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Abstract In this paper we study a neutral massive scalar field in a two-
dimensional Milne space time. The quantization is made on hyperboles
which are Lorentz invariant surfaces. The expansion for the field operator
is carried on using a complete set of orthonormal modes which have definite
positive and negative dilatation frequence. We have calculated the advanced
and retarded Green functions and proved that the Feynman propagator
divergesin the usual sense.

A Introduction

Interesting possibilities were revealed when attempts were made to quantize
the gravitational field. Although up to now these attempts have all failed, there
have been other important results in quantum field theory in curved space and in
curvilinear coordinate systems. One of the most important of these results was
achieved by Hawking', who proved that a black hole radiates a thermal spectrum.

Before Hawking's results Fulling? showed that a uniformly accelerating ob-
server constructs an operator algebra representation different from the represen-
tation constructed by an inertial observers.

Unruh has further demonstrated, using a detector model, that a uniformly ac-
celerating observer in a Minkowski space-time observes a thermal spectrum, while
an inertial observer measures the field in its vacuum state. We will not go over the
detector problem since this subject has been widely discussed in the literature®.
We will deal only with the formal part of the quantization o a neutral scalar
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field. This will be done in a two-dimensional flat space-time using a particular
curvilinear coordinate system.

In 1975 Kalnins* proved that in a two-dimensional flat space-time there are
only ten coordinate systems in which the Klein-Gordon equation has separable
variables. Inonedf thesesystems, the Lorentz invariant surfaces (z? = const) arise
naturally. Fubini, Hansen and Jackiw® quantized a massless neutral scalar field
using this type of surface. di Sessa®, Sommerfield” and Rothe et al.® did the same
with a massive neutral scalar field, but only di Sessa deals with the problem o the
associated Green function. In this paper we use the same coordinate system and
quantization as Sommerfield (massive neutral scalar field). The Pauli-Jordan and
the advanced and retarded Green functions will be calculated and the divergence
of the Feynman propagator will be demonstrated.

In section 2, after a brief exposition o the two-dimensiona Milne and Rindler
space-times we display the Klein-Gordon equation in the Milne system. Two sets
of mode solutions are presented. In section 3 two criteria of choosing positive and
negative frequency modes are discussed and the Sommerfield criterium is adopted.
In section 4 we calculate the Pauli-Jordan function, the advanced and retarded
Green functions and we demonstrate that the Feynman propagator diverges. The
convergence and evaluation of certain integrals in the comples planeis discussed in
Appendix A. The addition theorem for the cylinder functions will be generalized
in Appendix B.

In this paper we use the convention A =c=kp = 1.

2. Massive scalar field in Milne’s universe

Let us consider a two-dimensional Minkowski space-time with line element
ds* = (dy°)* ~ (dy')’ . (2.1)

We shall use the following coordinate transformation
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y® =nsinh ¢ 0<n <o

(2.2)
y' =ncosh ¢ —o0<{<
In this case the line element eg. (2.1) becomes
ds? = nd¢? — dn? (2.3)

This transformation covers only the region ¥* > |3°|. The (¢,7) coordinate
system is called Rindler’s coordinates. It can be shown that this system is one
naturally suited to an observer with constant proper acceleration’.

As this system does not cover the whole Minkovski space-time, we shall select

the following additional coordinate transformation (see Fig. 1)

0
{yl = —nsinh¢ Region II (Rindler) (2.4a)
y' = —ncosh &
0 —
¥’ = n cosh§ ; i
{yl =gnsinh¢ redon F (Wilne) .
0 — _
{y1 = —ncosh{ Region P (Milne) (2:4¢)
y! = —xsinh

The four coordinate transformation egs. (2.2), (2.4a), (2.4b) and (2.4~)o-
gether cover all Minkovski space time.

The coordinate systems that cover the region inside the light cone are a two-
dimensional Milne Universe.

Using the transformation eq. {(2.4b) the line element eq. (2.1) becomes

ds® = dn® — nd¢® (2.5)

Observers who perceive the universe expanding from y® = 0 have world lines
§=const. The surfaces n =const are hyperboles where we postulate the commu-
tation relation between the fields.
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Fig. 1

& =ay a>0 (2.6a)
n = 1e‘” —00 <y, T <00 (2'6(’)
a

In order to quantize a neutral massive scalar field it is necessary to solve the
Klein-Gordon equation in the Milne Universe.

