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Abstract We study non linear excitations in the one-dimensional classi- 
cal anisotropic antiferromagnetic Heisenberg mode1 inchding fourth-order 
anisotropic terms, interchain interaction and a Moriya-Dzyaloshinskii term. 

1. Introduction 

Non-linear modes in one-dimensional ferromagnets have been extensively stud- 

ied in recent years, there being an enormous literature concerning this subjectl. 

It is known, however, that in antiferromagnets, where we have two equivalent 

sublattices, the dynamks of nonlinear excitations is different in severa1 aspects2. 

The most interesting niodel to study theoretically is the one-dimensional classical 

anisotropic Heisenberg antiferromagnet. ~ i k e s k a ~  has considered various combi- 

nations of externa1 magnetic fields and single-ion anisotropies. Kimura and de 

~ o n ~ e ~  considered Lhe case of positive and negative axial anisotropy. Costa and 

pires4 have studied the model with the magnetic field in an arbitrary direction, 

and the case of two anisotropies has been investigated extensively by Pires and 

coworkers5. Pandit et a1.6 have considered the antiferromagnet with a single-ion 

anisotropy and a Dzyaloshinskii-Moriya term. 

In the present paper we carry out a detailed study of some aspects, not con- 

sidered before in the literature, of the dynamics of non-linear excitations (soliton 

modes) in a one-dimensional classical anisotropic antiferromagnetic Heisenberg 

model. At this point it is important to mention that there are some equivalences 

between the theories for solitons in one-dimensional magnets and domain walls in 

the ordered phase of three-dimensional magnets7. In section 2 we will consider 
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the inclusion of fourth-order anisotropy constants and interchain interactions. In 

section 3 we will study the interesting case when we have a Moriya-Dzyaloshinskii 

terin leading to  a weak ferromagnetic moment. The presence of such a moment 

makes it possible to control the motion of the soliton by means of an externa1 

magnetic field. 

2. Equations of motion 

We start with the Hamiltonian of an array of weakly coupled spin chains 

where i labels the chain and n a site along the chain, d and b are the second order 

and Bi, B2, B3 the fourth-order anisotropy constants. The intrachairi exchange 

constant J is much larger than J', the interchain exchange. We will consider only 

the situat*ion where the temperature is higher than the Néel temperature, and 

assume J ,  d, b > O and a11 the anisotropy parameters small compared to unity. 

The classical ground state configuration of eq. (1) is Ising-like, S = (&S,O,O). 

Following Mikeskaz we write S as 

grn = ( - l )mS[sin  (6, + ( - i)mvm) cos (+rn + ( - I ) ~ ( Y ~ ) ,  

siri ( 0 ,  + ( - l)"v,) sin (9, + ( - i)mcrm),cos (O, + ( - I )~V, ) ]  , (2) 

where m is any site in the crystal, 6' and 4 are the angles giving the sublattice 

magnetization, and v and (Y describe the deviations from perfect anti-alignment, 

and can therefore be assumed to be small â t  low temperatures. Substituting eqs. 

(2) into (1) we can keep only terms up to second order in the small quantities v ,  cr 

and the spatial variation of 6 and 4. The variables v and a are then eliminated 

with 86'/8t and &$/i%, which can be derived from the equation of motion of the 

spins. Using the continuum approximation we obtain 
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where the canonical momenta P8 and P4 are given by 

and Pi = S2Bi (i = 1,2,3), a is the intrachain lattice constant, a' the interchain 

distance and z is the coordinate along the chain. 

The equations of motion can be obtained directly from the Hamiltonian eq. 

(3). We obtain 

1 a2e 1 agi 
B2d - - - = sin 6 cos O('?+)' -- - sin 0 cos 8 (ai) 

~2 a t 2  c2 
- 2d cos 0 sin 8 $- 2b sin I9 cos B sin2 4 - 4P1 cos3 0 sin 6' 

+ 4& sin3 fl cos 6 sin4 4 - 2,B3 sin2 # cos 0 sin 0(sin2 8 - cos2 0) , (4) 

- 2  1a2gi 
V 4 - -- = -2~0te ve 1 a6 agi 

~2 at2 [( - )4@) - 3 (%I (%)I 
+ 2b sin gi cos 4 + 402 sin2 6' sin3 # cos 4 + 2,B3 cos2 e sin 4 cos 4 , (5 )  

where 

- ,a 
c = 4 J S  and V=%-+a!  az 

with 

cw = J'a/Jai . 

