Revista Brasileira de Fisica, Val. 20, n® 1, 1990

Optimized atomic or bitalsin valencebond theory appliedto
benzenemolecule

F. E. Jorgeand R. N. Suave

Departamento de Fisica e Quimica, Universidade Federal do Espirito Santo,
29069, Vitoria, ES, Brasil

Received November 28, 1989

Abstract The valence bond theory is applied here to an ab initio calcu-
lation of the ground state d the benzene = electrons. A comparison of the
rate of energy convergenced p, orbitals, nearest-neighbour optimized, and
fully optimized orbitals calculations is made for benzene m electrons in the
minimum basis set approximation. It is shown that making a full orbital
optimization, only the covalent structures can reproduce the results o the
full configuration interaction limit.

1. Introduction

The first guantum-mechanical discussion of how atoms combine to form stable
molecular bonds was given by Beitler and London', introducing the basic concepts
of the valence bond (VB) theory, in which atoms are recognized as the natural
building blocksout of which moleculesare constructed. Sincethose early days the
theoretical foundations laid by the founders o the field have been considerably
extended and many interesting applications of VB theory have been made?.

VB theory in its modern form®~® is capable of giving a good account of both
localized and non-localized bonding, using wavefunctions which are compact, ac-
curate and easy to interpret using the language o classical chemistry, Gerratt et
al>~® have devel oped the spin-coupled VB description of molecular electronic struc-
ture, in which a system of N €electrons is described by N distinct non-orthogonal
orbitals whose spins are coupled to the required overall resultant S according to a

particular coupling scheme k. The orbitals are expanded on a basis set, much asin
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molecular orbital (MO) theory, and all the variational parameters are optimized
simultaneous to minirnize the energy.

Optimization o the atomic orbitals (AOs} in VB theory was introduced by
Goddard’; in his calculations o the energies of some molecules, the orbitals and
the orbital exponents were optimized.

Recently, McWeeny® has shown that the full configuration interaction (Cl)
limit may be closely approached, using only a small number of structures, by
dightly modifying the nearest-neighbour orbitals in order to enhance their mutual
overlap. The energies obtained with this approach for some molecules have been
reported®1°,

In this report a VB calculation is made, where each orbital is expanded in
terms of the minimal set basis, and the expansion coefficients are optimized to
minimize the energy. Apart from the above, comparison o the energies obtained
with the pure p, orbitals, the optimized nearest-neighbour and the fully optimized

orbitals of the benzene molecule is made.

2. The classical VB theory: the benzene molecule

Benzene is the archetypical aromatic hydrocarbon, and over the years it has
been used as a test & many chemical theories, both qualitative and quantitative.
Thus, among the early tests & quantum mechanics on molecular systems, the one
on benzene done by Pauling and Wheland!! occupiesa position o importance both
intrinsically and because it provided a qualitative picture capable of extension to
more complicated aromatic hydrocarbons. That work used Slater’s generalization
o the Heitler - London (see op. cit) H, wavefunction, and applied this to the a
electrons only.

To describe the electronic structure o benzene, we first performed a standard
molecular orbital self-consistent fiddd (SCF) calculation using a minirnal Clementi
basis set - (7s 3p/3s) Gaussian contracted to [2s 1p/1s]. In the following, we
consider the 36 electrons comprising the a bonds and the 1s shells o the carbon
atoms as the core electrons o a set o doubly occupied orbitals, and the one-
electron Hamiltonian for the A electrons is replaced by an effective Hamiltonian.
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The p, orbitals are orthogonal to the core (see [9] and references therein). The

total energy in thiscase is equal to the 7 electron energy plus the core energy®!2.

Since the core energy is the same in all calculations done here it will only be

included in the next section.

Thus, our VB calculations involves only six 7 electrons and six non-orthogonal

p, atomic orbitals. Consequently, there are 175 structures of singlet type!3.