It becomes

( o o

57 gy o) 2l) =0 (2.7)

The time-dependent part of the Klein-Gordon equation is a Bessel equation

& 1d , X
(dn2+ndn+m +n2)xx(mn) (2.8)
The set of solutions ¢ « e¢x,( mg)and ¢} a e™**¢x;( mg)is complete and the
® field can be expanded in the form
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2n,6) = [ dr(a()on +a'()45) (2:9)

—C0

We shall take the scalar product

(b1.80) = =i [ V0505741(2) 0, 61(c) 210)
where dL# = n#dX%, with n* afuture-directed unit vector orthogonal to the space-
like hypersurface C, and d%# is the volume element in C.

The Klein-Gordon eq.(2.7) posesses two distinct complete sets of orthonormal
mode solutions (orthonormal under the scalar product (2.10)).

{ua,u3} and {vy,v}} namely

uy(n, &) = _T_:/iewk/ZeiAth(f)(mn) (2.11a)
* t . -1
uy(n,§) = 5‘\/_—2—6 Mg ’\fH_(_li)A(mn) (2.118)
and 0
va(n, €) = ——%(sinh7r|A|)_l/zei’\5J_i‘,\l(mn) (2.12a)
vy(n, &) = %(sinh 7r|/\|)_1/26—i’\5.7,-|,\|(m17) (2.12b)

Hg) and Hg) are the Bessel functions of the third kind or Hankel functions of
imaginary order. J; isthe Bessal function of first kind with imaginary order?,
Positive and negative frequency modes must be distinguished in the quanti-
zation in order to identify a(X) and af(}) as annihilation and creation operators
of quanta of the field. If the space-time has a stationary geometry there exists a
time-like Killing vector K. This vector generates a one parameter Lie group of

isometries, and the orthonormal modes satisfy

Lyxu = —iwy (2.13)
where Lk is the Lie derivative with respect to K. In this case there is a natural
way df defining positive and negative frequency modes.
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The vacuum associated with these modesis called trivial or Killing vacuum®".
However, the line element eg. (2.5) istime (r) dependent and the curves £=const
are not integral curves of a time-like Killing vector K. There is no simple way
of definind positive and negative frequency modes. Different solutions for this
problem were presented by Sommerfield and di Sessa. For each way o defining

positive and negative modes we have different quantizations.

3. The di Sessa and Sommerfield quantization
(a) di Sessa Criterion

This author claims that the concept of positive frequency requires for its def-
inition a complexification o the real Lorentzian manifold. In this situation the
positive frequency modes are those which vanishwhent — —ioo. It is easy to see
that

lim H{(mn) =0 (3.1)

n——ico

Then egs. (2.11a) and (2.11b) are positive and negative frequency modes
respectively.

Jiy and J_;, do not vanish when n — —ioo, so {2.12a) and (2.12b) do not
have definite positive or negative frequency in the di Sessa criterion.

The vacuum associated with egs. (2.11a) and (2.11b) will be represented by
0>.

(b) Sommerfield Criterion
The operator

D= %/: dfy((-a% @)2 + (% <1>)2 + T m?e?) (3.2)

generatestranslation in r, and iscalled dilatation generator. It satisfiesthe Heisen-
berg equation

[(I)(‘r, 7),DJ =i 5‘9; % . (3.3)
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Sommerfield used thisfact and the additional fact that in thelight cone (m — 0

or r - —oo) we have

em)r

2T (1 +42) (3.4)

lim  Ji(mn) «
n—0
or 7— —00

to choose egs. (2.12a) and (2.12b) as positive and negative dilatation frequency
modes respectively.
Using egs.(2.9), (2.12a}, (2.12b), (3.2) and (3.4) we obtain

im D(7) %/Z dA)A|(a(N) et (A) F at(M)a(2) (3.5)

So the Fock space can be constructed and the associated vacuum will be rep-
resented by [0 > . The problem is to find the Green functions associated with the
modes (2.12a), (2.12b).

The Feynman propagator of the modes (2.11a) and (2.11b) has already been
calcul ated®.

