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Abstract  In this paper we study a neutral massive scalar field in a two- 
dimensional Milne space time. The quantization is made on hyperboles 
which are Lorentz invariant surfaces. The expansion for the field operatol- 
is carried on using a complete set of orthonormal modes which have definite 
positive and negative dilatation frequence. We have calculated the advanced 
and retarded Green functions and proved that the Feynman propagator 
diverges in the usual sense. 

1. Introduct ion 

Interesting possibilities were revealed when attempts were made to quantize 

the gravitational field. Although up to now these attempts have a11 failed, there 

have been other important results in quantum field theory in curved space and in 

curvilinear coordinate systems. One of the most important of these results was 

achieved by Hawkingl, who proved that a black hole radiates a thermal spectrum. 

Before Hawking's results ~ u l l i n ~ ~  showed that a uniformly accelerating ob- 

server constructs an operator algebra representation different from the represen- 

tation constructed by an inertial observem. 

Unruh has further demonstrated, using a detector model, that a uniformly ac- 

celerating observer in a Minkowski space-time observes a thermal spectrum, while 

an inertial observer measures the field in its vacuum state. We will not go over the 

detector problem since this subject has been widely discussed in the literature3. 

We will deal only with the formal part of the quantization of a neutral scalar 
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field. This will be done in a two-dimensional flat space-time using a particular 

curvilinear coordinate system. 

In 1975 Kalnins4 proved that in a two-dimensional flat space-time there are 

only ten coordinate systems in which the Klein-Gordon equation has separable 

variables. In one of these systems, the Lorentz invariant surfaces (x2 = const) arise 

naturally. Fubini, Hansen and Jackíw5 quantized a massless neutral scalar field 

using this type of surface. di Sessa6, Sommerfield7 and Rothe et a1.' did the same 

with a massive neutral scalar field, but only di Sessa deals with the problem of the 

associated Green function. In this paper we use the same coordinate system and 

quantization as Sommerfield (massive neutral scalar field). The Pauli-Jordan and 

the advanced and retarded Green functions will be calculated and the divergence 

of the Feynman propagator will be demonstrated. 

In section 2, after a brief exposition of the two-dimensional Milne and Rindler 

space-times we display the Klein-Gordon equation in the Milne system. Two sets 

of mode solutions are presented. In section 3 two criteria of choosing positive and 

negative frequency modes are discussed and the Sommerfield criterium is adopted. 

In section 4 we calculate the Pauli-Jordan function, the advanced and retarded 

Green functions and we demonstrate that the Feynman propagator diverges. The 

convergence and evaluation of certain integrals in the comples plane is discussed in 

Appendix A. The addition theorem for the cylinder functions will be generalized 

in Appendix B. 

In this paper we use the convention h = c = kB = 1. 

2. Massive scalar field in Milne's universe 

Let us consider a two-dimensional Minkowski space-time with line element 

We shall use the following coordinate transformation 
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In this case the line element eq. (2.1) becomes 

This transformation covers only the region y1 > JyO1. The ( e j q )  coordinate 

system is called Rindlerk coordinates. It can be shown that this system is one 

naturally suited to an observer with constant proper acceleration
g
. 

As this system does not cover the whole Minkovski space-time, we shall select 

the following additional coordinate transformation (see Fig. 1) 

y0 = -r] sinh ( 
y1 = -qcosh [ 

Region I1 (Rindler) 

y0 = q cosht 
Region F (Milne) 

y1 = q sinh E 

y0 = -qcosh 5 
Region P (Milne) 

y1 = -qsinh 

The four coordinate transformation eqs. (2.2)) (2.4a), (2.4b) and (2 .4~)  to- 

gether cover a11 Minkovski space time. 

The coordinate systems that cover the region inside the light cone are a two- 

dimensional Milne Universe. 

