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Abstract  We obtain rank-one separable potentials with Yamaguchi form 
factors to describe the A N  isospin one 5S2 and 5 ~ 3  phases which were ob- 
tained from the analysis of nd elastic scattering observables. For both waves 
the separable potentials are attractive, but not strong enough to form bound 
states, and present range parameters of the order of three times the pion 
mas .  We also obtain configuration space potentials of simple (Yukawa and 
Woods-Saxon) forms, suggested by N N  phenomenology, which reproduce 
the same phases. Again we obtain potentials which are mainly attractive, 
without bound states, and with ranges corresponding to about three pion 
masses. For the 5 ~ 3  case we have a repulsive core of about 0.7 fm range. We 
also analyse the AN 3Si state, whose phases show rapid change with the 
energy, implying on a repulsive core with a large radius of about 1.5-2 fm. 

1. Introduction 

Severa1 processes1~2 have recently exhibited the effects of a direct A N  interac- 

tion of short range. These phenomena indicate that not a11 manifestations of the 

A N  dynamics are consequence of the A N s  vertex, and that the delta may show 

the behavior of a particle, similar to the nucleon, before it splits itself into N, s. 

The study of these properties of the A's is of great importance for nuclear physics, 

as the deltas are created inside nuclei in almost every process in which sufficient 

excitation energy is made available. 
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The system most easily accessible to the study of the direct A N  interaction 

is the r d  system, where the basic calculations are reliable, a t  least in principle, 

thanks to the Faddeev equations which solve the three-body scattering problem, 

and thanks to the good knowledge of the deuteron wavefunction, whose loose 

structure helps to control off-shell extrapolations and relativistic corrections. 

Although equivalent in principle, the nd + nd amplitudes obtained by different 

authors present important differences in their values, mainly due to existing arbi- 

trariness in the input quantities, such as in the choice of models for the energy-shell 

extrapolation of the intervening two-body amplitudes. In spite of bheir expect'ed 

confiability, these theoretical calculations show marked discrepancies with respect 

to experiments, which are universal for different authors: the calculated differen- 

tia1 cross- sections are always too high at intermediate and large angles, and the 

angular dependence of the vector analysing power iTii does not present the same 

remarked structure as shown by the experimental data. 

We have previously made an e f f ~ r t ~ - ~  to explain the discrepancies between 

theoretical and experimental results for nd elastic scattering observables through 

the influence of an additional direct AN interaction in the intermediate state , 
according to  the skeleton diagram of fig 1. 

In our model AN interaction in the J, L, S states contributes to the nd partia1 
ad-.nd;J wave helicity amplitude TA,,A (A' and X are respectively the final and initial 

deuteron helicities) in the form 

1 1 s  x {c lS X  L o X  ) C [ X O X  ) K ( ~ ) F L ( ~ ) )  

SL;S'L';J where K ( ~ )  = 1 for S = 2 and K = 1/fi for S = 1, and MAN,AN (s) is the A N  

scattering amplitude. The complex functions FL(s), which represent the results 

of the evaluation of the triangular structures in fig 1, present very strong energy 
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dependence,with peaks in both real and imaginary parts located in the region just 

above the A N  threshold, corresponding to pion kinetic energies coincident with 

the range of available experimental data. The overall values of the vertex functions 

FL(s) decrease rapidly as L increases, and we thus expect that the most important 

contributions come from low L ~ a l u e s ~ - ~ .  

Fig. 1 - Skeleton diagram for the contribution of the AN interaction in the 
intermediate state of pion-deuteron elastic scattering. 

The A N  matrix elements entering into eq.(l) are unknown quantities. We 

have extracted their values from a comparison between the experimental values of 

the elastic nd observables (total and differential cross-sections,and vector analysing 

power) and the theoretical amplitudes, these formed by adding eq (1) to a back- 

ground set of Faddeev amplitudes. This was done through a best fitting procedure. 