It will be shown that the Feynman propagator associated with the modes
(2.12a) and (2.12b) diverges. The other propagators, the retarded and advanced
Green functions G and G 4 are defined respectively by

Grlz, ') = -0(z° - 2)G(z, 7') (3.6)
Galz,z') = @(zo' - 2%G(z,2) (3.7)

where G(z,z'} is known as the Pauli-Jordan function, which is defined as the

expected value of the commutator of the field in the vacuum state.

iG(z,z') =< O|[®(z), ®(z")]|0 > (3.8)

The Feynman propagator Gz is defined as the time ordered product of fields

iGr(z,2') =< O|T®(z)®(z")|0 >=
0(2°- 26t (z,2') + 0(zY - 296G (2,2 (3.9)
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where

1 °>0
0z = {0 i’o o (3.10)

and G*(z,z") and G~ (z,x) are the Wightman functions.

4. The Green function of the fields

The Pauli-Jordan function of the fields will be calculated in this section using
the set (2.12a), (2.12b) and the result is the same as that obtained using the
complete set (2.11a), (2.11b) (di Sessa modes).

Thisis not a trivial result. We know that if we have two sets of orthonormal
modes {u,,u}} and {v,,v}}, the Pauli-Jordan function calculated using the two
sets will be the same if the two sets are complete. Studying the sets (2.11) and
(2.12) we see that the zero modes of (2.12) can not be defined. So, it is straight-
forward to conclude that the modes uo and v can not be expressed using the set
eg. (2.12). Thetwo sets are not equivalent and the set eq. (2.12) is not complete
in any space of functions which contains all the elements of eq. (2.11).

The calculation of the Bogoliubov coefficients between the sets (2.11) and
(2.12) resultsis

7/ é‘ 1/2
e = () = (g5i57y) = 2)

e—‘ﬂl/

Buv = (vp,uy) = (m)lﬂé(“ -
It isnot allowed .= 0. When ¢ = 0, au = ag, = 0. The same holds for G, .
So we do not have a Bogoliubov transformation (in strictum sensum) between the
sets (2.11) and (2.12).
We will also demonstrate that the Feyman Propagator diverges. The Pauli-

Jordan function can be split into its positive and negative frequency parts as

iG(z,2') = G (z,z') - G (z,2") (4.1)
where -
G*(z,z') 2/_ divf (z) (v} (=) (4.2q)
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and
o
G (z,2) = / i (2)(v5 ()" (1.20)
—oo
Substituting egs. (2.12a), (2.12b) in (4.2a) and (4.2b) we have

1 e d i .y
G*(n,&n',¢) = Z/ Sinhwl/\,em ) J_ya(mn) g (m') (4.30)

&q',8) = L _8A  age-e) g () 3o (mn) (4.36)

G (n,&m
' 4 J_ oo SIN7[A|

The Feyman propagator (3.9) diverges because the integrals (4.3a) and (4.3b)
calculated individually are divergent since when A — 0%,0™ the integrand behaves
like ;l{\—[,jo(m,,)Jo(m,,l) + p, |pl bounded near the origin (A = 0). Let us study
this divergence.

When n > n! Gp(z,z') = Gt (x,2'), then:

Gr(z,2') = %/ﬂ @ cos A(¢ — E) J_an(mn)Jir(mn') 7> n' (4.4)

Thisis an improper integral and its value is obtained when we make the lower
(and upper) limit tend to zero (and o).

Then
Gr(n, &n',¢) =
b L [T A€ - €)T—ix (mil)ix (mn') (4.5)
em0t 2 sinh 7w

Row

1t dx
= lim - ME = N asix (Mmn) T (mil!
Jim o[ S cosAE ) a-ix (mn)Jyy (mil') +

Jim / smhm\cos)\(f — B) J_ax (mil)Jar (mil") (4.6)

The second integral in eq. (4.6) does converge if 4'/n # ef=¢' and n/n' # ef~¢.

This is equivalent to choosing points separated by a space-time interval not
equal to zero. The first integral in eq. (4.6) diverges whenever Jo{mn) and
Jo(mn') differ from zero. In fact, the value of the first integra in eq. (4.6) is
log LJo(mn)Jo(mn') + O(e) where 0(e) is bounded. The behavior of the Feynman
propagator is ilustrated below.
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Fig. 2- (1 is the 2’th root of Jo{mn) = 0).

In the evaluation of the Pauli-Jordan function, the divergence can be elimi-

nated when we calculate G* — G~ as the principal value of an integral.

