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Abstract The mathematical structure of a nontrivial geometric phase 
factor in adiabatic quantum processes is explored. Some geometric aspects 
of the compact Reimannian manifold are analyzed and the relation with the 
parameter space is discussed. 

1. Introduction 

In the past few years, there has been a widespread revival of interest in the 

adiabatic quantum system. It was started with the observation by Berry that a 

nontrivial phase factor would be developed for a quantum state in an adiabatic 

process even if the system was restored to its original conditionl. This remarkable 

quantum adiabatic phenomenon is now known as Berry's phase, and various ap- 

plications have been made in solid state physics2, molecular physics3 and even in 

optics4. The connections between the nontriviality of the adiabatic phase and the 

gauge anomalies in chiral fermion systems have also been established5 recently. 

On the other hand, a mathematical interpretation of this quantum adiabatic 

theorem was given in the context of a Hermitian line bundle over the parameter 

manifold. It was found that the geometric phase factor of Berry is precisely the 

holonomy in line bundle7. 

In this article, we shall first demonstrate how the gauge structure can be in- 

duced through an adiabatic process in a nongauge quantum system. We shall first 
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review the general nature of tha adiabatic quantum phase in a nondegenerate sys- 

tem. The gauge connection will be calculated explicitly in the magnetic monopole 

system in the following section. 

The relation between the quantum adiabatic process and the parallel transport 

of the complex line bundle or complex vector bundle over the parameter space will 

be analyzed in Section 3. Herry's holonomy in the line bundle is calculated and 

identified as the adiabatic quantum phase. The adiabatic quantum system with 

degenerate states is also discussed and its non-Abelian nature of gauge structure 

is explored. In Section 4, a quantum system of a spinIess electron interacting 

with a slow moving nucleus confined on a sN parameter manifold is taken as an 

example to illustrate the equivaiency between the non-Abelian gauge connection 

in the adiabatic quantum evolution of degenerate systems and the connection of a 

tangent bundle over sN. Section 5 is devoted to a few propositions and theorems 

in Riemann geometry. Information concerning the eigenspectra of the quantum 

system allows one to determine the geometry of the parameters space. A brief 

remark is contained in the last section. 

2. Q u a n t u m  adiabat ic  phase  

When a quanturn system is perturbed in a controllable fashion, the Hamil- 

tonian of the system can he expressed in terms of a set of external parameters 

in addítion to the usual dynamical observables z' and P. Let the set of external 

controllable parameters be denoted by X = {A1, ..., A,), the the Hamiltonian takes 

the form H = H(? ,g  A), where A,(i = 1, ..., m) are functions of time t .  The evo- 

lution of the system is by a continuous change of the set of parameters X = X(t)  

from time t = O to t = T ,  and the dynamics of the system is governed by the time 

dependend Schrodinger equation, 

a 
i--ln, X(t) >= H(X(t))Jn, X(t) >, 
at , 

with the condition that the system is initially in the eigenstate n,  
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If the system is under adiabatic perturbation, the wave function at  time T, ac- 

cording to the Born-Oppenheimer approximation, can be expressed as 

where En(A( t ) )  is the nondegenerate eigenenergy, 

and 

The first term in the exponential of eq. (2.3) is the usual dynamic phase factor, 

while the second one is on nondynamical is origin. It was traditionally ignored 

due to the common belief that an extra phase factor in the state vector could be 

chosen to compensate the nondynamical oneg. To be more precise, let us recast 

eq.(2.5) into the following form 

where 

can be treated as the gauge potential in the parameter space. It exhibits U(1) 

gauge structure when the following transformation is performed, 

then 

'Yn -) 7; = 'Yn - (En (AT) - En ( A O ) )  . 
Therefore 7; can be put to zero if tn(XT) # t n ( X o )  and 7 ,  = € - ( A T )  
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However if we consider a quantum adiabatic process in which the system is 

brought back to its initial configuration, i.e. XT = Ao, and the evolution of the 

quantum system a closed contour C in the parameter space, then a nonvanishing 

adiabatic quantum phase factor can be calculated by the loop integral 

vn = h An . dA mod 2 r  (2.10) 

where mod 2 r  arises from the single-valuedness of the arbitrary function &(A),  

namely 

~ ( A T )  - €n(Xo) = mod 2 ~ -  

In analogy with the usual Abelian gauge theory in classical field, if one defines 

the gauge cumature tensor 

- i 
- c (Em - E.)~ 

{ < n l ( V i H ) l m  >< m l ( V j H ) l n  > -(i o j)) ,(2.11) 
m#n 

where in the last equation, one makes use of the nondegenerate condition Em $ En 

and 

The contour integral can then be converted to surface integral by Stokes' theorem 

where + is the surface element of integration in the parameter space. 