Due to the intricate participation of the four independent complex helicity ampli- 

tudes given by eq.(l) in the expressions for the nd observables, the freedom in the 

choice of parameters is, for most partial waves, of no use for an improvement of 

the fittings. Using for background different sets of Faddeev  amplitude^^-^ we have 

shown that  only a few AN angular momentum waves are able to improve mean- 

ingfully the theoretical description of the data. These are only the (isospin one) 

5S2 and 5 ~ 3  AN waves, with consequent changes in only two nd partial waves, 

respectively 3 ~ 2  and 3R3. 

Using for background Garcilazo's7 set of Faddeev amplitudes, we obtain, with 

contributions coming from the two above mentioned waves, an almost perfect 
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description of all observables, in the whole energy range of the available data. 

[Considering that  the measurements of tensor polarization observables are still in 

an early stage, we have chosen not to include their values in the fittings, but rather 

to treat them as predicted quantities. Actually, in general the tensor observables 

are not strongly sensitive to the influence of the A N  interaction, and still carry 

large error bars, so that the improvement obtained in their values is not dramatic 

as with dã/dR and iTll]. I t  is remarkable that, in spite of the strong energy 

dependence of the vertex functions, the resulting A N  parameters present very 

smooth energy dependences, easily adjustable to a simple effective range formulae8. 

Our results show absorption only a t  the lowest energies (below 200 MeV for the 

pion kinetic energy) in the 5 ~ 2  wave. 

More recently, experimental data of higher accuracy were obtained for the 

vector analysing power iTll at  five energies. The results for T, = 219, 256 and 

294 MeV show a still more marked than before structure in iTll in the region of 

intermediate angles. It has not been possible to fit perfectly these details of the 

data without introducing the contribution of the 3S1 AN wave, with which also 

the differential cross section at  219 MeV shows distinct improvement. In contrast 

to the other two cases, the obtained 3 ~ 1  phase shows a rapid energy variation6. It 

must be noted that the smaller value of K ( ~ )  for S = 1 and the Clebsch-Gordan 

coefficients in eq. (1) cause this wave to have a weaker contribution to the r d  

amplitudes than that arising from the other L = O wave. This implies that its 

presence can only be inferred from detailled and accurate data, and its determina- 

tion depends more critically on the background amplitudes. It is regrettable that  

the more accurate experiments on iTll have only been made at  five energies, two 

of which being below the more sensitive energy range. It is important to remark 

that this 3S1 wave is not coupled to the NN channel, where a I = 1, J~ = 1+ 

state is not allowed by the Pauli principle,so that it rnust be studied directly in a 

nuclear A N  system, such as formed in the ~d collision. 

The phase shifts obtained for the three above mentioned A N  waves are shown 

in fig.2,3,4 . Independent analyses of other experiments have shown similar results 
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for the 5Sz and 5P3 phases' and the mainly repulsive character of the 3 ~ i  interac- 

tion has also received independent experimental support2. We must remark that  

the information on the A N  interaction is obtained from the difference between 

experiments and theoretical calculations not including the full A N  interaction. 

There are two main sources at  uncertainty: a) The ingredients and corresponding 

input quantities have their uncertainties, which propagate to the values of the 

extracted A N  phases. Our phases are based on Garcilazo's calculations, but we 

recall that other sets of Faddeev calculations have yielded4 similar sets of am- 

plitudes for the A N  interaction, though the final description of the data is then 

much less impressive than in the case of Gacilazo's background amplitudes. We 

conclude from that  fact that the AN interaction yields very characteristic contri- 

butions to the ãd  scattering amplitudes, and its main features can be extracted 

with some reliability. b) Another source of uncertainty could be more serious. 

The contribution of the one pion-exchange diagram containing the A N n  vertex is 

already taken into account in the Faddeev calculations so that  the A N  interaction 

determined by us represents only a part of the full amplitude. It is clear that  an 

addition of the potentials in general does not lead to an addition of the phases 

so that  our evaluation of the residual interaction could be rnodified by that  fact. 

Our preliminary investigations
g 

have shown that the above mentioned one-pion- 

exchange gives a small contribution to the 5P3 wave but a rather large one to. the 

5 ~ z  wave. The signs and magnitudes tend to fill correctly the difference between 

ours and the newly determined of phases of ref. 1. We shall report on these results 

elsewhere
g
. 