If the six p, atomic orbitals (AOs) are denoted by ay, a2, a3, a4, as, as,

reading counterclockwise around the ring, the Rumer diagrams of the 5 covalent

structures (Kekulé plus Dewar) are
1 A l\ . .
2/ 6 21 6 2
3 \‘ /5

4 4 4

and the correspondent VB structures are

a

| - Kekulé structures

11 - Dewar structures

1
v N
3 5
.
(2.1)
Y
a, as
...
(2.2)

The wavefunction of the ground state of * 4;, symmetry constructed from the all

linearly independent structures has the form (not normalized)

¥ = A[bl by b3 by bs bg <i@’>}
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where A is the antisymmetrizer, n is the number o structures considered in the
calculation (for example, it isequal to 2 or 5 if we consider only Kekulé or Kekulé
plus Dewar structures, respectively) and the by’s (k = 1,2,...,6) are arbitrary,
equivalent and non-orthogonal AOs. The ®;’s are the spin functions associated to
the Rumer diagrams (2.1). For example, the spin function ©; corresponding to

the first Rumer diagram o (2.1) isequa to

o, =\/i§({ a(s1)B(sz) — afsz)B(s1)]
[ofs3)B(s4) - als4)f{s3)]

[e(s5)B(s8) — a(s6)B(s3)})

Asthe AOs of the eq.(2.3) are arbitrary, we can use the p, orbitals

01; G2} 3; 44; G5; Ap (2.4)

or, of we want to improve the effectivenessd the covalent structures in describing
the bonding, we can increase the mutual overlap of neighbouring orbitals. Orbitals
of this kind were first used by Coulson and Fisher!, and later by Mueller and
Eyring!'S. Because of the non-orthogonality problem the use of these orbitals was

restricted.
For our purposes an appropriate combination o the original p  AOs will be

ay = a1+ Aag t ag) T p(az + a5) + vay
@ = az + Aar T ag) + plag + ag) T vas
a3 = a3+ Aaz + ag) + p(a + as) + vae (2:5)
M= a4+ Mag T ag) T p(ag + ag) tva,
a5 = a5 + A(ag T ag) T pfa, + a3) t vay
s = as + Ma1 + a5) T p(ay + a4) + vag
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that is, each orbitas is expanded in terrns of the complete set basis, and A, © and
v are numerical parameters, which will be chosen to increase the overlaps. To
enhance the mutual overlap only for the nearest-neighbour orbitals® =%, we need
to make x and v equal to zero in eq. (2.5). In this case the rnodified orbitals
reduce to

@y = a1 + Aaz + ag)
@y = ay + Aay + a3)
@3 = a3 + Aag + aq) (2.6)
@y = aq + Mas + as)
@t = as + A(as + ag)
ag = ag + Ae; + as)

Thethree pararneters of eq.(2.5) or the unique parameters o eq. (2.6) rnay be
varied in order to minimize the energy. It isclear that using eq. (2.6) the compu-
tational labour for the full orbital optimization can be reduced. However, in the
next section it isshown that the energy obtained for the benzene rnoleculewith the

full optimization is aways better than with the nearest-neighbour optimization.

3. Results and Conclusions

Table | shows the total energies (core plus = electron energies) of the ground
state of the benzene molecule, for some partial calculations and the full-CI calcu-
lations, obtained with the approaches described in the last section.

For comparison purposes, the SCF energy isalsogivenin thetable. All energies
are in units of E, (Hartrees) and we use in our calculations a minimal Clernenti
basis set - (7s 3p/3s) Gaussian contracted to [2s 1p/1s]. The core energy obtained
by usis-223.43406 E;. Inthesecond column of the table we give the corresponding
nurnber of structures used in each case.

We can see from table | that the energy obtained with the p, AOs of eq.

(2.4), using the 5 covalent structures, is inferior to the single determinant MO
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function. This difference is considerable, about 0.0857 Ej;. This situation can
only be corrected by adding a large number of polar structures, e.g. the 12 ortho-
polar structures (see table ) o the type below

+.ay

agl —.ag

N / o

a4

The situation is dramatically changed when the AOs involved are replaced by
overlap-enhanced orbitals. The results o the parameter optimization of egs. (2.5)
and (2.6) are also shown in the table. It isat once clear that convergence towards
the full-CI limit is now rapid.

If we use only the Kekulé structures, but modified AOs o the type described
in eq. (2.6), the energy obtained in this case is better than the SCF and the
energy obtained by eq. (2.4), using the covalent plus 12 ortho-polar structures.
Furthermore, the difference between the energy obtained with this approach and
the full-CI limit now is lower, 0.0133 E;. On the other hand, if we use the fully
optimized orbitals described by eg. (2.5) and only the Kekulé structures we have
a better result than using the eq. (2.6), with all covalent structures.