Using the transformation eq. (2.4b) the line element eq. (2.1) becomes 

Observers who perceive the universe expanding from y0 = O have world lines 

f=const. The surfaces q =const are hyperboles where we postulate the commu- 

tation relation between the fields. 
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Fig. 1 

It is useful to define new variables 7, r in the region (F) 

In order to quantize a neutra1 rnassive scalar field it is necessary to solve the 

Klein-Gordon equation in the Milne Universe. 

It hecomes 

The time-dependent part of the Klein-Gordon equation is a Bessel equation 

The set of solutions 4A x eiACX, (mq) and 4; a e - i A t X ;  (mq) is complete and the 

@ field can be expanded in the form 
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We shall take the scalar product 

( 9 1 , 4 ~ )  = -i fidcPrnl ã, m; c.> (2.10) 

where dCp = qpdC, with $ a future-directed unit vector orthogonal to the space- 

like hypersurface C, and dCp is the volume element in C.  

The Klein-Gordon eq.(2.7) posesses two distinct complete sets of orthonormal 

mode solutions (orthonormal under the scalar product (2.10)). 

{ux,  u ; )  and { v x ,  v i )  namely 

and 

H$) and H!:) are the Bessel functions of the third kind or Hankel functions of 

imaginary order. Jix is the Bessel function of first kind with imaginary orderlO. 

Positive and negative frequency modes must be distinguished in the quanti- 

zation in order to identify a(X) and at(X) as annihilation and creation operators 

of quanta of the field. If the space-time has a stationary geometry there exists a 

time-like Killing vector K. This vector generates a one parameter Lie group of 

isometries, and the orthonormal modes satisfy 

LKu = -iwu (2.13) 

where LK is the Lie derivative with respect to K. In this case there is a natural 

way of defining positive and negative frequency modes. 
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The vacuum associated with these modes is called trivial or Killing vacuum". 

However, the line element eq. (2.5) is time ( v )  dependent and the curves [=const 

are not integral curves of a time-like Killing vector K. There is no simple way 

of definind positive and negative frequency modes. Different solutions for this 

problem were presented by Sommerfield and di Sessa. For each way of defining 

positive and negative modes we have different quantizations. 

3. The di Sessa and Sommerfield quantization 

(a) di Sessa Criterion 

This author claims that the concept of positive frequency requires for its def- 

inition a comp1exification of the real Lorentzian manifold. In this situation the 

positive frequency modes are those which vanish when t -i -ice. It is easy to see 

that 

Then eqs. (2.11a) and (2.11b) are positive and negative frequency modes 

respectively. 

Jix and J-ix do not vanish when 4 -h, so (2.12a) and (2.12b) do not 

have definite positive or negative frequency in the di Sessa criterion. 

The vacuum associated with eqs. (2.11a) and (2.11b) will be represented by 

10 > . 

(b) Sommerfield Criterion 

The operator 

generates translation in r ,  and is called dilatation generator. It satisfies the Heisen- 

berg equation 
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Sommerfield used this fact and the additional fact that in the light cone (r] + O 

or r -, -00) we have 

to choose eqs. (2.12a) and (2.12b) as positive and negative dilatation frequency 

modes respectively. 

Using eqs.(2.9), (2.12a), (2.12b), (3.2) and (3.4) we obtain 

00 

lim D(r )  cx '/ dAlAl(a(A)at(~) + a t (~)a (A))  
r-+-00 2 -, 

So the Fock space can be constructed and the associated vacuum will be rep- 

resented by IÕ > . The problem is to find the Green functions associated with the 

modes (2.12a), (2.12b). 

The Feynman propagator of the modes (2.11a) and (2.11b) has already been 

calculated6. 

It will be shown that the Feynman propagator associated with the modes 
. (2.12a) and (2.12b) diverges. The other propagators, the retarded and advanced 

Green functions GR and GA are defined respectively by 

G ~ ( z ,  z') = -0 (zO - 50') G(Z, 5') (3.6) 

GA (z, 2') = O(zO' - zO) G(Z, z') (3.7) 

where G(z,x1) is known as the Pauli-Jordan function, which is defined as the 

expected value of the commutator of the field in the vacuum state. 

iG(z,zl) =< ÕI[@(z),@(z')]lÕ > (3.8) 

The Feynman propagator GF is defined as the time ordered product of fields 

i G ~ ( x , z ' )  =< ~ I T @ ( x ) @ ( x ' ) ~ o  >= 

C3 (zO - zO') G+ (z, z') $ O (sol - zO) G- (z, z') 
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where 

and G+(x, z') and G- (x, x') are the Wightman functions. 

