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Abstract We formulate a random-exchange spin-1 Ising model on a Cay- 
ley tree of infinite coordination as a non-linear discrete mapping problem. 
The borders of stability of the paramagnetic and spin-glass phases are ob- 
tained from the fixed points of the mapping. Except for the location of a 
first-order boundary, obtained from a free-energy functional on the Bethe 
lattice, our results agree with replica-symmetric calculations for a spin-1 
Sherrington-Kirkpatrick Ising glass. We also consider two replicas of the 
original system to analyze the stability of the fixed points under replica 
symmetry-breaking. 

A replica-symmetric solution of an extension of the Sherrington and Kirk- 

patrick model for infinite-range Ising spin glasses, with spin 1 and the inclusion of 

a crystalline anisotropy, has been shown to display continuous and first-order phase 

transitions, with a tricritical point'12. To make contact with these calculations, we 

formulate a gaussian random exchange spin-1 Ising model, on a Cayley tree of in- 

finite coordination, as a discrete non-linear mapping problem. The fixed points of 

the mapping give the equations of state on the Bethe lattice, which turn out to be 

equivalent to the replica-symmetric solutions of Sherrington and col~aborators'~~. 

The regions of stability of the paramagnetic and spin-glass phases are given by the 

criteria of stability of the corresponding fixed points. The thermodynamic first- 

order boundary, however, comes from the consideration of a suitable free-energy 

functional on the Bethe lattice. 

According to an idea of ~ h o u l e s s ~ ~ ~ ,  we consider two replicas of the original 

system to investigate the possibility of replica symmetry-breaking. As in the case 
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of the spin -i Ising mode14, in zero field, we show the existence of an unstable, 

symmetric, and a stable, symmetry-breaking, spin-glass fixed point. We also per- 

form numerical calculations to show that the symmetric spin-glass fixed point is 

unstable along the line of first-order phase transitions, in agreement with results 

of Lage and de ~ lmeida '  for the generalized SK model. Finally, according to a 

paper by ~edorov', we make some remarks about the possibility of using the hi- 

erarchical character of the tree to introduce a more general symmetry-breaking 

order parameter. 

Consider a spin-1 Ising model, given by the hamiltonian 

where Si = +1,0, -1, for a11 sites i, and the first sum is over nearest-neighbor pairs 

of spins on the sites of a Cayley tree of ramification r. The exchange parameters Jij 

are independent, identically distributed, random variables. The partition function 

can be calculated as a sum over configurations of spins belonging to successive 

generations of the tree. It is then quite natural to write recursion re1at;ions between 

an effective field, Li, and an effective anisotropy, Ai (j = 1,2, ..., r labels the sites 

of a certain generation), and the corresponding effective quantities, L0 and Ao, in 

the next generation. Introducing the more convenient variables 

and 

which are associated with effective values of the magnetization and the quadrupolar 

parameter per spin, we can write the recursion relations 

and 
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where r r 

x = C  and y = C  y , ,  
j=i i=1 

with 
1 (cosh t j  - l)qj + m j  sinh ti -i- 1 

x .  - -1n ' - 2 (cosh t j  - 1)qj - m j  sinh t j  -+ 1 ' (44 

[(cosh t j  - l)q, $ 112 - m j  sinh2 t j  (46) 

mhere t j  r PJW, P ( k B ~ ) - l ,  and T is the absolute temperature. 

To calculate the expected values of mo, 90, and their moments, let us consider 

the random variables x and y, with a joint probability density, p(x, y), such that 