Finally, the energy that we obtain using eg. (2.5) and all covalent structures
is very closely equal to the result that we obtain if we use the full-ClI calculation;
the differenceis only 0.0078 E;. When using the spin-coupled theory instead one
gets® a differencedf the same order, 0.0070 E},.

Cooper et. al,? concluded that the = electrons of benzene are essentially lo-
calized when described by deformed atomic orbitals (optimized orbitals). This
description of the » electrons o the benzene molecule is in accordance with our
results, because the modified orbitals used here are slightly delocalized, by admix-

ture of the other orbitals, in order to enhance their mutual overlap.
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Table | - Total ground state snergy of the benzene molecule (with different ap-
proaches)

Approach Number of Total energy
(theory) structures (Hartrees)
ed. (2.4)
Kekulé 2 -229.99247
eq. (24)
Kekulé and Dewar 5 -229.99810
Single-configuration
SCF 1 -230.08378
ed. (24)
Kekulé, Dewar and orthopolar 17 -230.10768
eg. (2.6)
Kekulé 2 -230.15269
eg. (2.6)
Kekulé and Dewar 5 -230.15341
eg. (2.5
Kekulé 2 -230.15600
eg. (2.5)
Kekulé and Dewar 5 -230.15810
Full-CT 175 -230.16595

The reason that classical VB theory associated to p, AOs (seeeq. (2.4))
requires a vast number of physically untenable ionic structures is that those AOs
are not allowed to distort on moleculeformation. With the optimized orbitals (egs.
(2.5) and (2.6)) this problem. does not arise (becaiise the orbitals are deformed
now). Such conclusions are equally applicable to molecules of different type. In
summary, we conclude;

When we use the optimized orbitals (eq. (2.4) or (2.5)) the convergence of
the energy to the full-CI limit is more rapid than when using the p, AOs. The
full optimization of the orbitals is not always essential®~1°, but if this approach is
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used, only the covalent structures can reproduce the results of the 175-structures
on the benzene 7 electrons.
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Resumo

Aplica-se a teoria de ligagdo de valéncia para calcular a energia o estado
fundamental dos elétrons = da molécula de benze.io. Usa-se uma base minima para
comparar ataxa de convergénciada energia utilicando trés aproximagcoes a saber:
orbitais atbmicos puros, parcialmente otimizadcs e completamente otimizados.
Verifica-se que quando se faz uma otimizagdo completa dos orbitais atdbmicos,
somente as estruturas covalentes sdo capazes de reproduzir os resultados de um
calculo completo de interacdo de configuragdes.
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Abstract We show that a recent conjecture about the possible existence
of an infinite number of exact eigensolution pairsfor the x2 + Az?/(1 + gz?)
interaction having A and g connected by A = —(6¢? + 4g) is true. A con-
structive method for explicitly obtaining these solutions is given. In ad-
dition, we present a REDUCE implementation of the constructive method
which allows solution pairs to be easily generated on personal computers.

1. Introduction

In a recent paper!, we showed that the perturbed harmonic oscillator
22 + Ag?/(1 + gz?)

admitsfive pairs of exact analytical eigensolutions having the parameters A and g
connected by the relation A = —64% — 4¢. It was also conjectured that an infinite
number of such solution pairs should exist. Our conjecture was proved by Vanden
Berghe and Meyer? and Lakhtakia3. The purpose of this brief paper is to provide
a simple constructive proof of the same conjecture. Our proof was obtained by
us simultaneously and independently o the aforementioned authors. We believe
our result to be o interest because it provides a trivial mean o generating, in
principle, all solution pairs. The generation of an arbitrary number of solution
pairs can be easily implemented on personal computers able to perform algebra
and an example dof one such implementation, written in REDUCE, is given here.
The potential x2+Az2/(1+gz2) isdf interest in laser physics (asthe reduction

of the Fokker-Planck equation o asingle-mode laser under suitable conditions), in
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elementary particle physics (as a one-dimensional Schrédinger equation associated
with a zero-dimensional field theory) and in nuclear physics (as being able to
reproduce sequences of energy levels in the shell model). (For specific references
see, for example, reference 1 and referencestherein.)