4. The Green function of the fields 

The Pauli-Jordan function of the fields will be calculated in this section using 

the set (2.12a), (2.12b) and the result is the same as that obtained using the 

complete set (2.11a), (2.11b) (di Sessa modes). 

This is not a trivial result. We know that if we have two sets of orthonormal 

modes {uA,u;) and {vx,v;), the Pauli-Jordan function calculated using the two 

sets will be the same if the two sets are complete. Studying the sets (2.11) and 

(2.12) we see that the zero modes of (2.12) can not be defined. So, it is straight- 

forward to conclude that the modes uo and uó can not be expressed using the set 

eq. (2.12). The two sets are not equivalent and the set eq. (2.12) is not complete 

in any space of functions which contains all the elements of eq. (2.11). 

The calculation of the Bogoliubov coefficients between the sets (2.11) and 

(2.12) results is 

e*' 

&V = (v,,.:) = (--)1'26(p 2 sinh - LJ) 

It is not allowed LJ = O. When p = O, ap, = ao,  O. The same holds for Pp,. 
So we do not have a Bogoliubov transformation (in strictum sensum) between the 

sets (2.11) and (2.12). 

We will also demonstrate that the Feyman Propagator diverges. The Pauli- 

Jordan function can be split into its positive and negative frequency parts as 

iG(x, x') = G+(s,  s') - G-(x, x') t4.1) 

where 
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and 
03 

G-(x,xl) = /__ dXv;(x)(v;(x1))* ( 4 . 2 ~ )  

Substituting eqs. (2.12a), (2.12b) in (4.2a) and (4.2b) we have 

dX 
e i A ( E - t 1 )  J. + I (  m il) J -ilxl(mill) (4.36) 

The Feyman propagator (3.9) diverges because the integrals (4.3a) and (4.3b) 

calculated individually are divergent since when X -t O+, 0- the integrand behaves 

like ~ ~ ( m ~ )   mil') + p ,  Ipl bounded near the origin ( A  = O). Let us study 

this divergence. 

When v > v' GF (x, x') = G+ (x, x') , then: 

* dX 
tos A(< - E') J - i ~  ( m ~ )  J ~ A  (w') V > d (4.4) 

This is an improper integral and its value is obtained when we make the lower 

(and upper) limit tend to zero (and 00). 

Then 

R 
i m  c A (  - C') J-ix (mil) Jir (mn') 

E.+o+ 2 sinhaX 
R+ w 

dX 
= iim - 

2 sinhaX 
(E - t') J-ix ( w )  Jix (mil') -t 

tos ( E  - E') J - i ~  (mil) J ~ A  (mil') 

The second integral in eq. (4.6) does converge if r ) ' / ~  # e(-(' and # e(-('. 

This is equivalent to choosing points separated by a space-time interval not 

equal to zero. The first integral in eq. (4.6) diverges whenever Jo(mq) and 

Jo(mqt) differ from zero. In fact, the value of the first integral in eq. (4.6) is 

log i ~ ~ ( r n ~ )  ~ ~ ( m ~ ' )  f R(c) where R(€) is bounded. The behavior of the Feynman 

propagator is ilustrated below. 
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Fig. 2 - (vi is the i'th root of Jo(mq) = 0). 

In the evaluation of the Pauli-Jordan function, the divergence can be elimi- 

nated when we calculate G+ - G- as the principal value of an integral. 

d A  e"('-e) J - ~ X  (mp) J,,+ (mp') i- 

Defining 

1 
~ X ( Z I , Z Z , Z ~ )  = - eiXzl LiX (mz2) .IiX (mz3) 

sinh T A  

The expression (4.7) can be written as 

where 
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When mq and mq' are not roots of Jo, I fxl tends to infinity as (A-'(, when X -t O. 

