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Abstract The valence bond theory is applied here to an a6 initio calcu- 
lation of the ground state of the benzene n electrons. A comparison of the 
rate of energy convergence of p, orbitals, nearest-neighbour optimized, and 
fully optimized orbitals calculations is made for benzene n electrons in the 
minimum basis set approximation. It is shown that making a full orbital 
optimization, only the covalent structures can reproduce the results of the 
fui1 configuration interaction limit. 

1. Introduction 

The first quantum-mechanical discussion of how atoms combine to form stable 

molecular bonds was given by Beitler and Londonl, introducing the basic concepts 

of the valence bond (VB) theory, in which atoms are recognized as the natural 

building blocks out of which molecules are constructed. Since those early days the 

theoretical foundations laid by the founders of the field have been considerably 

extended and many interesting applications of VB theory have been made2. 

VB theory in its modern f ~ r m ~ - ~  is capable of giving a good account of both 

localized and non-localized bonding, using wavefunctions which are compact, ac- 

curate and easy to interpret using the language of classical chemistry, Gerratt et 

a13-6 have developed the spin-coupled VB description of molecular electronic struc- 

ture, in which a system of N electrons is described by N distinct non-orthogonal 

orbitals whose spins are coupled to the required overall resultant S according to a 

particular coupling scheme k. The orbitals are expanded on a basis set, much as in 
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molecular orbital (MO) theory, and a11 the variational parameters are optimized 

simultaneous to minirnize the energy. 

Optimization of the atomic orbitals (AOS) in VB theory was introduced by 

Goddard7; in his calculations of the energies of some molecules, the orbitals and 

the orbital exponents were optimized. 

Recently, Mcweeny8 has shown that the full configuration interaction (CI) 

limit may be closely approached, using only a small number of structures, by 

slightly modifying the nearest-neighbour orbitals in order to enhance their mutual 

overlap. The energies obtained with this approach for some molecules have been 

reportedg-'O. 

In this report a VB calculation is made, where each orbital is expanded in 

terms of the minimal set basis, and the expansion coefficients are optimized to 

minimize the energy. Apart from the above, comparison of the energies obtained 

with the pure p, orbitals, the optimized nearest-neighbour and the fully optimized 

orbitals of the benzene moIecule is made. 

2. The classical VB theory: the benzene molecule 

Benzene is the archetypical aromatic hydrocarbon, and over the years it has 

been used as a test of many chemical theories, both qualitative and quantitative. 

Thus, among the early tests of quantum mechanics on molecular systems, the one 

on benzene done by Pauling and Whelandl1 occupies a position of irnportance both 

intrinsically and because it provided a qualitative picture capable of extension to 

more complicated aromatic hydrocarbons. That work used Slater's generalization 

of the Heitler - London (see op. cit) £Iz wavefunction, and applied this to the A 

electrons only. 

To describe the electronic structure of benzene, we first performed a standard 

molecular orbital self-consistent field (SCF) calculation using a minirnal Clementi 

basis set - (7s 3p/3s) Gaussian contracted to [2s lp/ls].  In the following, we 

consider the 36 electrons comprising the a bonds and the 1s shells of the carbon 

atorns as the core electrons of a set of doubly occupied orbitals, and the one- 

electron Hamiltonian for the A electrons is replaced by an effective Hamiltonian. 
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The p, orbitals are orthogonal to the core (see [Q] and references therein). The 

total energy in this case is equal to the electron energy plus the core energy9*12. 

Since the core energy is the same in a11 calculations done here it will only be 

included in the next section. 

Thus, our VB calculations involves only six R electrons and six non-orthogonal 

p, atomic orbitals. Consequently, there are 175 structures of singlet type13. 

If the six p, atomic orbitals (AOS) are denoted by ai, az, a3, a4, as, e, 

reading counterc1ockwise around the ring, the Rumer diagrams of the 5 covalent 

structures (Kekulé plus Dewar) are 

(2.1) 
and the correspondent VB structures are 

I - Kekulé structures I1 - Dewar structures (2.2) 

The wavefunction of the ground state of 'Aig  symmetry constructed from the a11 

linearly independent structures has the form (not normalized) 
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where A is the antisymmetrizer, n is the number of structures considered in the 

calculation (for example, it is equal to 2 or 5 if we consider only Kekulé or Kekulé 

plus Dewar structures, respectively) and the bk3s (k = 1,2, ..., 6) are arbitrary, 

equivalent and non-orthogonal AOS. The Oils are the spin functions associated to 

the Rumer diagrams (2.1). For example, the spin function 01 corresponding to 

the first Rumer diagram of (2.1) is equal to 

As the AOS of the eq.(2.3) are arbitrary, we can use the p, orbitals 

or, of we want to improve the effectiveness of the covalent structures in describing 

the bonding, we can increase the mutual overlap of neighbouring orbitals. Orbitals 

of this kind were first used by Coulson and FisherI4, and later by Mueller and 

Eyring15. Because of the non-orthogonality problem the use of these orbitals was 

restricted. 

