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Abstract We show that a new decomposition of the many-body Wigner 
function in the squeezed states basis set of the quantum phase-space as- 
sociated to bound states allows one to separate the spatial density of the 
many-body system into a semiclassical part plus its quantum complement. 

1. Introduction 

A description of quantum mechanical properties of many-body systems bearing 

some resemblance to the usual classical phase-space has been long known, at least 

in an approximate form, since the work by Wigner'. 

From the mathematical point of view, the scheme of generating a pair of labels 

closely paralelling the well known classical one, ( q , p ) ,  was first proposed by Wey12 

and the connection with that treatment by Wigner was extensively studied by 

severa1 authors3. Since then the Weyl-Wigner approach has been studied and its 

applications have greatly increased. In particular, the interest in using Wigner 

functions4 for nuclear systerns received a new boost from the phase-space-like 

treatment of the Time-Dependent Hartree-Fock mean-field approximation5. In 

that case the semiclassical features of the nuclear systems became much more 

conspicuous5 and the expected connections with other well estahlished treatments 

were studied6. 

* Supported in pwt by FINEP. 
** Supported by CAPES. 
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Nowadays one encounters a vast literature referring to the use of Weyl-Wigner 

transformations for the description of the Boltzmann-Vlasov - like equation gov- 

erning the time evolution of a one-body mean field density function7 - sometimes 

also including ad hoc collision effects. However, it is not so common to find discus- 

sions about the semiclassical behavior already embodied in the original many-body 

Wigner functions. Besides the work by Balazs and zipfe18, Prakash et a19 have 

studied this problem from the interesting point of view of an a priori smearing 

of the occupation numbers related to the single particle wave functions used in 

defining the one-body mean-field Wigner functions. Two alternative ways were 

discussed: the usual Strutinskii's prescription of blurring the occupation numbers 

by means of an average over the energy spectrum, and by introducing an effective 

temperature dependence in the quantum statistical expression for the fermion oc- 

cupation number of a nuclear system. The results are conclusive: they do show, 

in fact, that the smooth behavior of the resultant Wigner function gives origin to 

a semiclassical spatial density akin to the usual well-known ones
g
. 

In this paper we show how one can extract a semiclassical component from 

a complete mean field Wigner function using a procedure different from those 

already mentioned. 

Our starting goal here is to separate the full Wigner function into two pieces, 

one behaving as a semiclassical component and the other as its quantum comple- 

ment. This, as we will show, can be achieved by a very simple decomposition of 

the full original Wigner function into an infinite set of basis functions defined on 

a suitable quantum phase space. More precisely, the harmonic oscillator Wigner 

functions, in which the harmonic oscilIator width is taken as a free parameter, will 

be considered as our basis functions. This is, however, nothing but a phase space 

version based on the squeezed stateslO. Another approach closely related to the 

present one is that proposed by Mizrahi" which was also shown to constitute a 

squeezed-states phase-space representation12. 

In order to show details of our scheme we apply our method to the simple 

case of a fixed width harmonic oscillator many-body Wigner function. The ratio 

161 



D. Galetti and S. Pawel 

between the free width (associated to the basis functions) and the fixed one (char- 

acterizing the function one wants to decompose) now stands as a new parameter 

which, as we are going to show, brings to light a semiclassical component in the de- 

composition process. We determine, at least in this particular case, the existence 

of a critica1 value for that parameter beyond which a semiclassical contribution 

can always be extracted. This critica1 value is interpreted in terms of the usual 

uncertainty principie. 

This work is organized as follows: in section 2 we present our decomposition 

scheme and apply it to a one-dimensional system; section 3 is devoted to the 

extension to three-dimensional nuclear systems and the study of approximations 

for the spatial densities. Finally, conclusions are presented in section 4. 

2. A part icular  representation of t he  one-dimensional Wigner function 

In order to illustrate the main features of our scheme we restrict ourselves in 

this section to the one-dimensional case. Extension to three-dímensional calcula- 

tions is straightforward and is will be presented in the next sections. 

