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Abstract The electron field is constructed, showing explicitly the elec- 
tromagnetic modes associated with the electric and magnetic fields of the 
electron. With a criterion taken from Dirac's work, it is observed that dif- 
ferentiation of the magnetic mode in the kinetic Hamiltonian generates an 
interaction, which exhibits the mathematical structure of the weak interac- 
tions. The result is then used to formulate a theory of the weak interaction 
vertices. The electron and its neutrino are described by means of the same 
Fermi field, i? different representations. The intermediary boson W' is 
introduced with the help of a complex combination of the electromagnetic 
field. The theory is compared with the theory of Weinberg-Salam. 

Electromagnetic flux and mass are the only observable differences between 

the electron and the electron-neutrino. These particles in fact carry the same 

conserved lepton number, and, supposing that the difference in their masses is of 

electromagnetic origin, one may inquire on the possibility of describing them both 

with the same Fermi field. 

In a previous paperl, concerned with the explicit quantization of the electric 

and magnetic fields of the electron, I made a first attempt toward a unified treat- 

ment of the electron and its neutrino. My purpose here is to discuss a second 

unification approach, which has the virtue of being more conclusive, and closer to 

traditional schemes of particle physics, than the former one. 

The quantization of the Coulomb field of the electron undertaken in ref. (1) 

is, in every regard, consistent with Dirac's method2. Dirac defines the physical 

electron field, multiplying a bare fermion field by a unitary operator eievz, which 



I. Ventura 

accounts for the Coulomb field mode. Then, after differentiation of this operator 

in the kinetic Hamiltonian, he establishes a link between the form of the local 

interaction in Quantum Elctrodynamics, and the electric flux of the electron. 

A canonical method of flux quantization'13 allows one to reobtain Dirac's re- 

sults. 

I also propose a manner of introducing the magnetic field of the electron, by 

means of another flux operator factor, which I cal1 the Ampère mode1. 

The explicit differentiation of the Ampère rnode in the kinetic Hamiltonian 

generates a second type of interaction, showing the mathematical striicture of the 

weak interactions. Further, I explore this result to build up a theory of the weak 

interaction vertices. 

The proposed theory is then compared with the theory of ~ e i n b e r ~ - ~ a l a m ~ * ~ .  

Given a neutra1 field +i, let the electron field be initially written as 

&.') = c~(z)A~(z)*;(z) . (1) 

The operator factors ~t and At accounts respectively for the electric and magnetic 

fields produced by the electron. 

A being the vector potential, the Coulomb rnode is the following unitary op- 

where r is an open line ending a t  the point 2. 

And if, as shown in fig. 1, S is a closed surface, and dESs is the electric flux 

flowing through it, then the Coulomb mode shail be an eigenstate of dqs, with 

eigenvalue e, whenever Z is inside S, or eigenvalue zero, if z' is outside. 

To define the Ampère mode, one has to deal with the auxiliary field ?, which 

is such that 3 = x 9 and ? = B. 
The í? field is not independent from the A field. Rather, they correspond to two 

different representations of the electromagnetic field. I take both auxiliary fields 

to be complete, and assume the simultaneous validity of the local commutators 

belowl 
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Fig. 1 - Closed surface S ,  and open line r. Appropriate topology for quanti- 
zation of the Coulomb flux. 

Let ri and r2 be two closed lines, encircling the open surfaces Si and S2, with 

the orientation and topology shown in fig. 2. If q5B is the magnetic flux across Si, 

and q5,y the electric flux through S2, then the flux commutation law !dE,  $B]  = i 

must hold3. And this flux commutator is simultaneously consistent wit the two 

local commutators of eq. (3). Then, the ? field is a complete field, which can be 

explicit ly introduced i n  Q u a n t u m  Electrodynamics ,  whenever  it is needed.  

Fig. 2 - Closed lines rl and r2. Appropriate topology for quantization of the 
magnetic flux. 

Now take J?o to be a neutral current, forrned with every neutral field which 

may receive flux. .& includes also the current : $,$$o :, associated with the 
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conserved lepton number of the electron/electron-neutrino system. And define D 

as the integral of jo over the system7s volume 1 d32jo .  