However, the integrals are finite if we adopt the principal value at the origin 

(A = O). The function fx is analytic with respect to X in the whole complex plane 

except a t  the points X = ni (n E 2). We have an infinite number of first order 

poles, and the residue of fx at these points is 

1 
Res(fA; ni) = -e-nz1 Jn(mz2)  Jn(mzs)  (4.11) 

A 

Two distinct contours C and C' will be used to calculate Ii and I2 (see fig. 3). 

Fig. 3 

C2 and C4 cross the imaginary axis at the middle point of the adjacent poles 

1.e. 

then 
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1 
R = q + - - + m  

2 

and 

1 
R = q + - - t o 0  

2 

In Appendix A we demonstrate eqs. (4.12a) and (4.12b). 

By the Cauchy theorern 

If e Z l z  > 1, and we take the limit of the eq. (4.13) when E -+ O, q  --+ w :,e 

get 

03 L fx (zl ,  z2, z3)dX - niRes(fA; O) = 

03 

2ni Res( fx ;  ni) 
n=l 

Therefore using eq. (4.11) 

Similarly, when eZl% < 1 starting from 
"2 

fA  ( t i ,  a2,  z3)dX = -2ni Res(fx; ni) 
n=-1 

we get, taking the limit 
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Therefore using eq. (4.11) 

Using eqs. (4.10a) and (4.10b) we have 



B.F. Svaiter and N.F. Svaiter 

The space-time interval o = (yO - y01)2 - (yl - y1')2 in the coordinates (r], c) 
can be written as 

If o < O (which corresponds to space-like separated events) there are two possibil- 

ities 

In the cases (4.22a) and (4.22b) Il = I2 so G(x,xl) = 0. 

If a > O (which corresponds to time-like separated events) there are again two 

possibilities 

It should be noted that in (4.23a) r]' > q and in (4.23b) q > q'. 

In the case (4.23a) (a > O, q1 > q) 

In the case (4.2313) (o > O, r] > q') 

Thus using eqs. (4.9), (4.24a) and (4.24b) 
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where 

-1 q < o  

The addition theorem of the Bessel functions states that 

00 

Jo (ms) = J~ (mq) J~ (md)  eine 
n=-co 

where 

Taking the analytical extension of O = i(( - E') we get, using eq. (4.21) 

s = ' 9 1 2  

00 

~ ~ ( r n o ' / ~ )  = J n ( m ~ ) J n ( m q l ) e  .(C-& 
n=-00 

(see Appendix B for a more detailed demonstration). 

Finally substituting eqs. (4.27) in (4.25) and using eq. (4.1) we get 

This coincides with the result obtained by di Sessa6. 

5. Summary and Discussion 

In this paper we have studied two sets of functions commonly employed in 

literature to expand the field operator d(x) that describes a neutra1 massive scalar 

field in a portion of Minkovski space-time that is covered by the Milne coordinate 

systems. These sets are usually regarded as complete and equivalent. We showed 

that the space generated by the set (2.12) does not contain the space generated 

by the set (2.11). 
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In a second step we proved that aithough we do not have a Bogoliubov trans- 

formation or an equivalence between the two sets, the Pauli-Jordan propagator is 

the same for both sets. 

rverges We proved that the Feynman propagator associated with the set (2.12) d' 

for almost a11 the values of (g  , E ) ,  (g' ,  c'). In fact it will not diverge only in a set 

a zero measure. It is not clear if this divergence is connected with the infrared 

divergence presented by Wightman in a theory that describes a massless boson in 

a two-dimensional space-time. This point deserves further investigations. 

The following question naturally arises from this work: 

If 

- (uX, ui) ,  (vx, V;} are two sets of orthonormal mode solutions employed to ex- 

pand a bosonic field operator in an infinite volume; 

- only a discrete set (or for a set that in some sense has zero measure) of index, 

modes of {uA,u;) does not admit expansion using the set {vx,v;). 