An interesting aspect o the x?+ Az?/(1 t gz?) interaction with negative X
(as is the case here since A = —6¢% — 4g, g > 0) is that the potential behaves
asymptotically like a harmonic oscillator but contains a double minimurn. Double
minimum potentials have been used in the quantum theory o molecules as simple
dynamical models to describe the motion of a particle subject to two centers of
force. Double minimum potentials are also of great interest in the investigation of
diffusive processesin genera (quantum tunneling), models for bistable dynamics*
and in the quantum theory o instantons®. The most used examples o double
minimum potentials involve functions containing discontinuous derivatives. The
potential considered in this paper, as wel as its derivatives, is continuous and has
a pair o analytical eigensolutions. For a discussion o these matters we refer to
the recent review paper of Razavy and Pimpale®.

The problem we want to address consists o obtaining pairs of simultaneous

eigensolutions o the Schrédinger equation
P+ e— 2 - A2t /(1+ gzt =0, ¢>0, 53]

for z in the interval (—oo, o), having the generic form

Po(z) = exp (—%:132) (1 + gz¥)z, (2)
‘»be(x) = €Xp (_%xZ) (1 + g$2)(PN(I), (3)
with
N .
on(z) =) ez, (4)
1=0

where the subindices o0 and e refer to the symmetry o the eigensolutions. The
first five twin solutions have been obtained in reference . We now show how to
generate twin solutions for arbitrary N.
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Substituting ¢, from equation (2) in the Schrédinger equation (1) one obtains
equations yielding
€, =3 —6g, ' (5)
A = —6g7 — 4g. (6)

From the substitution of v, in equation (1) one readily obtains

N N

) 2i(2i - 1)z + ) (ee + 4gi® + 697 + 29 — 4i — 1) iz

1=0 1;0 (7)
+ }: (g€ — A — 4gi — 5g) c;z¥ T = 0.

=0

From the coefficients of z% it followsthat

20(27 — 1)e; + [26(20 — 1)g — 49 + 3 + €¢Jeiy
+ [3g + ge. — A — 4gi]c;_2 =0, (8)

validfori =1,2,...,N +2.When i = N * 2 equation (8) gives
4Ng +5g —ge. + A =0. (9)
Since according to equation (6) we have A = —6¢% — 4g, it follows that
€. =4N —6g+ 1. (10)

It is interesting to observe that the energy difference between the two states de-
pends only on N:

Ae=¢,—€g,=4N - 2. (11)

Equations (6)and (10)may now be used to simplify relation {8), giving the relation

___ -t

© T 24(25-1)

validfori =1,2,...,N +2. For i =1 equation (12) gives

{[26(2i = 1)g ~ 6g T 4(N = i T 1)]es_q T 4g(N — i T 2)¢;s}, (12)

¢1 = {29 — 2N)co. {13)
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Now, equations (12) and (13) can be used to generate all coefficients ¢, ap-
pearing in (4) as functions of ¢¢. For convenience we may set ¢y I 1, since the
exact normalization is not important here.

The condition that all ¢, should vanish for i > N ailows us to obtain (from

equation (12) with i = N 1) a relation between ey and en—; :

eN = ( 2 CN-1- (14)

N+2)(2N — 1)

The polynomia equation defining the possible ¢ values! may now be easily ob-
tained by forcing ey and eny—; obtained from the recurrence relation (12) to obey
the constraint relation (14).

. The above results were used to write the following REDUCE program:

OFF ECHO $

OPERATOR C $

N =5 §

c) :=18%

C(1) := 2x(G-N) $

CTE  := -2/((N+2)*(2*N-1)) $

LAST := CTE*C(N-1) $

FOR | := 2:N DO

C(I) := - ( (2*I*(2%I-1)%GC - 6*G + 4%x(N-I+1))*C(I-1)

+4xGx (N-I+2) *C(I-2) )/ (2+I*(2+I-1)) §
FOR | := 1:N-1 DO WRITE ®*C(",I,")= ",C(I) $
WRITE "c(",N,")= ",CTE," * c(",N-1,M)" $
WRITE " G POLYNOMIAL : " $
WRI TE NUM(C(N)-LAST)," = 0" $
END $