For our purposes an appropriate combination of the original p, AOS will be 

ã1 = a1 -+ X(az t as) + p(a3 + as) + va4 

42 = a2 + X(al + a3) + p(a4 + a6) + vas 

= a3 + X(aa + a4) + p(ai + as) + vao 

44 = a4 + X(a3 + as) + p(az + aG) + vai 

ã5 = a5 + X(a4 + as) + p(al + a3) + yaz 

ã6 = a6 + X(al -t- as) + p(ag + a4) + Vag 
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that is, each orbitas is expanded in terrns of the complete set basis, and A, p and 

v are numerical parameters, which will be chosen to increase the overlaps. To 

enhance the mutual overlap only for the nearest-neighbour orbital~*- '~,  we need 

to make p and v equal to zero in eq. (2.5). In this case the rnodified orbitals 

reduce to 

The three pararneters of eq.(2.5) or the unique parameters of eq. (2.6) rnay be 

varied in order to minimize the energy. It is clear that using eq. (2.6) the compu- 

tational labour for the full orbital optimization can be reduced. However, in the 

next section it is shown that the energy obtained for the benzene rnolecule with the 

full optimization is always better than with the nearest-neighbour optimization. 

3. Results and Conclusions 

Table I shows the total energies (core plus n electron energies) of the ground 

state of the benzene molecule, for some ~ a r t i a l  calculations and the full-C1 calcu- 

lations, obtained with the approaches described in the last section. 

For comparison purposes, the SCF energy is also given in the table. A11 energies 

are in units of Eh (Hartrees) and we use in our calculations a minimal Clernenti 

basis set - (7s 3 ~ / 3 s )  Gaussian contracted to (2s lp / ls ] .  The core energy obtained 

by us is -223.43406 Eh. In the second column of the table we give the corresponding 

nurnber of structures used in each case. 

We can see from table I that the energy obtained with the p, AOS of eq. 

(2.4), using the 5 covalent structures, is inferior to the single determinant MO 
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function. This difference is considerable, about 0.0857 Eh. This situation can 

only be corrected by adding a large number of polar structures, e.g. the 12 ortho- 

polar structures (see table I) of the type below 

The situation is dramatically changed when the AOS involved are replaced by 

overlap-enhanced orbitals. The results of the parameter optimization of eqs. (2.5) 

and (2.6) are also shown in the table. It is at once clear that convergence towards 

the full-C1 limit is now rapid. 

If we use only the Kekulé structures, but modified AOS of the type described 

in eq. (2.6), the energy obtained in this case is better than the SCF and the 

energy obtained by eq. (2.4), using the covalent plus 12 ortho-polar structures. 

Furthermore, the difference between the energy obtained with this approach and 

the full-C1 limit now is lower, 0.0133 Eh. On the other hand, if we use the fully 

optimized orbitals described by eq. (2.5) and only the Kekulé st~uctures we have 

a better result than using the eq. (2.6), with a11 covalent structures. 

Finally, the energy that we obtain using eq. (2.5) and all covalent structures 

is very closely equal to the result that we obtain if we use the full-C1 calculation; 

the difference is only 0.0078 Eh. When using the spin-coupled theory instead one 

gets6 a difference of the same order, 0.0070 Eh. 

Cooper et. a1,6 concluded that the ã electrons of benzene are essentially 10- 

calized when described by deformed atomic orbitals (optimized orbitals). This 

description of the electrons of the benzene molecule is in accordance with our 

results, because the modified orbitals used here are slightly delocalized, by admix- 
1 ture of the other orbitals, in order to enhance their mutual overlap. 
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Table I - Total ground state snergy of the benzene molecule (with different ap- 

proaches) 
-- 

Approach 

(theory) 

Number of Total energy 
structures (Hartrees) 

eq. (2.4) 

Kekulé 

eq. (2.4) 

Kekulé and Dewa.r 

Single-configuration 

SCF 

eq. (2.4) 

KekulB, Dewar and orthopolar 17 -230.10768 
- - 

eq. (2.6) 

Kekulé 

eq. (2.6) 

Kekulé and Dewar 5 -230.15341 
- 

eq. (2.5) 

Kekulé 

eq. (2.5) 

Kekulé and Dewar 5 -230.15810 

Full-C1 175 -230.16595 

The reason that classical VB theory associated to p, AOS (see eq. (2.4)) 

requires a vast number of physically untenable ionic structures is that those AOS 

are not allowed to distort on molecule formation. With the optimized orbitals (eqs. 