G, &0, €Y -G (n,&0'¢) =

o0
l/ —.l/\—\ei’\(f—fl)-]~z‘/\(mn)Jz‘,\(mﬂ')i
4 J_, sinh7A

1 00 dA IA(f—EI) '
4 /_oo sinh7h’ o (mn) I (mar) -

Defining

fa (Zl 322, 23) = sinh7A ei'\zlJ_,',\ (m22)Ji)\ (mz;;)

The expression (4.7) can be written as

Gt-G =L-1,

where

1 oo
h=1 [ ane- e

24
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1 [®
h=1 [ anE-dain) (4.105)

—00
When mn and mn’' are not roots of Jy, | f3] tends to infinity as [A~!|, when A — 0.
However, the integrals are finite if we adopt the principal value at the origin
(A =0). Thefunction f; is analytic with respect to A in the whole complex plane
except at the points A = ni (n E Z). We have an infinite number o first order

poles, and the residue of fy at these pointsis

Res(fy;nt) = %e""zl Jn(mzg)Jp (mzs) (4.11)

Two distinct contours C and C' will be used to calculate I; and I, (seefig. 3).

Im\ ink
Z3
R
C
¢ : R C Re)
4 \ dz
£
Fg 3

Cy and Cy cross the imaginary axis at the middle point of the adjacent poles

1.e.

then

lim | dAfy(z1,22,25) =0 i €121 (4.120)
Co Z2
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R=g+ -0
and
lim C4d)\f,\(z1,z2,z3)=0 if e21§3<1

R:q+:—2L—+oo

In Appendix A we demonstrate egs. (4.12a) and (4.12b).
By the Cauchy theorern

g
/ (21, 22, 23)dA = Zm'ZRes(fA;ni)
c n=1

(4.120)

(4.13)

If ezlgg > 1, and we take the limit of the eq. (4.13) when ¢ — 0, g— oo we

get

| ler, 2 5)an - wies(£3;0) =
27rz'ERes(f,\;ni)
n=l|

Therefore using eq. (4.11)

/ dAf,\ (31,22723) = iJo(m22)Jo(mZ3)+
—00

o0
+ ZiZ e "V, (mag) I (mas)  if PSRN
n=1 22

Similarly, when ezlfg < 1 starting from

—q
/m falz, 22, 23)dA = —2ni Z Res(fx;n1)

n=-1

we get, taking the limit

(4.14)

(4.15)

(4.16)
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o
/ (7,22, 23)dA + 71 Res(£;0) =
-0

— 27 Z Res(fy;ni) .

n=-1

Therefore using eq. (4.11)

o0
/ f,\(21,22,23)dA = —iJo(mZZ)Jo(m23)+
-0

-0

. 23
-2 E —nz f 1= <1
27 2 e Ju(mze)Jp(mzs) if e o

Using egs. (4.10a) and (4.10b) we have

b = & [Jolmm) aforn) + 2 305, fran) g )]

n=1

Wl e

!
if 8(6—6,')77_ >1
n

. -0 t
L= “j} Jo(mn) Jo(mn') +2 Y e™¢¢ )Jn(m")‘]n(mn,)]

n=-1

!
if e(f—&')’l <1
n

L= [Jo(mn)Jo(mn’) +2 ie‘”(“fl)Jn(mn)Jn(mn')]

n=1

)
4
if 6(5_6,)1, >1

n

Iy = — = [ Jolmn) Jo(mn') + 2 S 6, fmn) )

n=-1

if (=1 <
Y

(4.17)

(4.18)

(4.19a)

(4.19%)

(4.20a)

(4.200)
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The space-time interval 0 = (y° — y*')? — (¥* - y")? in the coordinates (1, £)

can be written as

o=n°+ nlz — 21’ cosh(€ - ¢') =
e~ €Y (e~ _ 1) (le-€N T _
nne (e . 1) (e 7 1) {(4.21)

If o <0 (which corresponds to space-like separated events) there are two possibil-

ities

!
e(f_fl)% >1 and e(f_el);% >1 (4.224)

or
!
e(e-e’)% <1 and e(»:-e')’_;’7 <1 (4.22b)

In the cases (4.22a) and (4.22b) I; = I so G{z,z') =0.