Will the Pauli-Jordan propagator be the same when calculated using 

{"A, ulf) and {vx, v;)? 

This work intendç to stress the importance of the equivalence and completeness 

relation between sets of orthonormal mode solutions. 
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Appendix A 

I t  is known that 
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Defining 

we get 

The same formula can also be expressed using the hypergeometric functions" 

Supposing (and this is most important) 3no > O such that 

Vn E Z lu + n( 2 no 

Using the definition (A.2) 

I ( ~ + l ) k l 1 ( n o ) ~  V k E N  

Now using eqs. (A.2) and (A.3) 

This inequality can be simplified 

if lu +nl > no Vn E 2. 

Let us suppose 
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then 

and using eq. (A.4) we get 

1 
I u I = q + -  forsome q E N  

2 

In the main text eq. (4.8) is 

In the contour C2 and Cq 

1 
I* iXI=q+-  q E N  

2 

Using eqs.(A.5) and (A.6), we get 

in C2 and C.4. 

Because 

7r X 
T(iX + l)i'(-iX + 1) = - 

sinh TA 

the inequality becomes 

I ix 1 m2 I ( e )  2 2  I-exp(T(z;+d))  

in C2 and C4. 

The expression 

does not change in the contour C2 and C4 so we cal1 it M, and we get 
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in C2 and C4. 

In our problem zl = E - E' is a real number and zz, (q or q') are positive. 

Then there exists K E R such that 

Let us study the case 

e z l - > l  ( K > o ) .  
22 

Using eqs. (A.7) and (A.8) 

We can choose the parametrization 

1 
C, : ~ ( o ) = ( ~ + - ) e ' ~  O < O < T  

2 

The inequality above becomes 

If O 5 O 5 ã / 2  then 2 0 / ~  I: sin O. 

We are studying the case K > O. So 



B.F. Svaiter and N.F. Svaiter 

and 

Thus using eq.(A.10) 

For the case e Z l z  < 1 ( K  < 0) the contour Cg is the adequate one. 

Similar calculations give us 

Appendix B 

We will define 

Jo is analytic in the whole complex plane and its expansion in power series 

centered a t  zero contains only even powers. Then the square root above can be 

naturally eliminated and g ( z )  is analytic in the whole complex plane except the 

origin. We will define "another" function 

n=-c0 

The series (B.2) is convergent if z # O. Then h(z )  is analytic in the whole complex 

plane except at  z = 0. 

If we take lzl = 1, 
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z = e  " Q O E R  

03 

h ( z )  = Jn(rntl) Jn(mV1)eine = 
n=-w 

03 

Jo(ms)  Jo(msl) + 2 ~ , ( m v )  J,(rnq1) cos nO . 
n=l 

Using the addition theorem and cylinder functions we get 

Now 

C J ( Z )  = g(e i e )  = ~ ~ [ r n ( ~ '  + 11/' - 2 ~ 7 ~ ~ ~ 0 s  @ ) 1 1 2 ]  

we obtain g(z)  = h ( z )  if lzl = 1. 

g(z)  - h ( z )  is analytic in C - {O) and vanishes in lzl = 1, then it must be equal to 

zero in C - {O). 

This occurs because the zeros of any analytic function are isolated inside its 

domain (open and connected) or else the function vanishes in a11 the domain. What 

we obtained is that 

and using eq. (B.3) we get 
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If O = i ( [  - c') we find 

where 

a = + - 2qqt cosh(E - E')) 
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Resumo 

Neste trabalho estudamos um campo escalar neutro e massivo em um espaço- 
tempo de Milne bi-dimensional. A quantização é feita em hipérboles que são 
superfícies Lorentz invariantes. A expansão do operador do campo é realizado 
usando-se um conjunto completo de modos ortonormais que têm frequência de di- 
latação positiva e negativa definida, Nós calculamos as funções de Green retardada 
e avançada e provamos que o propagador de Feynman diverge no sentido usual. 