The Fourier transform, F(ki, kz), is given by 

where the last equality comes from the cycle-free structure of the Cayley tree. As 

the random variables are identically distributed, we have 

In the limit of infinite coordination, given by r + co, with r < Joj >= Jo, 

r < J:, >= J2, and r < JG >= 0, for n 2 3, we perform a cumulant expansion 

to obtain 

1 1 
iPJomki - -p'~'Qk? + - i ~ ~ ' ( q  - Q)k2] , 

2 2 (8) 

where m s< m j  >, Q E< mg >, and q r < qj >. From eqs. (5) and (8), we have 
t 

the probability density 
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As the probability density depends on the first and second moments of m, and 

only on the first moment of qi, we have the three-dimensional mapping 

and 

where 

It should be mentioned that relations of this form, in the context of a more gen- 

eral spin-1 Ising model, including random biquadratic exchange interactions, have 

already been obtained by Thompson and collaborators7, without, however, a de- 

tailed analysis of the fixed points. In this paper, to make contact with calculations 

for the generalized SK rnode~"~,  we restrict our considerations to the pure spin 

glass ( Jo  = O) in zero field (H = O). Under these circumstances, the magnetiza- 

tion vanishes, and the mapping becomes two-dimensional, in terms of the second 

moment, Q, and the quadrupolar term, q. The fixed points, Q' = Q = Q*, 

and g' = q = q*, correspond to the replica-symmetric solutions of Ghatak and 

Sherringtonl for the generalized version of the long-range SK Ising spin glass. 

In zero fieid, for Jo = 0, there is a trivial paramagnetic fixed point, Q* = 0, 

and q* f 0, coming from the equation 
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where we define d D I J ,  and t = (,BJ)-'. With the change of variables u* = 

2q* - 1, eq. (12) can be rewritten in the familiar form 

1 
u* = tanh -(u* - 4td + 1 + 4t2 ln 2) , 

8t2 (13) 

from which we see that, for t  < &/4, there may be three distinct values of q*. 

The region of stability of this paramagnetic fixed point is given by the conditions: 

and 

Let us consider the d- t phase diagram. For t > a / 4 ,  there is always a single value 

of q*. The paramagnetic fixed point is well defined, and the border of stability is 

given by Ai = 1 (as q* > i, Ai > A,). For < t < m, with decreasing values 

of d, there appear three distinct values of q*. The stable paramagnetic fixed point 

is associated with the smallest value of q*, and the border of stability is again 

given by Ai = 1, with q* > 5 .  At the special temperature t  = i, the stability 

border is given by A i  = X 1  = 1, with q* = 5 .  For t  < i, with decreasing values of 

d, eq.(12) still displays three distinct roots, but the smallest value of q* is always 

less than 5 .  In this range of temperatures, X 2  > Ai,  and the s.tability border is 

given by A2 = 1, with the smallest root of eq.(12). From these considerations, the 

paramagnetic borders are given by the analytic expressions 

for 5 5 t  5 1, and 

1 1 - (1 - 8t2)' /2 
d2 ( t )  = - (1 - (1 - 8t2 ) ' / 2 ]  - 2t In 
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for O 5 t 5 i, as depicted in fig. 1, in agreement with the results of Mottishaw 

and Sherrington2. 

At low temperatures, there is a spin-glass fixed point, Q* # O and q* # O. 

For t > 8, the stability borders of the spin-glass and the paramagnetic regions 

are given by eq. (16), the phase transition being of second order. For O < t < i, 
we have performed a numerical calculation to find the dashed line depicted in 

fig. 1. In this range of temperatures, there is an overlap between the regions of 

stability of the spin-glass and the paramagnetic fixed points. The phase transition 

is then discontinuous, with a tricritical point at t t  = i, and dt = + gln2. The 

thermodynamic line of first-order transitions can be obtained from an expression 

for the free energy associated with the spin-glass model on the Bethe lattice. From 

an integration of the equations of state, given by the fixed points of the mapping, 

we have the free-energy functional 

q*2 - Q*Z +Oo dz 1 
?(Q*,q*)  = + 

4t 
- exp ( - : z 2 )  ln {I+ 

whih is equivalent to an expression obtained from the pair approximation devel- 

oped by Katsura and collaborators8. Using eq. 18), we calculate the first-order 

line shown in fig. 2. These results, which can also be obtained from the replica- 

symmetric free energy, are quantitatively different from the first-order line depicted 

in the paper by Ghatak and sherringtonl. 

+ 7.0nl.- Fig. 1 - The solid line, given by eqs. (16) 

and (17), represents the border of stability of 
the pararnagnetic fixed point. For t > 113, 

-0 Q5 it coincides with the border of stability of the 
1 spin-glass fixed point. For t < 113, however, 

the spin-glass fixed point is stable up to the 

o dashed line. 