As an example, let us consider the two leve1 system of a spin 112 particle in a 

magnetic field. The 2 x 2 IIamiitonian takes the form 

624 



Gauge structure and geometry in quantum adiabatic system ... 

with the eigenvalues f X = f l i / .  
The renormalized eigenvector corresponding to eigenvalue X is given by 

The degeneracy occurs at  X = 0, namely the origin of the parameter space. 

Applying eq.(2.7) to eq.(2.11), we obtain 

1 
F = -D(Al,.\29.\3) (2.17) 

One recognizes that eq.(2.16) and eq.(2.17) are respectively the gauge potential 

and the magnetic field of a Dirac monopole of strength -i located at  the origin 

of A-space. In fact, it also corresponds to a string lying along the negative As-axis 

on which the gauge potential is not defined. 

The adiabatic quantum phase evaluated from eq.(2.13) and eq.(2.17) is them 

the total magnetic flux through the surface subtended by the contour C. It is 

also precisely equal to the solid angle subtended by the contour multiplied by the 

strength of monopole charge. 

Since the gauge potential eq.(2.16) is not globally defined, and a gauge trans- 

formation would bring Ã into Ã1 corresponding to the singular string along the 

positive As-axis, i.e. 

where 
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is the azimuthal angle in X-space. This gauge transformation corresponds to a 

change in the phase factor of the eigenvector IA > 

and one is able to verify that eq.(2.7) does hold for the transformed potential A', 
-4 

expressed in terms of the transformed vector IX >, 

3. Quantum holonomy in line bundle 

The eigenvector IX(t) > of H(A(t)) can be regarded as a fiber at each point 

X = {Ai, ..., A,) in the parameter space. For simplicity, we rescale the energy leve1 

so that the eigenvalues is zero, i.e., 

then IX > forms a line bundle over the parameter manifold A. 

The adiabatic change of a quantum system by slowly varying X(t) in the pa- 

rameter manifold is equivalent to parallel transport of a complex line bundle over 

h. In order to demonstrata this equivalency, let us restrict our discussion to the 

case of a nondegenerate quantum system. An infinitesimal Lie dragging of a com- 

plex line bundle from X to X + 6X in the parameter manifold h is defined that 

the projection of the Lie dragged fiber /$(A + 6X) > on the I$(X) > is invariant, 

namely 

< ,+(A + 6X)l+(A) >= 1 + 0(6X2) ( 3 4  

which reduces to the following parallel transport equation 

To express the above equation in terms of loca1 cross section, 
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J+(A) >= e'71A > , 

one can rewrite the parallel transport equation as follows 

or equivalently 

< AI$ > +,AIVA(A > 4 < AI$ >= o 

If one defines the connection in the complex line bundle 

the parallel transport equation eq.(3.6) can be identified easily as the covariant 

derivative 

(Vx i- iA )  < AI$ >= DA < AI$  >= O 

where the first equality of the above equation defines the operator 

For a parallel transport of a vector along the closed contour C on A, one 

obtains the holonomy of the connection in the complex line bundle by integrating 

eq.(3.5) 

Let us consider the quantum system of pfold degeneracy. If we denote the 

set of eigenvectors by {IS, >, a = i, ...p), then a parallel transport of a vector $ 

sat isfies 

< s,(X)l$(A + 6A) > - < S,(X)I$(A) >= 0(6A2) 

for a = 1, ...p. 
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Expressing the vector t,ú in terms of local section of the complex vector bundle, 

one reduces eq. (3.1 1) to 

where 

Aab = i < Sa(A)lVSb(A) > (3.13) 

Instead of a single holonomy angle in the degenerate case, one obtains a holonomy 

matrix of the connection in the complex vector bundle. The p x p matrix elements 

are given as 

Since A,* od eq.(3.13) is a matrix valued connection of the complex vector 

bundle, the corresponding Werry's curvature exhibits the gauge structure of non- 

Abelian Yang-Mills type. If we express Berry7s connection in the vector form Áab, 

the curvature ca,n be calculated as follows 

Bab = X Áab + (Á x . (3.14) 

The non-Abelian gaugc: nature arisen from a nongauged quantum system in 

the adiabatic approximatictn was recently observed by ~ i *  in a specific example 

of system with the fast and the slow variables. We shall explicitly calculate the 

connection of a tangent bundle over the parameter space of sN in the following 

Section. 