(2.5) and (2.6)) this problem. does not arise (becaiise the orbitals are deformed 

now). Such conclusions are equally applicable to molecules of different type. In 

summary, we conclude: 

When we use the optimized orbitals (eq. (2.4) or (2.5)) the convergence of 

the energy to the full-C1 lirnit is more rapid than when using the p, Aos. The 

full optimization of the orbitals is not always e s ~ e n t i a l ~ - ' ~ ,  but  if this approach is 
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used, only the covalent structures can reproduce the results of the 175-structures 

on the benzene w electrons. 
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Resumo 

Aplica-se a teoria de ligação de valência p ,va  calcular a energia 110 estado 

fundamental dos elétrons w da molécula de benze. io. Usa-se uma base mínima para 

comparar a taxa de convergência da  energia utilicando três aproximaçõcs a saber: 

orbitais atômicos puros, parcialmente otimizadc s e completamente otimizados. 

Verifica-se que quando se faz uma otimização completa dos orbitais atômicos, 

somente as estruturas covalentes são capazes de reproduzir os resultados de um 
1 cálculo completo de interação de configurações. 
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Abstract We show that a recent conjecture about the possible existence 
of an infinite number of exact eigensolution pairs for the x2 + X x 2 / ( 1  + g x 2 )  
interaction having X and g  connected by X = - ( G ~ '  + 4 9 )  is true. A con- 
structive method for explicitly obtaining these solutions is given. In ad- 
dition, we present a REDUCE implementation of the constructive method 
which allows solution pairs to be easily generated on personal computers. 

1. Introduction 

In a recent paper', we showed that the perturbed harmonic oscillator 

admits five pairs of exact analytical eigensolutions having the parameters X and g  

connected by the relation X = -69' - 49. It was also conjectured that an infinite 

number of such solution pairs should exist. Our conjecture was proved by Vanden 

Berghe and Meyer2 and Lakhtakia3. The purpose of this brief paper is to provide 

a simple constructive proof of the same conjecture. Our proof was obtained by 

us simultaneously and indepenclently of the aforementioned authors. We believe 

our result to be of interest betause it provides a trivial mean of generating, in 

principle, a11 solution pairs. The generation of an arbitrary number of solution 

pairs can be easily implemented on personal computers able to perform algebra 

and an example of one such implementation, written in REDUCE, is given here. 

The potential x2 + X x 2 / ( 1  + g x 2 )  is of interest in laser physics (as the reduction 

of the Fokker-Planck equation of a single-mode laser under suitable conditions), in 
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elementary particle physics (as a one-dimensional Schrcdinger equation associated 

with a zero-dimensional field theory) and in nuclear physics (as being able to 

reproduce sequences of energy levels in the shell model). (For specific references 

see, for example, reference 1 and references therein.) 

An interesting aspect of the x2 + Xz2/(1 + gx2) interaction with negative X 

(as is the case here since X = -6g2 - 49, g > O )  is that the potential behaves 

asymptotically like a harmonic oscillator but contains a double minimurn. Double 

minimum potentials have been used in the quantum theory of molecules as simple 

dynamical models to describe the motion of a particle subject to two centers of 

force. Double minimum potentials are also of great interest in the investigation of 

diffusive processes in general (quantum tunneling), models for bistable dynamics4 

and in the quantum theory of instantons5. The most used examples of double 

minimum potentials involve functions containing discontinuous derivatives. The 

potential considered in this paper, as well as its derivatives, is continuous and has 

a pair of analytical eigensolutions. For a discussion of these matters we refer to 

the recent review paper of Razavy and pimpale6. 

The problem we want to address consists of obtaining pairs of simultaneous 

eigensolutions of the Schrõdinger equation 

for z in the interval ( -00, oo), having the generic form 

with 

where the subindices o and e refer to the symmetry of the eigensolutions. The 

first five twin solutions have been obtained in reference 1. We now show how to 

generate twin solutions for arbitrary N. 
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Substituting $, from equation ( 2 )  in the Schrodinger equation ( 1 )  one obtains 

equations yielding 

From the substitution of 4, in equation (1)  one readily obtains 

From the coefficients of x2i it follows that 

valid for i  = 1 ,2 , .  . . , N + 2.When i  = N + 2  equation (8)  gives 

Since according to equation ( 6 )  we have X = -6g2 - 49, it follows that 

It is interesting to observe that the energy difference between the two states de- 

pends only on N :  

A E = E , - E , = ~ N - ~ .  

Equations ( 6 )  and (10)  may now be used to simplify relation (8), giving the relatior! 