Let us begin by writing the following identity for the Wigner functions 

Whenever we are treating Wigner functions (W f )  associated to bound states, it 

is more convenient to take advantage of a particular representatioon of the delta 

functions which makes use of wave functions belonging to the square-integrable 

Hilbert space. In this connection we recall the closure relations associated to the 

space state bases for coordinates and momenta, respectively. As is well known, 

those relations may be expressed by means of the harmonic oscillator wave func- 

tions. Therefore, they depend on a width parameter b, which will be considered 

here as a free parameter. We then write 
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and 

where Hn(x)  are the usual Hermite polynomials, and 71 = bllbo and 7 2  = bo/b2 

are dimensionless parameters introduced in order to  scale the width bo appearing 

in the two wave functions. Here bo plays the central role of a reference width to 

be fixed later. Furthermore, since the 6-functions are related to the same point 

in the quantum phase space characterized by q  and p,  we take 71 = 7 2  = 7. It is 

important to note that with this choice we are clearly allowing deformations in the 

unitary cell in phase-space while preserving the uncertainty relation connecting q 

and p. 

Using those expressions, the identity (2 .1 )  is now written as 

Now, as is well known12, the harmonic oscillator Wigner functions form a complete 

orthonormal set in this quantum phase space. This fact suggests us to immedi- 

ately particularize our study to this set of functions since any other one can be 

expressed in terms of them. With this in mind we only have to work out the gen- 

eral expression (2 .3 )  by considering W ( q l ,  p l )  as the l-th state harmonic oscillator 

Wigner functions. We then write12 

where 

and, as usual 
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L[(x) stands for the Laguerre polynomials. Note that for the sake of convenience 

we have taken the parameter bo for the width of the functions under consideration. 

Using the relations13 

and 

where the sum in this last expression is restricted to even (odd) values if m is even 

(odd), and with 

we get the general expression for our identity: 

Here 

and 

(2k)!2~(j"412(l- k)]! 
Im,n,k,j,r = (2.12) 

2 2 m + n j ! !  (n - i ) !  - ( e  - k ) !  - k - i ) ! (k  - E)! 

where i and t stand for the smalest to the two numbers (n, (l - k)) ,  or (m, k), 

respectively. 

The restriction in the sums now means that we must consider even values only. 
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A first interesting aspect of this entangled manner of writing the harmonic 

oscillator Wigner function can be illustrated if we separate the m = n = O term 

from the remaining ones in the sum defining ~ ( ~ ) ( q , ~ ) ,  namely 

wco(q,p) = w!)(q,p) + d L ) ( Q ,  P) (2.13) 

( 4  The contribution from the m = n = O term, here called W, (q,p), is easily 

calculated, giving 

L 
2 2 e-'I2 272 - 1 (2k)![2(e - k)]! 

~ p ( q , ~ )  = - 
h 1 i- zY2 22' (2Y2 + 1) (k!)21(( - k)!I2 

(2.14) 

which can be immediately seen to be strictly positive for 7 > I, while for 7 < fi fi 
its sign depends on the value of L. From the above we observe that using an appro- 

priate value of the parameter 7, we can separate a smooth positive contribution 

even in those cases when the full harmonic oscillator Wigner function oscillates 

assuming negative values. Let us now concentrate on the separation (2.13). We 

emphasize two points: i) the parameters 7 plays a central role, i.e., whenever the 

width associated to the representation of the 6-functions is scaled such that it is 

greater than a certain minimum value defined by bo, we ensure the separation of a 

positive contribution from ~ ( ~ ) ( q , p ) .  The existence of this positive part suggests 

that we could treat it as a semiclassical first approximation to the full Wigner 

function as pointed out by Prakash et a18. In fact when we consider this kind of 

term only, we are implicitly performing an average over a broad region of a phase 

space sector ( g  or p) depending on how we select the value of 7. For 7 > 1 we are Jz 
smearing the Wigner function in its coordinate phase-space sector. (ii) we could 

(4 as well have defined the smooth contribution W, (q,p) (not necessarily positive) 

by writing a truncated series with a few terms in (2.11), instead of that containing 

only the m = n = O term. The extent to which the basic characteristic properties 

of (2.14) are still preserved in doing so is going to be discussed in the next section. 