This program was implemented on a personal computer and, by changing the
value of N on the third program line, used to generate all five solutions presented
earlier!. The program was further used to generate new twin solutions. Table
| presents a summary o the first 15 solutions, together with the corresponding

values o g,, e, and Vy;,, the vaue o the minimum o the potential. Defining
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R2 = 2¢(3g T 2) = —X it is easy to see that the minima are located at z2;, =

(R-1)/g and that

Vain =- '1( R- 1)2-
g

Table | - Values of g for which twin solutions exist. Ag = gn -
gN—-1-2 Vimin, € and &, are defined in equations (6), (15), (5) and (10)
respectively. Note that for N = 1 and 2 the energy of the even state
lies above the relative maximum V =0 at x = 0.

N g Ag A Vmin €o Ee
1 0.66667 — 5.3 —2.6 -1.0 1.0
2 1.45743  0.79076 ~18.6 -1.5 —5.7 0.3
3 2.23486  0.77743 —3890 —123  —104  —0.4
4 3.00979  0.77494 -66.4 —17.0 —15.1  —1.1
5 3.78383  0.77403  —101.0 -21.7 -19.7 1.7
6  -4.55743  0.77361  —1429 -263  —-243  -23
7 5.33080  0.77337 —191.8 -31.0 -29.0 3.0
8 6.10403  0.77322  —2480 —-356 336 —3.6
9 6.87716  0.77313  —311.3 —40.3  —383  —43
10 7.65022  0.77306  —381.8  —44.9  —429  —49
11 8.42323  0.77302  —4594  —496 475  -55
12 0.19622  0.77208  —544.2  —54.2  —522  —6.2
13 9.96917  0.77205  —636.2 —589  —568  —6.8
14  10.74210  0.77293  —7353 -63.5 —61.5 -T75
15 11.51502  0.77292  —8416 —681 —66.1  —8.1

(15)

Figure 1 shows the potential x2+ Az?/(1 + gz?) together with two asymptotic

potentials (shown as dashed lines): x2? and x? — 6g — 4. Superimposed to these

potentials we show the solutions ¥, and .. The vertical positions of %, and .

correspond to the exact locations of their corresponding eigenenergies. To im-

prove the readability of the figure, the normalization of the eigenfunctions was

conveniently chosen so that their total amplitude corresponds to 25% of the full
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X

Fig. 1- Eigenfunctions ¥, and 1, together with the potential 22 + Az? /(1 +
g:c2) (solid curve) and two asymptotic potentials (shown as dashed lines): x2

and z? — 69 — 4. The height of the functions corresponds to the exact position
of the energy eigenvalues.
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scale. All ¢, were obtained by evaluating numerically on a personal computer
the coefficients ¢, in eq.(12). As a caveat to the reader we remark that the re-
currence relation (12) is very sensitive to the value of g. Preliminary runs using
the 6-digit values of g given in Table I, failed to generate the correct eigenfunc-
tions. In particular, the g value used in Figure 1 to generate . for N = 10 was
7.650218591050418350. Sensitivity on parametersis a well-known property of re-
currence relations. At thisstage we do not see any need for a more stable (possibly
backwards) recurrence relation.

In summary, the potential x? + Xx%(1t gz?) with X and g connected by
A = —6g% — 4g, g > 0O contairis an infinite number of closed form eigensolution
pairs. The pairsconsist of an odd and an even solution having an energy difference
depending only on the degree of excitation of the even funrtion (seeeq.(11) above).
We prescnted a computer program written in REDUCE allowing the easy genera-
tion of these eigensolutions on personal computers. The potential investigated is
a quite rare example of a continuous double-minimum potential containing a pair

of exact analytical eigensolutions.
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Resumo

Mostramos que uma conjectura recente sobre a possivel existéncia de um
nimero infinito de pares de solugdes proprias exatas paraa interagdo z2+Az?/(1+
gz%) com X e g relacionados por A = —(6g® + 4g) é verdadeira. Damos ainda um
método construtivo paraobter explicitamente estas solucfes. Além disso, apresen-
tamos também uma implementagao em REDUCE deste método construtivo que
permite gerar algebricamente pares de solugdes em microcomputadores do tipo
PC.