4. Complex vector bundle on sN 

Let us consider the motion of an electron which interacts with a nucleus at 

an instantaneous position R in (N + 1)-dimensional space. Because of the large 

mass ratio of the nucleus to the electron, the change in R. is so slow that the 

motion of the electron can be regarded as a quantum adiabatic process in which 

the parameter manifold is just a subspace of R ~ + ' .  The Hamiltonian describing 

the whole system is given by 
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According to the adiabatic approximation, the total wave function +(R, r )  can 

be written as the direct product of the nucleus wave function and the electron wave 

function with the force center located at the instantaneous position of the nucleus 

R ,  i.e.. 

where the electron wave function (o,(R,r) is related to the instantaneous eigen- 

state In, R > by 

If we assume that the electron moves on an N-sphere, the wave function (o, is 

of the type of hyperspherical harmonia. The Schrõdinger equation 

p2 
{ G + v ( ~ , r ) } l n , ~ > = ~ n l n , ~ >  , (4.4) 

admits eigenvectors of d(N,l)-fold degeneracy with degenrate eigenvalue E, = 

E (N, I ) ,  where 

and 

The integer 1 is the degree of the harmonic polynomials and the constant a char- 

acterizes the square of curvature of sN on which the motion of the electron is 

confined. 

For the case 1 = 1, we have d(N, 1) = N, and the set of N-fold degenerate 

eigenvectors allows us to construct Berry's connection Afb = i < a, RIV"Jb,R > . 
Since the Hamiltonian eq.(4.1) of SO(N + 1) symmetry will be reduced to 

629 
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SO(N) symmetry when R is taken instantaneous by fixed, then the coset space 

SO(N + l ) /SO(N) is just the sN. Therefore if we take sN as the parameter 

space, namely, if we further confine the motion of the nucleus to the subspace, 

]RI = constant in the RN" space, the evolution of the N-fold degenerate elec- 

tron wave functions during the quantum adiabatic processes can then be treated 

as the parallel transport of an N-dimensional complex vectorbundle on sN and 

Afb = i < a,R(V"Ib, R >, Berry's connection is then just the connection of the 

frame bundle on sN. 
Consider a stereographic projection of a point Q of sN onto the equatorial 

plane at P from the north pole N (See fig. 1). The line passing N and P is given 

by 

Fig.1 - Stereographic projection of SN. 

a(t) = t P  + (1 - t)N 

and the coordinates of Q are determined by 
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Since P = ( v i ,  . . .vN,O), one obtains 

Let 

4 : P H Q E S ~ - N  

the Riemannian metric of Sn can be calculated from the differential map 

where 
d 

d$(Ü)  = -$(? + tU)l t , ,  = (4.13) 
dt 

for f,k? E RN to be taken as basis vectors one finds that the metric gab becomes 

which enables us to derive the connection on the frame bundle by evaluating the 

connection coefficients 

The off-diagonal gauge connection can be finally expressed in terms of S O ( N )  

generators 

(Xp)ab = 6pabvb - b p b b . l  (4.17-1 

631 
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and 

The non-abelian gauge struçture induced by parallel transport of the frame bundle 

over the parameter manifold is verified. 

5. The geometry of the parameter manifold 

As we have learned from the previous sections, a degenerate quantum system 

can provide a frame bundle over the parameter space. Therefore some general 

aspects of the geometry in the parameter space can be extracted from the knowl- 

edge of the connection in the bundle as well as from the curvature tensor. It is the 

purpose of this section to explore some geometric properties of certain parameter 

spaces. In order to achieve this goaI, we shall establish the following propostions. 

Let us consider an orientable compact Riemannian manifold, we have 

Proposition 1: Any harmonic form must be a closed form as well as a co-closed 

one. Furthermore, a harmonic function is always a constant. 

Proof: Let a and /3 be pforms, and let 

then 

< A a , p  > =< (d6 + 6d)a,P > 

=< 6a,6P > + < da, dp > 

= < c r , a p >  . 

For CY = p =harmonic form, 
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Hence a is closed and co-closed. Furthermore, if cr=harmonic zero form, i.e. a 

harmonic function, then it must be a constant because d a  = 0. 0 

Proposition 2: A compact Riemannian manifold is simply connected if the corre- 

sponding Ricci curvature is positive definite. 

Proof: Consider the following integration 

where cri is the component of a harmonic I-form, then according to Prop.1, d a  = O 

implies that viai = V,aj. Since the first integration onthe right hand side of 

eq.(5.1) vanishes, i.e. 

Therefore eq.(5.1) and eq.(5.2) dernand that a = O identically, and hence bl(M) = 

O. The absence of Betti number bl(M) implies that M is simply connected. 0 
A Riemannian manifold M with vanishing covariant derivative of curvature is 

locally symmetric, and for a simply connected M ,  locally symmetric also implies 

globally ~ ~ m m e t r i c ' ~ .  It is known that there exist only four classes of simply con- 

nected and symmetric space with positive definite curvature: sphere, C P ~ ,  Q P ~  

and Cayley plane, namely the rank one symmetric spaces, with the sectional cur- 

vature taking the values between a and 1 except the ~ ~ h e r e s ' ~ ~ " .  Let us define 

and quote the following two theorems without proofs; 

T1: Minimal diameter theorem12: A complete simply connected manifold M, such 

that  D ( M )  > and 1 2 KM 2 a ,  is homeomorphic to sN. 