Here we only stress that of this contribution is expected to contain essentially 

the same basic physical meaning as (2.14). However, the truncation criterion is 

absolutely arbitrary, we must study the limit in which the separation (2.13) can 
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still represent a sum of a semiclassical contribution plus a quantum correction for 

the Wigner function. For a given 7, as we sum more and more terms in the series 

defining w( ' ) (~ ,~) ,  we expect that, at some point, this contribution will cease to 

represent a good semiclassical approximation. Nevertheless, the arbitrariness men- 

tioned above is not necessarily a drawback since it can be conveniently handled, 

giving in the process a new way of treating the Wigner function. 

3. T h e  three-dimensional harmonic oscillator nuclear system 

The extension of the scherne presented in the previous section to the three- 

dimensional case is straightforward since it merely uses products of the delta- 

function representation in each direction. Furthermore, may to make use of the 

well known expression15 

2 3 q2 b2 2 
bo (3.1) w(')(G,~)  = ( h )  (--I' exp [ -  - >] L?)[Z(+ + ~p 

bo h bo h 
Let us now consider a more detailed example of how to write a semiclassical 

approximation for a three-dimensional Wigner function by using our previously 

described approach. First we take a nuclear system such that the six first shells 

of a shell-model harmonic oscillator potencial are completely filled (L = 0,1, ..., 5). 

If we take into account the spin-isospin degeneracy we get 

which describes a system of 224 nucleons already studied in the literature6~l6. As 

we have assumed from the very beginning that the occupation number takes values 

O or 1, we ensure that the semiclassical behavior in our scheme will not arise 

from the blurring of the occupation numbers as is usual in the temperature or 

Strutinkii's method
Q

. Instead it comes from the smearing of the Wigner functions 

themselves. 

Here we divide again W(r,p)  in to two contributions, nameiy 
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The results follow directly from the calculations of eq. (3.2) with expression (3.1). 

In order to  illustrate how the truncation criterion works, we present plot of the 

full Wigner function (fig. 1) which should be compared to those of W,(r ,p) ,  for 

7 = 1 (fig. 2) and 7 = 2 (fig. 3) for the same system. We took AW = 4 1 ~ - ' / ~  

in a11 cases, as usual. We note that when we use 7 = 2, the Wigner function 

oscillations are for a same number of terms more damped for 7 = 1. It is also 

clear that  asymptotically both cases converge to the exact result for 7 = 2 we need 

many more terms in the series in order to obtain the main characteristics of the 

full Wigner function than for 7 = 1. The reason for this behavior is quite clear 

since the larger 7 the broader the are a in the q-sector of the quantum phase space 

over which the Wigner function is smeared. Thus, only including a considerable 

number of terms we can reconstruct the oscillations. It is also worth mentioning 

that for large c the approximation to the Wigner function changes very little with 

the number of terms considered, for both values of 7 (figs. 1,2). This effect 

is related to the turning points of the potential well and has been discussed by 

Balazs and zipfe18, so we do not comment further on it. 

Fig. 1 - The exact Wigner function for 224 particles in a three dimensional 

isotropic harmonic oscillator. 
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Fig. 2 - Smeared three-dimensional isotropic harmonic oscillator Wigner func- 
tions for 224 particles, 7 = 1 and three truncation levels: solid line 9 terms, 
dashed line 10 terms and dot-dashed line 11 terms. 

Using these results we can now calculate the spatial density associated to the 

nuclear system. As usual the spatial density is given by 

and it is clear that the separation (3.3), implies 

In this case the density is a function of r = (?I only. We have performed calculations 

to show how the truncation (3.3) influences the behavior of the p,(r) contribution 

to the total spatial density. They were carried out for 7 = 1 and 7 = 2, again. Fig. 

4 shows the full spatial density calculated from the exact wave function, and figs. 