The Ampère mode is then introduced by means of the following functional of 

the f fieldl 

Z 

d ( Z )  = expicqr(2) , with ~ ~ ( 2 )  = (3 x ?).dí 

One notices that 

where the a, are the Dirac matrices, and a t ( 3 , ~ )  iis the operator 

at(2,G')=expiefjr(Z,i?) , with fjr(2,v3= (6) 

Given a positive energy test function fk(2),  the one-electron state, 

has the register of the electric and magnetic fields of the electron. One can also 

formallyl verify the Biot-Savart formula 

e , with = f:õI'fk , (8a) 
IY - 213 

and the Coulomb law, 

At first sight, it seems that the two formulae above are contradictory with the 

principle of local causality, since they refer to the instantaneous fields produced 

by the particle. The contradiction is however only apparent, because each for- 

mula refers to a single mode of the electromagnetic field, whereas the question of 

causality can only be posed after considering the complete field. 

We will verify that in fact2, differentiation of the flux operator factors of the 

electron field, in the Hamiltonian kinetic term, generates local interaction, involv- 

ing the complete electromagnetic field. 
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The field $0 = C A$! shall be taken to be the neutrino field. And, in order to 

couple the electron and the neutrino, one has to construct a charged boson field 

I@* designed to absorb the electron flux in the interaction vertices. 

Then, I first define the complex field ?, as a complex combination of the real 

field Â and ? 

observing that the Hamiltonian of the transverse components of the electromag- 

netic field, a (Ê2  + B2), can be rewritten with the transverse parts of the ? and 

i* fields, in the form 

The ? field, although complex, is still a neutra1 field, since it has no flux 

factors. So, dressing the field with the flux factors, I define the vector fkld I@* 
as 

I@- = A C? , and I@+ = . (11) 

By inverting these relations, and replacing A W W -  for 9 in the Hamiltonian 

of eq. (10), or in the corresponding Lagrangian, one gets the W* dynamics. And 

that dynamics has some properties of gauge field dynamics, as for example in the 

fact that the k?* Hamiltonian will also acquire quartic terms, coming from the 

differentiation of the flux operators. 

One can verify the following relations between vacuum expectation values of 

products of field at  different times 

and 

< I;.(z1)Aj(x2) >= - < A , ( z i ) q ( x ~ )  > [I2b) 

The inversion of sign in the last expression is due to the 

relation < Bi(si)Aj(x2) >=< E;(zl)Tj(zz) >, which is just what one gets by 

differentiating deriving eq. (12b) with respect to t i .  
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In order that a boson field be capable of receiving flux factors, it must be 

possible to construct conserved currents with its components. So, that boson field 

must be complex. 

Now I discuss a theory of the weak interaction vertices, based upon flux quan- 

tization. 

The problem is addressed from the viewpoint of the Hamiltonian, and I con- 

sider that, for every specific process, it should always be possible to write an a s se  

ciated Lagrangian, explicity showing every symmetry of the problem, in particular 

the Lorentz invariance. 

Differently from the analysis of ref. (I), my criterion here is that the interaction 

should be generated by the differentiation of the flux modes attached to the fermion 

field, in the Hamiltonian kinetic term. This criterion is consistent with Diracls 

work2. 

To illustrate Dirac's procedure we consider first the simpler case, when the 

electron has the Coulomb mode, but not the Ampère mode: $, = $ o C  We notice 

that the differentiation of the Coulomb mode in the gradient term of the Hamil- 

tonian, generates the local interaction of Quantum Electrodynamics, in the gauge 

Ao = O 

In scattering theory, the motion of the electron is given by the $0 field dynamics, 

and not by the 4, field one2. 

If one begins with Go in the gradient term of the Hamiltonian in eq. (13), then 

it shows no interaction term, since $0 commutes with the electromagnetic field. 

'This means that the particle associated with $0, which is an electron without flux, 

does not interact with the Ã field. 

The next step is to include the Ampère mode. So, I define the field & divided 

into two sets of modes. taking q0 = + &, where 
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The set {fkE) @ {fkN) is a complete set of modes, and kE # kN: so that neither 

or +N, are complete fields. 

The specification of the set, {fkE) or {fkN), to which a given mode 6, belongs, 

will depend on the specific process one is studying. Those inodes forming will 

described the motion of the electron, whereas the ones making up i,N will account 

for the motion of the neutrinos. 

With the purpose of treating together the electron-electron, neutrino-neutrino 

and electron-neutrino interactions, I first define a second auxiliary field i, : 

adding that: 

(i) The flux difference between a state annihilated by C ff1l2, and another 

one annihilated by ~ + ! J ~ A - ' / ~ ,  is just the same flux difference between the electron 

and the neutrino, that is C t ~ t .  