The behavior of these A N  waves is similar to that  presented by severa1 N N  

phases of low angular momenta. They are interpreted as representing the A N  

interaction of short range which occurs before the decomposition of the A into N ,  n.  

As mentioned above, the A N Á  vertex is included in Faddeev calculations through 

the ã N  P33 wave, and thus a part of the AN interaction due to uncorrelated 

multipion exchanges is there taken into account. However, sirnilarly to the N N  

system, we expect that the A N  short-range interaction is dominated by heavier 

meson exchanges. This idea can be checked looking for the forms of potentials, of 
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Fig. 2 - Phase shifts for the AN interaction in the 's2 state. The dots indicate 
the values obtained from the analysis of ã d  experimental data516. The full line 
represents the separable potential vaIues from eq.(17), and the dashed line is 
obtained from the local Yukawa potential of eq.(22). With a Yukawa term plus 
a Woods-Saxon repulsive part as in eq.(25), the curve obtained is not distin- 
guishable from the dashed line. The pion kinetic energies of the ã d  experiments 
are shown through the auxiliary scale in the Iower part of the figure. Our pre- 
vious resultss show absorption in the 5s2 state below 200 MeV, so that  these 
potential models are not to be applied in the lowest energies. 

the conventional types used in the study of the N N  system, which produce the 

A N  interaction described above. This is the purpose of the next sections. 

2. Separable potentials 

Separable potential forms have been developped by several a ~ t h o r s ' ~ ~ "  to de- 

scribe in a11 possible detail the N N  interaction, in some cases involving several 

terms and many parameters in each partia1 wave. Together with the separable 

potential representations for the pion-nucleon interaction, these representations 
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Fig. 3 - Phase shifts for the A N  interaction in the 5 ~ 3  state. The dots 

indicate the values obtained from the analysis of ~d experimental 
The full line represents the se~arab le  potential values from eq.(18). The dashed 
line represents the values obtained with an attractive Yukawa potential eq.(22) 
combiied (as in eq.(25)) with a Woods-Saxon repulsive core. See also the caption 
for fig.2. 

of the NN forces constitute important input ingredients for the three-body Fad- 

deev calculations. Separable potentials lead to soluble non-relativistic equations 

and simplify substantially many-body calculations. They provide models for the 

off-shell extension of the experimentally determined two-body amplitudes. The 

motivation for the search of separable potentials for a system like the NN system 

is mainly a practical one. They should be realistic in the sense of describing faith- 

fully the two-body experimental data, and yet simple and convenient for their use 

in three- and many- body problems. It is understood that separable potentials 

are used as a substitute for the (non-existing) knowledge of the true nature of the 

forces. 
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Fig. 4 - Phase shifts for the 3S1 A N  
state. The dots show the values ob- 
tained from the analysis of n d  exper- 
iments. The strong energy variation 
is only approximately described by the 
curve, which represents the phase ob- 
tained with the potential of fig.7. 

The inclusion of the direct AN interaction in the three-body calculations wiil 

require its representation in terrns of separable potentials, which are expected to 

be similar to those foiind for the N N  system. It will be very interesting to see the 

similarities and the differences between the NN and the AN interactions, and a 

common language of separable potentials can be a help in this direction. 

In our study of the n d  system, described in the previous section, we have 
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obtained values for the A N  phases only in a limited energy interval, and only 

representing the short- range part of the interaction. For given values of J and S 

there may be couplings of different orbitals (L = J, J f S for S = 2 and L = J & S 

for S = 1) but these couplings to higher orbitals have not been observed in our 

analysis of the r d  system , where they are not relevant due to the the decrease in 

the values of the vertex functions as L increases. Being restricted to the lowest 

orbitals, couplings to different total spin S values do not occur either. Not having 

to deal with couplings of different waves substantially simplifies the problem . We 

thus have to refer only to uncoupled 5S2, 5P2 and 3S1 waves. In the first two cases 

we have information a t  six energies, corresponding to r d  experiments from 219 to 

325 MeV (180 MeV can also be included in the 'p3 case, as no absorption occurs 

here), and there is a smooth and rather slow energy dependence of the phases. 