5 and 6 depict different truncation levels for the ps(r) contribution for the 7 = 1,2, 

respectively. It is immediately seen that the ps(r) contribution in fact resembles 

the well known semiclassical a.pproximations to the spatial density9J6 both for 

7 = 1 and 7 = 2.  The depression appearing in the inner part of the spatial density 
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Fig. 3 - Smeared Wigner functions for the same system, 7 = 2 and four 
truncation levels: solid line 7 terms, dashed line 8 terms and dot-dashed line 12 
terms and double dot-dashed 25 terms. 

is washed out and at the same time the tail becomes negative in a way similar to 

that observed in the Modified Thomas Fermi ~ ~ ~ r o x i m a t i o n ~ .  This small negative 

region vanishes when more terms are added to the p, ( r )  series. In fact it has been 

shown15 that one can always obtain the Modified Thomas Fermi Approximation 

results through a convenient choice of the value of 7 and the number of terms in 

the series. 

Those results are quite interesting because the point to the same characteristics 

already obtained by other methods while controlling the semiclassical contribution, 

to some extent at least, by means of the number of contributing terms. 

Conclusions 

In this paper we have shown how one can separate a semiclassical contribution 

for the spatial density of a nuclear system from a fui1 many-body mean-field Wigner 

function. Our main point here is that the separation technique proposed does 
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Fig. 4 - The exact spatial density for 224 particles in a three dimensional 
isotropic harmonic oscillator. 

Fig. 5 - Semiclassical spatial density for the same system 7 = 1 and three 

truncation levels: solid line 5 terms, dashed line 9 terms and dot-dashed line 10 
terms. 
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o ?O 20 
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Fig. 6 - Semiclassical spatial density for the same system 2 2nd three 
truncation levels: solid line 6 terms, dashed line 9 terms and dot-dashed line 22 
terms. 

not correspond to the usual ones, namely, the smearing of the the occupation 

numbers via the introduction of a temperature or Strutinskii's prescription. It is 

not equivalent, either, to the well known folding schemes in which the smeared 

Wigner function is obtained through integration of a distribution built from a 

coherent state or wave packet. Although akin to Strutinskii's method, the present 

approach differs from it in the way one constructs the separation. In our proposal 

we keep of the control relation of quantum corrections to the smooth part. 

In writing the identity that permits the separation, a fundamental role is played 

by the characteristic width associated to the wave functions constituting the basis 

set. As we have developed our calculations for bound state systems, that width ap- 

peared naturally as the harmonic oscillator one. We raw that the ratio 7 between 

the characteristic width of the basis states and that associated to the Wigner func- 

tion, 7, plays the role of a control parameter for the separation of the semiclassical 

contribution. This parameter, in the harmonic oscillator case, exhbits a critica1 

value, 7, = I/&, above which one can always find a semiclassical part of the full 

Wigner functions. This effect can be easily understood as a coarse grainning in a 
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chosen sector of the quantum phase space; if 7 > 7, we are smearing the q-sector, 

while for 7 < 7, we are smearing the psector. So, whenever we consider values 

of 7 greater than 7,, we are able to write a semiclassical density in the q-variable 

provided we use a convenient number of terms in the sum defining that contribu- 

tion. The calculations completely confirm this interpretation; in particular, our 

results for the spatial density of a harmonic oscillator system can always be fitted 

to the results obtained with the Modified Thomas Fermi approach15. 

As a final remark we observe that, since the harmonic oscillator Wigner func- 

tions constitute a basis set for the quantum phase space description of bound state 

systems, we can always decompose general bound state functions in that basis and 

then apply our approach. 
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Resumo 

Apresentamos uma descrição da densidade espacial de um sistema nuclear a 
partir da função de Wigner definida num espaço de fase quântico. Mostramos, 
num exemplo analítico, como médias no setor de momentos desse espaço de fase 
podem produzir uma descrição semiclássica da densidade espacial. Esses resulta- 
dos indicam uma nova maneira de se entender dados para densidades espaciais de 
sistemas nucleares. 