T2: Li-Yau theorem13: For a compact Riemannian manifold M such that  d M  = 

O, Rij positive definite, then the first eigenvalue of the Laplacian operator 

A i  2 $ ( . i r l ~ ( M ) ) ' .  

633 
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Now we are in a position to analyse the geometry of the parameter space for 

the degenerate quantum adiabatic system. 

The curvature tensor and the Ricci tensor can be calculated from the gauge 

connection 

and 

The determination of the eigenspectra of the quantum system, together with the 

Ricci tensor obtained from the set of degenerate wave vectors allows one to test 

the positivity of curvature. The general properties of the parameter space can 

then be understood by the previous propositions and theorems. 

6. Conclusions and Remarks 

The investigation of nonintegrable quantum phase in adiabatic systems by the 

method of fiber bundle has shown the richness of its mathematical structure in 

some details. The general aspects of the geometry in parameter manifold can be 

learned from Berry's connection in the line bundle for the case of a nondegenerate 

system and in the frame bundle for the case of a degenerate qnantum system. 

The criteria for classyfying the parameter space are formulated in propositions 

and theorems for which we provide the proofs to the propositions and leave the 

proofs of the theorems to the original papers because of the technical involvement 

and lengthy derivations. For the quanturn system of an electron interacting with a 

nucleus, the detailed knowledge of the degenerate eigenstates and the precise mea- 

surement of the energy spectra would provide some information on the geometry 

of the parameter space, arid hence the motion of the nucleus. 
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Appendix A: Calculation of eigenspectra of Laplace-Beltrami operator on sN 
Let sN (2) = {X E RN+l ; 1x1 = r), sN ( 1 )  = sN,  and if the N-dimensional 

spherical coordinate is denoted as E s N ,  then 

where P is the map such that [O, a] x sN -i R~+'. 
Consider a chart (u,(o) on sN and express s in terms of the local coordinate, 

since 

We can reduce the Riemannian metric hij on sN with respect to the chart (u,cp) 

by 

The corresponding Riemannian metric gl, in R ~ + '  with respect to another chart 

( v , $ )  such that 

is given by: 

gn = O rmfor i = 1, ... N 

g .  = r2h.. 
13 11 

and det g,, = r2* det hij, or Jg = rNJh.  Consider the function d(r,[); we 

calculate 
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For a harmonic function, applying the method of separation of variables, 

can be reduced to 

1 
ASNW = --1(N + I - l)W. 

r2 

Therefore the eigenspectra of the Laplace-Beltrami operator is given by the ex- 

pression 

E(N,  I) = a l ( N  + 1 - 1) 

with 

Appendix B: Calculation of the order of degeneracy. 

Let us denote WL the set of homogeneous polynomials of degrees 1 in zl, ... ZN, 
and let 

be the element of the harmonic polynomial of degree I ,  then the order of degeneracy 

of the harmonic polynomial of degree 1 is equivalent to the dimension of Hl, namely, 

the number of linearly independent elements in H,. 

Since x ~ ~ x ~ ~ . . . ~ ~ ~  with C P, = 1 form the basis of Wl space which has dimen- 

sion 

then any Wl can be expressed as 

where Fk is the homogeneous polynomial of degree 1 - k in x2, ... ZN. 
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Consider 

the wnishing of A R ~ F  = O implies that  

Fk+2 = - A R ~ - l F k  

for O 5 k 5 1 - 2; therefore F E Hl can be uniquely determined by Fo and Fl ,  i.e. 

Let Fo E U1 and Fl E UIPl be the polynomial of degree I and I - 1 respectively in 

x2, ... G N ,  and define the linear map $0 and $1 by 

4 0 : U l  - + H l  or Fo-+F(Fo,O) 

: Ul-l -) 111 0r Fl -r F(0 ,F l )  

then $o and are bijective. Therefore we conclude that  

hence we have 

H1 = So(U1) + 41 (Ul-1. 

Since 

N CN+l-l - ~N+1-2 d i m  Ul = H: - HlU1 - I I-  I 

one obtains that the order of degeneracy is 

d i m  Hl = d i m  Ul + d i m  UIP1  

= ( N  $21 - 2)(N $ 1  - 3)!/1!(N - 2)! 
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R e s u m o  

A estrutura matemática de um fator de fase geométrico não-trivial em proces- 
sos qiiânticos adiabáticos é explorada. Alguns aspectos geométricos da  variedade 
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Riemaaniana compacta são analisados, e sua relação com o espaço de parâmetros 
é discutida. 