In the 3 ~ 1  case , on the contrary, due to the non-existence of the necessary data, 

there are only three meaningful data points and a rapid energy variation. Besides, 

in this case the phase passes through zero [cot 6 through infinity],and a simple 

representation with a rank-one potential cannot be found. 

In the present work we find very simple representations for the 5 ~ z  and 5 ~ 3  

phases in terms of separable potentials. We do not include here the 3 ~ i  wave in 

view of the above mentioned reasons. 

In the following, we first present, for convenience, a short review of the prop- 

erties of separable potentials. Let us assume that the potential operator V can be 

written as a finite sum of the form 

where the XJ'S are strength constants and the IxJ > 's are a convenient set of 

states. V has the form of a projection operator, and since 

is not of the form 6(?- r'), it is non-local. 

The Li~pman-Schwinger equation for the scattering T matrix 
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Tfz)  = V + VGo(z) T(z) 

becomes 

Multiplying from the left by < xJt IGo(z), we obtain 

If the states Ixjt > and Go(z) IxJ > with J # J' are orthogonal to each other, we 

obtain a separate equation for each J, with 

Inserting this result into eq (4) we obtain 

We thus have an exact explicit solution for the T matrix, which is also of separable 

form. 

For our phases we found no mixing of angular momentum states, and it turns 

out that it is sufficient to use one term for each L value: 

where ~ ~ ( k )  is a convenient form factor. Then a rotationally invariant potential 

is of the form 
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According to eq (7), the transition amplitude is given by 

where 

I L ( ~ )  =< xLIG0(z)IxL > (11)  

With z -t E + ia ,  E = k2/2,u, ,u being the reduced mass, the usual partial 

wave expansion of the T matrix element is 

so that we identify 

1 - - - W X L  &k) 
= k (- i  + cot bL) 1 - A L I L ( ~ ~ )  

The explicit expression for I L( k 2)  is 

I L ( ~ ~ )  = lim < xLIGo(E + i&)IxL >= lim 2,u 
CO 9 3 ~ )  p2dp 

&+o+ &+o+ /I /c2 - p2 + i& ( 1 4 )  

A separable partial wave potential with one term as in eq (9) is said to be of 

rank-one. The most usual form factors are those of Yamaguchi typelOlll, which 

for S waves are go(k) = l / ( k 2  + p 2 ) .  In the N N  case" the uncoupled waves 

are described effectively by rank-two potentials, in order to have an attractive 

part a t  mid-range and a repulsive shorter-range part. The form of the potentials 

are chosen so as to produce the expected threshold behavior for the phase-shifts, 

bL - kZL+'. 
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3. Resu l t s  

The phase-shifts for the 5 ~ z  and 5 ~ 3  AN waves which we have obtained from 

the analysis of ~d observables are shown in full lines in fig 2 and 3 . Our numerical 

work has shown that these valiies are very well represented by rank-one potentials. 

Then the relevant integral5 are only 

and 

and the 5 ~ 2  and 5P3 phase-shifts 

k C O ~  = - 

and 

are given respectively by 

which present the expected threshold behavior for these waves (of course we are 

aware that  threshold is a rather vague concept in a collision of a delta resonance). 

The values of the momenta used in these expressions are evaluated, in a zero 

width approximation for the A, from 

1 2 112 
k = - - { [s  - (ma - m ~ ) ~ ] [ s  - (ma + m ~ )  ]>  

2 f i  
(19)  

with ma = 1.211 GeV , m N  = 0.939 GeV (reduced mass ,u = 0.529 GeV). The 

values of s which are used in our work are those of r d  scattering experiments (219, 

228, 256, 275, 294 and 325 MeV for the pion kinetic energies ). Since we have 

two parameters for each wave, we have chosen to adjust them to reproduce exactly 

the phases a t  two selected energies (219 and 294 MeV). As shown in fig 2 and 3 

the phase values obtained for the other energies are then in very good agreement 

with the A N  phases to be described5g6. 
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We recall that for the 5Sz wave at 180 MeV our result for A e  AN amplitude 

shows absorption, and its description through a potential is not expected to be 

satisfactory. For the 'P3 wave, we may use eq (18) to include also 180 MeV, since 

there is no absorption observed in this case, but we see in fig 3 tkat the predicted 

value of the phase-shift at  this energy is not, in very good agreement with the value 

extracted from the nd analysis. 