Under the prescribed boundary conditions &e. the spins are aligned along 

the x axis for z -+ f oo) there can exist two types of moving solitons. Type I 
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corresponds to 6' = n/2, that is the soliton is in the XY plane. Type I1 corresponds 

to q5 = O and the soliton is in the XZ plane. Since the solutions are similar, let us 

consider just type I solitons. Restricting ourselves to solitons propagating along 

the chain, i.e. taking q5 = d(z , t )  eq. (5) becomes 

,324 1 a2q5 - - -- = 2b(l + 2p sin24) sin 4 cos 4 , 
a z 2  c2 dt2 

where p = P2/b. If we restrict ourselves to the study of stationary-profile solutions, 

writting E = z - ut, we can write eq. (7) as 

d2 d 
- = m2 (1 + 2p sin2 4) sin 4 cos d , 
dE2 

with 

m2 = 2b(l - u2/c2)-' 

For b > O, > O, p < 1, we find on integrating eq.(8) 

tan 4 = (1 + p)-'/2cosech(m[) . 

Taking eq.(lO) into eq.(3) we find-for the static soliton energy 

If the parameter p is negative we have the following cases 

a) -1 < p < O. The solution is still given by eq. (10) and we have a moving n 

soliton. 

b) p = -1. We have a n/2 soliton given by 

c) p < -1. We have 

tanh q5 = 11 + pl-1/2sech(m~ 

and the values of 4 a t  ( + + m  and ( + - m  coincide (4 + O when + i- m ) .  

If 6 = O eq.(7) becomes 
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- - r+ - 2r sin3 4 cos 4 , 
dE2 

with 

r = 202(1 - u2/c2) . 

The solution of this equation is 

tan C$ = ((&)-' , (15) 

a 180-degree algebraic soliton in which the spins approach their equilibrium values 

according to a power law instead of doing it exponentially a s  in the other cases 

considered here. The energy of this soliton is given by 

E: = J S ~ T ~ .  (16) 

Taking p = O in eq. (7) we get the well-studied sine-Gordon model. 

Since we have considered only a limited type of solution in which the angle 8 

is constant and equal to ã/2 (the case of 4 = O can be analyzed in a similar way), 

it is therefore necessary to investigate the stability of this solution with respect to 

departure of the soliton from the corresponding plane. For simplicily we will take 

B, = O (i = 1,2,3) and write 

4(x1 Y, Z, t )  = dsol(z) r(x, Y, z) ex~(iw2t) , (I8) 

Substitution of (17) and (18) into (4) and (5) and linearization in s and r leads to 

the following eigenvalue equations 
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where G; = w: - 2(6 - b)c2. 

The dispersion relation is determined by the behavior far from the soliton 

centre. We find 

-, -, 
where = iq, + jqy . Eqs. (19) and (20) have the form of a Schrodinger equation 

with a known complete set of eigenfunctions8. Eq. (19) possesses a bound-state 

solution with 

and (20) a bound-state with 

where 

Eq.(24) shows that  the type I soliton is stable if b < 6 and is unstable in the 

contrary case. Investigation of the stability of type I1 soliton proceeds similarly 

and leads to the condition 6 < b. Thus the soliton is stable which corresponds to 

the smaller value of the anisotropy parameter: only one of the two types of soliton 

can exist. To conclude we see that the spectrum of an antiferromagnet suporting 

solitons contains four magnon modes, two with wave functions 

f p  = 
(c /& + i tanh &r) 

[27r(l + q2/2b)]1/2 (25) 

and frequencies given by eq.(21), corresponding to intrachain excitations and two 

with wave functions 
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(where Fl = &+ yj) having frequencies given by eqs.(22) and (23) and corre- 

sponding to excitations localized on the soliton. 

3. Dynamics of a canted anliferromagnet 

We will now include a Dzyaloshinskii-Moriya term in our Hamiltonian. Such 

a term is important in order to explain experimental data on the polymer" 

{ C O [ ( C ~ H ~ ) ~ P O ~ ] ~ } ~ .  SO we will write a term 

in our Hamiltonian (1) and for simplicity take Bi = 0, (1 = 1,2,3) and J' = 0. 

The equation of motion for a type I soliton wiI1 then become 

a2d ia2qi - - -- = 28sin qi cos 4 
az2 a t 2  

where b = b - D2. Eq. (28) is the sine-Gordon equation with solution 

qi = 2 tan-' exp ( - 6 6 )  (29) 

In what follows it is important, in this case, to know the value of the coordinate 

v .  We have, solving the general equations of motion including the term given by 

eq. (27) 

d2?, 
V = 2D tanh ( 6 6 )  + uGsech(&() 

The solutions obtained above describe the motion of a soliton without al- 

lowance for dissipation and a driving force. As a driving force one usually uses 

an externa1 magnetic field 2, applied in such a way that because of the magnetic 

Zeeman energy in a lenght z, 
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with 

6 = ($ + & ) / 2  , 

one of the homogeneous regions of the magnetic chain that are separated by the 

soliton (that in which 6.H > O becomes energetically advantageous as compared 

with the other (6.g < O). Then there acts on the soliton a force Fm that is 

directed toward the less advantageous region. The moving soliton is also subject 

to a retarding force Fd (u), produced by various dissipative processes and dependent 

on the soliton velocity u. At a certain value of u equilibrium occurs, F, = Fd(u), 

and the soliton motion becomes stationary. 