If a> 0 (whichcorresponds to time-likeseparated events) there are again two

possibilities

!
e(e—e’)% >1 and e(e—c’);)’l, <1 (4.230)

or
!
e(é—(’)% <1 and e(é*&')_:_;_, >1 (4.23b)

It should be noted that in (4.232) 1+ > 5 and in (4.23b) n > 7.
In the case (4.23a) (a>0, n' > 1)

. oo
L-IL= % Z e"(e_f')Jn(mn)J,,(mn') . {4.24a)

n=—00

In the case (4.23b) (0> 0, 11 > 7')

L-L= —% Y el g, (mn) Ju(mn') (4.24b)

n=-—00
Thus using egs. (4.9), (4“.é4a) and (4.24b)
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o0

- i e’
Gt-G = -3 [@(a)e(n -1n') n;w e™é E)Jn(mn).]n(mn')] (4.25)
where
1 n>0
e(n) =
A l -1 q <o

The addition theorem o the Bessel functions states that

o0

Jo(MB)= Y Ja(mn)Ta(mn')e™® (4.26)

n=-—0co
where
s=(n+ n’z — 211’ cos 6)1/2

Taking the analytical extension d O = i(£ — ¢') we get, using eq. (4.21)

s = 0,1/2
o0
Jo(mo'/2y = 3" Ju(mn)Jp(mn')en(e-¢) (4.27)
n=-—00

(see Appendix B for a more detailed demonstration).
Finally substituting egs. (4.27) in (4.25) and using eg. (4.1) we get

iG=GT -G = *%[@(0)6(7] - n’)Jo(mza)l/z] {4.28)
This coincides with the result obtained by di Sessa®.

5. Summary and Discussion

In this paper we have studied two sets of functions commonly employed in
literature to expand the field operator ¢(z) that describes a neutral massivescalar
field in a portion o Minkovski space-time that is covered by the Milne coordinate
systems. These sets are usually regarded as complete and equivalent. We showed
that the space generated by the set (2.12) does not contain the space generated
by the set (2.11).

29



B.F. Svaiter and N.F. Svaiter

In a second step we proved that aithough we do not have a Bogoliubov trans-
formation or an equivalence between the two sets, the Pauli-Jordan propagator is
the same for both sets.

We proved that the Feynman propagator associated with theset (2.12) diverges
for almost all the values of (g,¢), (n’,€’). Infact it will not diverge only in a set
a zero measure. It is not clear if this divergence is connected with the infrared
divergence presented by Wightman in a theory that describes a massless boson in
a two-dimensional space-time. This point deserves further investigations.

The following question naturally arises from this work:

If

= {uy,u}}, {vy,v}} are two sets of orthonormal mode solutions employed to ex-
pand a bosonic field operator in an infinite volume;
- only a discrete set (or for a set that in some sense has zero measure) of index,
modes of {uy,u}} does not admit expansion using the set {vy,v}}.
Will the Pauli-Jordan propagator be the same when calculated using
{ux,ui} and {vy,vi}?

Thiswork intends to stressthe importance of the equivalenceand completeness

relation between sets of orthonormal mode solutions.
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It is known that
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Defining

(a)o =1
(a)y =afa+1)..(a+k—1)

we get

. 2
J,,()—(/2 Z( /4

v+ 1)

The same formula can also be expressed using the hypergeometric functions!!

_ (=/2)” .
Ju(2) = T+ 1) o1 (1/+ 1,——;2 ) .

Supposing (and this is most important) 3ng > 0 such that
VYnEZ |y + nl > ng
Using the definition (A.2)
(v 4+ )il > (ro)*  VkeN

Now using egs. (A.2) and (A.3)

T{v+1 P [(v+ 1) —
22
I(2/2)"] i i
[T+ 1)] £ !
This inequality can be simplified
I(2/2)"] 2
< =
@l < e ST ()
if v +n|>ng VREZ.
Let us suppose
1
lv]=q+ 3 9€ N

(A4.3)

(A.4)
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then

v+ k| > ke z

D

and using eq. (A.4) we get

|(=/2)"] 2
@) < perree (3) (4.5)
if

|u|:q+% for some ¢g&N

In the main text egq. (4.8) is

f,\ (21, Z2,23) = CMZI J_i)\ (m22)Ji)‘(mZ3) .

sinh A

In the contour Cy and C4

lii,\[=q+% geN (A.6)

Using egs.(A.5) and (A.6), we get

(9 2
iz (23/2) m? g
1521520, 25)] < Jsmhm\e T(A+ T(—iA+ 1) ’ &P ( 5t 23))
in C; and Cy.
Because
PEAFD(—ir 1) = 2
snh7x

the inequality becomes

(et + )

[fa(21,22,23)] < (I e Zz)b\ :

in Cy and Cjy.
The expression
1

2
mio2, 2
For (G 6+ )

does not change in the contour C; and C4 so we call it M, and we get

32



Quantum field theory tn non-stationary coordinate...

z_sy“ M

o (A7)

[fa(z1,22,23)] < }(ezx

in Cy and Cy.
In our problem z; = ¢ — ¢' isareal number and z3, 23 (q or 7') are positive.