Below 180 MeV, no description through a potential can be used, because then 

the momentum value given by eq (19) becomes imaginary, with the AN energy 

below the threshold as defined by m~ + m N  . 
The values of the parameters A o ,  Ai, ao and ai are given in table 1. We see 

that in both cases the potentials are attractive, and that the range parameters 

are similar, corresponding to about three times the pion m a s .  It is interesting 

to remark that the potential wells found for the two partia1 waves have similar 

depths at  their respective ranges, i.e. for p - c r ~ .  

Table 1 

Parameters values for the A N  separable potentials 

sz Ao = -0.0819 G ~ V '  cro = 0.443 GeV 

p3 Ai  = -0.0236 GeV4 cri = 0.362 GeV 

The condition for the existence of a bound state is that fL(k) has a pole for 

a positive imaginary value of k, k = im, where B > O is the binding energy 

. For the L = O and L = 1 rank-one potentials described above, the relations 

between the potential parameters and the binding energies are respectively 

and 
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With the ao and a1 values given in table 1, the thresholds for the potential 

strengths able to produce bound states (putting Bo and Bi equal to zero in eq 

(20) and (21)) are respectively A r i n  = -0.105 GeV2 and A Y i n  = -0.060 GeV4, so 

that our potentials are too weak to produce bound states. We may observe that 

the 5 ~ 2  potential strength is not very far from that threshold. 

4. Configuration space potentials 

The Yamaguchi forms of the non-local separable potentials suggest that we 

are dealing with forces which fall to zero with the distance with a Yukawa-like 

behavior. We may then look for coordinate space representations V ( r )  which give 

the same A N  phases. We bori-ow from the NN phenomenology12 the form 

where a convergence factor is used to regularize the Yukawa potential near the 

origin. With parameter values 

V0 = -4.524 GeV, p = 3.80m,, c = 0.011 G ~ V ~  P3)  

we obtain a very good representation for the 's2 phase shift, for a11 energies of our 

analysis (219 to 325 in xd scattering), as shown in fig 2. We infer from Levinson's 

theorem that this potential does not form bound states. 

To study the influence of repulsive core about the origin, following the usual 

NN phenomenology'2 we add to eq (22) a Woods-Saxon core 

~ ( r )  = wojl  + e f i c ( ' -  b ) l - l  (24) 

Then a very good description of the 'S2 phase shift is obtained with 

V (r )  = Vy ( r )  f W ( r )  

with parameter values 
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V. = -1.473GeV, p = pe = 3 mx, c = 0.08 Gev2,  

Wo = 0.329 GeV, b = 1.508 G ~ V - '  (26) 

The curves representing the potentials in eqs.(22) and (25) are shown in fig.5 

[dashed line for eq (25) and full line for eq (22)]. We see that the repulsive core 

radius is very small(0.2 f m) and that the potential is about 65 MeV deep. We must 

enphasize that the additional Woods-Saxon core does not improve meaningfully 

the description of the phases, as compared to the pure Yukawa form. 

Using the same potentials, with the same parameter values given above, in the 

L = 1 case, we obtain too low values for the 5 ~ 3  phases.Other parameter values 

should then be obtained for this case. We find that a pure Yukawa potential as in 

eq.(22) is not able to reproduce well the energy dependence of the phases, giving 

a rather flat energy dependence. The best obtained parameter values in this case 

are V. = -3.5 GeV, p = 2.5 m, and c = 0 . 0 0 4 ~ e ~ ~ .  We then find that  a repulsive 

core about the origin has an important role in this case, and obtain for parameter 

values 

V. = -9.669GeV, p = 3.561 m,, c = 0.014 G ~ v ' ,  

Wo = 2.084 GeV, b = 3.170 G ~ V - ' ,  p, = 3.621 GeV (z7) 

This potential shape is shown in fig (6) ,  and the corresponding phase-shifts are 

shown in fig 3 (dashed line). This potential again does not from bound states. 