O Q2  Q4 Q6 0.8 
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Fig. 2 - Paramagnetic and spin-glass regions 

t in the d - t phase diagram of the pure spin- 

Q5 
1 ising glass in zero field. The solid line 

I represents second-order transitions. The dot- 
dashed line of first-order transitions was ob- 
tained from the free-energy functional of eq. 

According to a previous work for the spin - f  mode14, let us consider two 

replicas of the original system. They may be represented by the old variables mj 

and qj ,  and by a new set of variables, hj and i j j .  Inserting these new variables into 

eqs. (4a) and (4b), we obtain 5, and c, from which we calculate hj = f (5, c), and 

i j j  = g(5,51). We then have a joint probability density, p(x, ~ , 5 , 5 ) ,  whose Fourier 

transform, in the limit of infinite coordination, is given by 

where rn E< mj >=< hi >, q  E< qj >=< Qi >, Q E< m2 >=< h2 >, and 
3 3 

there is a replica s~mmetry-breaking variable, S -< m, hi > . Restricting to the 

case Jo = O, we use eq. (19) to obtain p(x, y,5, y), from which we can write the 

three-dimensional mapping 

Q' = F(Q,  9 ,  Q) (20a) 

and 

where 
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and 

with 

and 

From eqs. (20), Q = S implies Q' = S I .  So, to reach a fixed point Q* # S*,  we 

have to  consider the possibility of symmetry-breaking boundary conditions from 

the outset. The paramagnetic fixed point is given by Q* = S* = O. The spin- 

glass fixed point, however, is either replica-symmetric (Q* = S* # O) or replica 

symmetry-breaking (Q* # O, S* = O). The stability of the replica-symmetric fixed 

point is governed by the eigenvalue 

with A given by eq. (23), for Q = Q* and q = q* given by the fixed points of eqs. 

(20). For t > i, As = 1 at the paramagnetic border, and As > 1 in the spin-glass 

region. Along the line of first-order transitions, we have verified that As > 1 for 

the spin-glass fixed point. We then come to the conclusion that the spin-glass 

phase cannot be represented by a single symmetric fixed point5. 

In a recent publication, Fedorov6 has taken advantage of the hierarchical char- 

acter of the Cayley tree to work with more general boundary conditions. Consid- 

ering the surface of a tree of ramification r ,  for each cluster of r spins interacting 

with a certain spin of the next generation, it is possible to choose C initial values 
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So = Qo # 0, and r - t! values So < Qo # O. It is then convenient to define a quan- 

tity x = [/r, which measures the distance between replicas (x = 1 corresponds 

to a complete coincidence of the replicas, and x = O to their minimal overlap). 

According to Fedorov's construction6, the recursion relation given by eq. (20c) 

should be rewrittem as 

where, in the infinite coordination limit, S(x) is continuous on x E [O, 11. For t > i, 
in the spin-glass phase, the stable fixed point, S* (x), is a monotonic non-decreasing 

function of x, with S*(O) = 0, and S*(l) = Q* # 0. 

We thank helpful discussions with Mário J. de Oliveira and Carlos S.O. Yokoi. 
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Resumo 

Formulamos o problema de um modelo de Ising de spin 1, com parâmetro de 
troca aleatória, definido numa árvore de Cayley no limite de coordenação infinita, 
como um mapeamento discreto não linear. Obtivemos as fronteiras de estabili- 
dade das fases paramagnética e vidro de spin a partir dos pontos fixos do mapea- 
mento. Exceto a localização da fronteira de primeira ordem, obtida a partir de 
um funcional energia livre na rede de Bethe, os nossos resultados concordam com 
estudos baseados na solução com simetria de réplicas de um análogo do modelo 
de Sherrington-Kirkpatrick para o vidro de spin 1 de Ising. Consideramos ainda 
duas réplicas do sistema original a fim de analisar a estabilidade dos pontos fixos 
face à quebra de simetria das réplicas. 