We shall treat the motion of the soliton under the assurnption that both the 

dampíng constant a and the driving field H are small in comparison with the 

characteristic quantities of the problem. In this case it may be supposed that the 

soliton structure is the same as for H = a = O and is described by the formulas 

obtained above. Then from 

letting H/ /Oz ,  which leads to 

and using the fact that for a type I soliton m, = -v, we obtain from eq. (30)  

Am, = 4 0 .  (34)  

Thus 

Fm = 8 g u b S H D  

The magnetic force vanishes in the absence of the Dzyaloshinskii-Moriya term. 

The damping force can be calculated using the relation 
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From ref. (4) we have 
d E  2a 

where dissipative effects are taken in account via a Gilbert term 

Using eq.(29) we obtain 

The velocity u of the stationary motion of the soliton is found from the condition 

F, = Fd(u). We obtain 

with h = 2 g u ~  SDH/&. As we can see, if D or H vanishes we have u = O and 

if a = O we have u ( H )  = C. When D # O it is possible to control the motion of the 

soliton by means of an externa1 magnetic field. 

References 

1. See e.g. Physics in One Dimension, eds. 3. Bernasconi and T. Schneider, 

Springer, Berlin, Heidelberg, 1981). Nonlinearity in Condensed Matter eds. 

A.R. Bishop, D.K. Campbell, P. Kumar, and S.E. Trullinger, (Springer, Berlin, 

Heidelberg, 1987). Magnetic Ezcitcltions and Fluctuations eds. S.W. Lovesey, 

U. Balucani, F. Rorsa and V. Tognetti (S~ringer, Berlin, Heidelberg, 1984). 

Solitons, eds. S.E. Trullinger, V.E. Zakharov and V.L. Pokrovsky (North- 

Holland, Amsterdam, Oxford, 1986). 

2. H.J.Mikeska, J. Phys. C: Solid State Phys. 13, 2913 (1980). 

3. J. Kimura and W.J.M. de Jonge, J. Phys. Soc. Japan 55, 341 (1986). 

4. B.V. Costa and A.S.T. Pires, J. Phys. C: Solid State Phys. 20, 1315 (1987). 

5. M.E. Gouvea and A.S.T. Pires, Phys, Rev. B 34, 306 (1986), M.E. Gouvea 

and A.S.T. Pires, Physics Letters A 114, 503 (1986). A.S.T. Pires and S.L. 

66 



Solitons in a generalized classical antiferromagnetic chain 

Talim, Zeitschrift fur Phys. B 69,  283 (1987). S.L. Talim and A.S.T. Pires, J .  

Phys. C 21,429 (1988). A.S.T. Pires, S.L. Talim and B.V. Costa, Phys. Rev. 

B 39, 7149 (1989). A.S.T. Pires, Phys. Rev. B 40, 9274 (1989). 

6. R. Pandit, C. Tannous, and J.A. Krumhansl, Phys. Rev. B 28, 289 (1983). 

7. See e.g., F.H. de Leeuv, R. van den Doel, and U. Enz, Rep. Prog. Phys. 

43, 690 (1980). V.G. Bar'yakhtar, T.K. Sobolev, and A.L. Sukstanskii, Sov. 

Phys. Solid State 27, 1454 (1985). V.G. Bar'yakhtar, B.A. Ivanov, and M.V. 

Chetkin, Sov. Phys. Usp. 28, 563 (1985). B.A. Ivanov and A.S. Sukstanskii, 

Sov. Phys. JETP 67, 1201 (1988). V.G. Bar'yakhtar, B.A. Ivanov, and A.L. 

Sukstanskii, Sov. Phys. JETP 51, 757 (1980). V.M. Eleonskii, N.N. Kirova, 

and N.E. Kulagin, Sov. Phys. JETP 52, 162 (1980). 

8. L.D. Landau and E.M. Lifshtz. Quantum Mechanics, Non-Relativistic Theory, 

2nd ed. (Pergamon, Oxford, 1965) p.72-73. 

Resumo 

Estudamos excitações não lineares em um antiferromagneto de Heisenberg 

unidimensional clássico anisotrópico, com a inclusão de termos de anisotropia de 
quarta ordem, interação entre cadeias e um termo de Moriya-Dzyaloshinskii. 