The behavior of the 'sl phase, with rapid decrease and change of sign of the 

phase-shift occurring at a rather small value of the momentum, indicates a rather 

large core radius, so that the potentiai is dominantly repulsive. In a fitting using 

a potential consisting in a sum of two Woods-Saxon forms 

we obtain a large core radius of about 1.5 fermis and a weaker attractive part a t  

larger distances. With the parameters values 

147 



Erasmo Ferreira and H.G. Dosch 

Fig. 5 - Coordinate space potentials, 
given by eq.(22) (full l h e )  and eq.(25) 
(dashed line), which produce the 5S2 
phase shifts shown in fig.2. The pa- 
rameter values are given in eqs.(23) and 
(26) respectively. 

Fig. 6 - Coordinate space potential 
shape which reproduces the values for 
the 5P3 AN phase-shifts. The poten- 
tia1 is given by eq.(25j, with parameter 
values given the text (eq.(27)). 
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Wl = 20.065 GeV,b = 3.717 ~ e ~ - ' , p ~  = 0.269 GeV 

Wz = -12.045 GeV, b = 3.744 G ~ V - ' , ~ ~  = 0.267 GeV 
(29) 

we obtain the phases represented by the curve in fig.4 and the potential shape 

shown in fig.7. The range implied by pi e p2 x 2 m, corresponds to a two-pion- 

mass exchange. Unfortunately the existing ã d  experimental data are not enough 

for a proper study of the A N  interaction in this state. 

Fig. 7 - The curve shows a potential shape which gives the approximate values 
for the 3 ~ 1  A N  phase-shifts shown in fig.4. The curve is obtained from a 
superposition of a repulsive with an attractive Woods-Saxon form, as in eq.(28), 
with parameter values as given in the text (eq. (29)). We observe a strong 
repulsive core with large radius, and a much weaker attractive part at  larger 
distances. 

5 .  Comments 

The description of the AN interaction through separable potentials is impor- 

tant for its insertion in Faddeev type calculations and in hamiltonian type formula- 
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tions of the T N N  problem. Rank-one potentials of the simplest Yamaguchi forms 

give very good description of the 5Sz  and 5P3 phases obtained in the analysis of the 

rd  scattering observables. It is interesting that similar ranges, corresponding to 

about 3 pion masses are found in both 's2 and 5P3 cases. This range is confirmed 

by the potentials in configuration space which produce these A N  phases. 

In the 3 ~ 1  case, it is difficult to describe through simple potential forms the 

rapid energy dependence of the phase. Our results indicate a strong spin depen- -. - 
dence in the potential. We rernark that S A - j N  = 3/4 for S = 2 and S A . S ~  = -5/4 

for S = I states, so that a term of this form contributes to the 3Si state with op- 

posite sign as compared to the two S = 2 states here discussed. 
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Resumo 

Obtemos potenciais separáveis de rank um com fatores de forma de Yamaguchi 
para descrever as fases 5 ~ 2  e 5P3 da interaçáo AN em isospin um, as quais foram 
obtidas através da análise de observáveis do espalhamento xd. Para ambas ondas, 
os potenciais separáveis são atrativos, mas não são fortes o bastante para formar 
estados ligados, e apresentam parâmetros de alcance da ordem de três vezes a 
massa do píon. Obtemos também potenciais no espaço das configurações de for- 
mas simples (Yukawa e Woods-Saxon), sugeridas pela fenomenologia NN, as quais 
reproduzem as mesmas fases. Novamente obtemos potenciais que são predominan- 
temente atrativos, sem estados ligados, e com alcances correspondentes a cerca de 
três massas do píon. Para o caso 5P3 temos um caroço repulsivo de cerca de 0,7 fm 
de alcance. Analisamos também o estado 3Si, cujas fases mostram variação rápida 
com a energia, implicando na presença de um caroço repulsivo com um grande raio 
de cerca de 1,5-2 fm. 


