson's exchange7 mechanism which are sometimes referred to as kinetic 

exchange. They are for example 

(AdlhIad)(adJhJaD) (AdlhlAD)(ADJh(aD) 
U 

+ U 

As these come in second order the intermediate state will be higher in energy 

and consequently these contributions can be negative and they may even cancel 

other contributions. 

Operators h : h,, h, : h, 

The same matrix elements are expected, only the restrictions on Ms change. 

Here are involved the so-called antisymmetric and anisotropic exchange5. 

Operators g:g 
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NOW a lot of intermediate states are possible, even those including vacant 

states, and ligant vacant states. They are of the form 

where ei , ez indicates vacant states. 

This contribution can be positive as well as negative, depending on the energy 

denominators and they can in.clude processes involving intermediate states in 

which ligand orbitals participate. 

5. Conclusion 

Using almost exclusively the symmetry properties of the system (Ni-Ni ion 

pair) we examined the energy transfer matrix elements allowed and what kind of 

interactions are able to participate on the process. 

Mechanisms as Coulomb and exchange interaction (in first and second order 

perturbation theory), kinetic exchange, spin orbit and dipolar interaction (in sec- 

ond oder perturbation theory), can contribute but norrnally they are expected to 

be small. As usually happens, at least for the low energy states, the strongest 

effect might arise from processes involving ligand orbitals in second-order pertur- 

bation theory. However, as the signs of different contríbutions can be opposite ne 

can expect that the effective parameters for intersite energy transfer can be very 

small, as their numerical value will wise from a delicate balance of the mechanisms 

we have examined. 

Experimentally it was concluded in ref. (3) that the excited state is delocalized, 

with a dispersion 1 cm-I and the time of excitation transfer along a chain of normal 

Ni ions is less than 1 ps, in agreement, at least qualitatively with our conclusion, 

i.e., the diffusion exists but tbe exciton has a small dispersion. 
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Resumo 

Examinamos os mecanismos que contribuem para a transferência de excitação 
para os pares de íons Ni-Ni com a finalidade de explicar o caráter delocalizado das 
excitaçóes eletrônicas observadas em CsNiFg. Discutimos os tipos de interações 
que dão elementos de matriz não nulos entre estados que conectam diferentes sítios 
para a posição de excitação, usando teoria de perturbações de primeira e segunda 
ordem e partindo de argumentos de simetria. 