(ii) Thanks to the fiux factors, the completeness of the i, field is only approx- 

imate, 

This however means no difficulty, since here I am concerned with the construction 

of a Hamiltonian up to oder O(e), which is already sufficient for calculation of the 

main processes in the tree approximation. 

(iii) The construction of the i, field, in eq. (15), is a particularization, which 

leads to a value of 30" for the angle Bw. If Bw differs from that ralue, one can 

always redefine the $ field in a suitable manner, and keeping the same difference 

in flux between the electron and the neutrino. 

Then, I suppose that the dynamics of the electron-neutrino system is deter- 

mined by the "free" Harniltonian of the $ field: 
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And again, I get the point interaction between the particles, by explicitly 

differentiating the flux modes attached to 4 ,  in the gradient term of H. 

The flux operator factors in the definition of are given by 

and 

ie ' n-li2 = exp - (aí x ?)i, 
2 

After differentiation, it follows that 

These equations have been obtained with the help of the relation c3 x c3 = 2ir5ir. 

Finally, combining eqs. (17), (20) and (21), and frorn the definition of the i?* 
field, in eq. (11), one gets the local coupling between the particles 

and 
e 

= ---?+!JN(l - r5)~.i?-@E + h . ~ .  . 
lfi 

(24) 

To obtain the Hamiltonian density of eq. (24), one must suppose that only 

left-handed components of the original field & should take part in the composition 

of S > N ,  that is (1 + = 0. 

In R,, one recognizes the electron-neutrino charged current coupling of the 

weak interactions, with the angle Bw = 30'. 

N u ,  is, in turn, a pseudo-vector coupling, not symmetrical under charge con- 

jugation; and the same is true for the second term of X,,. The pseudo-vector 

nature of these interactions is consistent with the fact that the f field is forrnally - - 
a pseudo-vector, since T = B. 



Theory of the weak interaction vertices 

The breaking of charge conjugation is related to the existence of two different 

representations for the fermion field. The auxiliary field $ has been defined as a 

mixture of representations. Recall in this regard that each one of the sets of modes, 

{fkE) or {fkN), is separately incomplete. And the interaction may transfer a 

particle from a subspace to the other, or from a representation to the other. That 

gives rise to a kind of instability, which explains the formal non-hermiticity of the 

Hamiltonian. 

The relation given in eq. (12b) means that, in scattering processes, such 

as for instance eu -t eu, there is no contribution from the mixed propagator 

< A~(zI)T~(zz) > . 
Considering the structure of the one-electron state, 

one observes that, in scattering theory, and only there, what matters is the motion 

of the auxiliary field $L (or $A), which describes the particle nucleus around which 

the Coulomb mode condensates. 

However, as  far a s  the motion of the $E field is concerned, the important states 

are those with the form 

j d314:jPlv > . (26) 

Thus, the flux factors belonging to the electron field $L rnust be absorbed by 

the very wave function fp, leading to the formation of the wave function fp : 

That is why the auxiliary field $ is defined with a term qEC A'/ ' .  The inter- 

pretation is that the flux factor C A ' / ~  is dressing with flux the wave functions fp, 

contained in 

In Weinberg-Salam theory415, and in the standard model, the electron and 

the neutrino are coupled to the neutral boson ZO, with a pseudo-vector coupling. 

Then, one should identify the neutral pseudo-vector field f, as being the Zo particle 

field. 
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A fair agreement between the present theory and Weinberg-Salam theory coiild 

be attained, in the predictions of elastic cross-sections, by taking Bw = 27', and 

by introducing the electron and the neutrino fields as lI>EC and $NA1/2-c, 

with E m 0.05. This modification must be followed by an appropriate alteration in 

the definition of the ?-field, where the mixing anglei between 2 and ?: should be 

shlightly lowered. 
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Resumo 

Constróe-se O campo do elétron, explicitando os modos eletromagnéticos asso- 
ciados aos campos elétrico e magnético do elétron. Com um critério extraído do 
trabalho de Dirac, observa-se que a derivação do modo magnético, na Hamiltoni- 
ana cinética, gera uma interação que tem a estrutura matemática das interaçóes 
fracas. Esse resultado é então utilizado para formular uma teoria dos vértices das 
interações fracas. O elétron e seu neutrino são descritos através $0 mesmo campo 
de Ferini, em representações diferentes. O boson intermediário W i  é introduzido 
como auxílio de uma combinação complexa do campo eletromagnético. A teoria é 
comparada com a teoria de Weinberg-Salam. 