- 1  
C, = {[22(2i  - 1)g -. 69 + 4 ( N  - i + l ) ] ~ ~ - ~  + 4g(N - i  + 2 ) ~ ~ - ~ ) ,  (12)  

2i(2i  - 1)  

valid for i = 1 , 2 , .  . . , N + 2.  For i = 1  equation (12)  gives 
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Now, equations (12) and (13) can be used to generate a11 coefficients c, ap- 

pearing in (4) as functions of co. For convenience we may set c0 r 1, since the 

exact normalization is not important here. 

The condition that a11 c, should vanish for i > N ailows us to obtain (from 

equation (12) with i = N + 1) a relation between C N  and C N - ~  : 

The polynomial equation defining the possible g valuesl may now be easily ob- 

tained by forcing C N  and C N - I  obtained from the recurrence relation (12) to obey 

the constraint relation (14). 

. The above results were used to write the following REDUCE program: 

OFF ECHO $ 

OPERATOR C $ 

N := 5 $ 

C(0) : = i $  
C(1) := 2*(G-N) $ 

CTE := -2/((N+2) * (2*N-1)) $ 

LAST := CTE*C(N-1) $ 

FOR I := 2:N DO 

C(1) := - ( (2*1*(2*I-1)*G - 6*G + 4*(N-I+l))*C(I-1) 

+4*G*(N-1+2)*C(I-2) )/(2*1*(2*1-1)) $ 

FOR I := 1:N-1 DO WRITE l1C(",I,")= ".C(I) $ 

WRITE "C(".N,")= ",CTE," * C(",N-1,")" $ 

WRITE l1 G POLYNOMIAL : $ 

WRITE NUM(C(N)-LAST) ,#I = O $ 

END $ 

This program was implemented on a personal computer and, by changing the 

value of N on the third program line, used to generate a11 five solutions presented 

earlierl. The program was further used to generate new twin solutions. Table 

I presents a surnmary of the first 15 solutions, together with the corresponding 

values of E,  and Vmi,, the value of the minimum of the potential. Defining 
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R2 = 2g(3g + 2) = - A  it is easy to see that  the minima are located a t  zkin = 

(R - l ) /g  and that 
1 

Vmin = --(R- I ) ~ .  
9 

Table I - Values of g for which twin solutions exist. Ag g~ - 
gN-i.X,Vmin,~o and E, are defined in equations (6), (15), (5) and (10) 
respectively. Note that  for N = 1 and 2 the energy of the even state 

lies above the relative maximum V = O at  x = 0. 

Figure 1 shows the potential x2 + X X ~ / ( ~  + gx2) together with two asymptotic 

potentials (shown as dashed lines): x2 and x2 - 6g - 4. Superimposed to these 

potentials we show the solutions 4, and 4,. The vertical positions of 4, and 4, 
correspond to the exact locations of their corresponding eigenenergies. To im- 

prove the readability of the figure, the normalization of the eigenfunctions was 

conveniently chosen so that their total amplitude corresponds to 25% of the full 
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Fig. 1 - Eigenfunctions ?)o and ?), together with the potential x2 + X X ~ / ( ~  + 
g x 2 )  (solid curve) and two asymptotic potentials (shown as dashed lines): x 2 

and x2 - 6g - 4. The height of the functions corresponds to the exact position 
of the energy eigenvalues. 
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scale. AI1 $, were obtained by evaluating numerically on a personal computer 

the coefficients c, in eq.(12). As a caveat to the reader we remark that  the re- 

currence relation (12) is very sensitive to the value of g. Preliminary runs using 

the &digit values of g given in Table I, failed to generate the correct eigenfunc- 

tions. In particular, the g value used in Figure 1 to generate $, for N = 10 was 

7.650218591050418350. Sensitivity on parameters is a well-known property of re- 

currence relations. At this stage we 90 not see any need for a more stable (possibly 

backwards) recurrence relation. 

In summary, the potential x2 + Xx2/(1 + gx2) with X and g connected by 

X = -6g2 - 49, g > O contairis an infinite number of c!osed form eigensolution 

pairs. The pairs consist of an odd and an even solution having an energy difference 

depending only on the degree of excitation of the even funrtion (see eq . ( l l )  above). 

We prescnted a computer program written in REDUCE allowing the easy genera- 

tion of these eigensolutions on personal computers. The potential investigated is 

a quite rare example of a continuous double-minimum potential containing a pair 

of exact analytical eigensolutions. 
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Resumo 

Mostramos que uma conjectura recente sobre a possível existência de um 
número infinito de pares de soluções próprias exatas para a interação z2 + X X ~ / ( I  + 
g x 2 )  com X e g relacionados por X - -(6g2 + 49) é verdadeira. Damos ainda um 

método construtivo para obter explicitamente estas soluções. Além disso, apresen- 

tamos também uma implementqão em REDUCE deste método construtivo que 

permite gerar algebricamente pares de soluções em microcomputadores do tipo 
PC. 