Then there exists K € R such that

128 K (A.8)

Let us study the case

122 5 (K > 0).
22

Using egs. (A.7) and (A.8)

1/02 Fa(e1, 22, 20)d)| S/ | a1, 22, 20) |02 </ M| **k;‘g"ll

We can choose the parametrization

C, :A(@)z(q-{——)eie 0<0<nrw

The inequality above becomes

|/C fHaA| < M/"[e"”‘jde = M/”exp ~k(g+ %) 5in©)do =
2 0
ZM/ exp q+ )sin @)d(—) {A.9)

If o <0 <x/2 then 20/x <snO.

We are studying the case K > 0. So

exp(—K(q%—%)sen@)Sexp(—K(q-{-%)?g) 0<0<7/2
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and

l/czf,\d,\’ SZM/O”/zexp(—-Z;rIi(q—%‘—Zl-)@)d@:
_ M exo [ — Wy Mn )
- WK(H%)( p(-K(a+3)) 1)3—————K(Q+%) (A.10)

Thus using eq.(A.10)

Jim |/ f,\d/\l:O if 1B 51,
g— | [
gEN 2

22

For the case ezlf: <1 (K< 0) thecontour C4 is the adequate one.
Similar calculations give us

lim ’/ pal=o0 i 12t
‘Iqu Cy Z9

Appendix B

We will define

o= ko (1)

- afm{ (o) (1)) o)

Jo is analytic in the whole complex plane and its expansion in power series
centered at zero contains only even powers. Then the square root above can be

naturally eliminated and g{z) is analytic in the whole complex plane except the
origin. We will define "another" function

h(z)= > Jn(mn)Ja(mn’)z" (B-2)

n=--00

Theseries (B.2) isconvergent if z # 0. Then k(z) isanalytic in the whole complex
plane except at z = 0.

If we take (2| =1,
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z=¢9 ©€eR

h(z) = ) Ju(mn)Jn(mn')e™® =

n=-w

Jo(mn)Jo(mn') T 2ZJn(mn)Jn(mn') cos n® .
=l

Using the addition theorem and cylinder functions we get

h(z) = Jo[m(n® + n'? — 201’ cos 0)'%

Now
9(2) = g(e®) = Jo[m(n® + n'® — 209’ cos ©)'/?]
we obtain g(z) = h(z) if {z| = 1.
g{z) — h(z) is analytic in C — {0} and vanishesin |z| = 1, then it must be equal to
zeroin C — {0}.
This occurs because the zeros o any analytic function are isolated inside its
domain (openand connected) or elsethe function vanishesin all the domain. What

we obtained is that

Jo[m(n2+n —nn( ))1/2] Z Ja{mn)Jn(mn)z®  2#0. (B.3)

n=-—00

If

2=¢® ©€C

then
z(@) #0 voecC

and using eq. (B.3) we get
35



B.F. Svaiter and N.F. Svaiter

oo
Jo [n(n2 +1'? ~ 297’ cos ©)/ 2] = Y Ju(mn)Ja(mn')e"® ©€C

n=-0c0

if @=i([ - ¢} wefind

[»9]
Jolm(@) 2] = S Ja(nn)Ju(mn')enE=E)
n=—00
where
a=(n*+ 17’2 — 2nn' cosh(& — E))
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Resumo

Neste trabalho estudamos um campo escalar heutro e massivo em um espago-
tempo de Milne bi-dimensional. A quantizagdo é feita em hipérboles que sao
superficies Lorentz invariantes. A expansdo do operador do campo é realizado
usando-se um conjunto completo de modos ortonormais que tém frequéncia de di-
latacdo positivae negativa definida, N6s cal culamos asfungdes de Green retardada
e avangada e provamos que o propagador de Feynman diverge no sentido usual.



