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Abstract We evaluate Feynman's propagator exactly for the time- 
dependent three-dimensional charged harmonic oscillator in a time-varying 
magnetic field, by solving the Schrõdinger equation through an adequate 
scale transformation on space and time. 

Despite the vast range of operational versatility of Feynman's path-integration, 

the evaluation of the propagator for certain time-dependent systems, if carried out 

in a straightforward manner, can become much more difficult than to obtain the 

solution to the corresponding Schrõdinger equation. 

As an example of the state of the art, we point out the recent, formidable 

calculation of the propagator for the time-dependent forced harmonic oscillator 

with damping by chengl, via a generalized version of a method introduced by 

~ o n t r o l l ~ .  In contrast, the exact solution to the corresponding Schrõdinger equa- 

tion can be found in a miich simpler way3. In another illustrative example, the 

exact evaluation of the propagator for a charged particle in a time-varying elec- 

tromagnetic field was possible to be carried out only for the case of a constant 

cyclotron frequency4. 

It would be, therefore, somewhat discouraging to proceed further on applying 

the afore-mentioned path-integration techniques for other more elabdrated time- 

dependent problems. Rather, they appeal for alternative versatile methods for 
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the evaluation for propagators without undergoing tedious and lengthy calcula- 

tions, in such a way as to make Feynman's path-integration aesthetically more 

attractive5-'. 

In this work, we tackle the problem of a time-dependent three-dimensional 

charged harmonic oscillator in a time-varying magnetic field through a different 

approach. We solve directly the corresponding Schrõdinger equation through an 

adequate change of variable and time reparametrization. The essential ideal0 in 

this paper is to make use of the nonlinear superposition law of Ray and Reid"*12, 

which is a general procedure to find a global transformation of space and the time 

by introducing two arbitrary functions, say, S(T) and p(r),  where T is the new 

time parameter, which will permit us to reduce the original Schrõdinger equation 

for the standard harmonic oscillator with constant cyclotron frequency and mass. 

This will be done through a convenient choice of s(r)  and 

We begin by writing the Hamiltonian for our system as9 

1 2 1 
H(P,Z,t) = - 

2m (4 [P + % ~ ( t ) ]  + -im(t)wZ(t)jz2 + y2 + r'], (1) 

where the time-varying magnetic field B(t) is applied along the z-axis and the 

gauge is chosen such that the vector potential A is given by ( f ~ ( t ) ~ ,  - ~ B ( ~ ) z , o ) .  

Then, the corresponding Schrõdinger equation reads 

where n2(t) - w2(t) + :w:(t), with w(t) and w,(t) [= qB(t)/m(t)c] being the 

harmonic and cyclotron frequencies, respectively. 

Let us make the following transformations, 
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where r is a single-valued function related to t by 

In order to write the Schrôdinger equation in terrns of the new variables Z,Y,.? 

and r ,  we also have to use th.e changes in the partia1 derivatives, that is, 

where the prime denotes differentiations with respect to the parameter r. Using 

eqs.(3) and (5) in eq.(l) and making h = 1, we obtain 

where the function t$(it, ~ , z ,  r )  can be regarded as the wave function of the original 

problem written in terms of the new variables (2, g, t, r ) .  

Now, let us make the ansatdO 

+(E, g, % r )  = exp[if (%B, %r)Ix(%8, % 7) 

Substituting eq.(7) in eq.(6) we obtain 
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Now, we will choose f ( g , ~ ,  i,?) in order to have: 

-- SI 1 
'f - ,-3 = o 4 f(s, g, r, r)  = -rmss1~2 + f ~ ( g ,  r, r), 

m s 2 a z  s 2 
( 9 4  

-- - SI 1 
p-i = O -+ f ( t , g ,  t , r )  = -pmss1i2 + fs(z,g,r), . ( 9 ~ )  

m s 2 d i  s 2 

The equations (9a,b,c) lead to the solution 

1 
f ( ~ ,  g, Z, r )  = - p m s s ' ( ~ ~  + g2 + z2) + g(r) , 

2 
(10) 

where g(r )  is an arbitrary function of r still to be determined. 

Inserting eq.(9) and eq.(lO) in eq.(8) and rearranging terms we obtain 

a i a a a  a ++-(-+-+-)-qg 2 - z  -)+ 
ar 2ms2p a 9  ag2 a 9  2rp a% ag  

- 3 SI 1 2 1 2  
d g - i - p - + ( ~ 2 + f 2 + i 2 ) ( ~ m s 2 w 2 - - m l i  ( s )  + -h 2 s 2 2 

cl d + --(rimss')] 2 cir x(i,i i ,  i, r )  . (11) 

Now, we will try to find g(r) in such a way that the right-hand side of eq.(ll) 

is zero. Then 
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and 
1 1 P d - rns2w2 - - mp2(s')2 + -- (pmss') = 0 . 
2 2 2 dr (124 

Integration of eq. (12a) leads to 

where we have appropriately chosen the constant of integration, and the integra- 

tion of eq.(l2b) leads to 

Now, we are ready to choose the arbitrary function ~ ( r )  in order to reduce the 

complicated differential equation given by eq. (li) into a much simpler me ,  with 

no time-dependent terms. Then let us make
g 

ms2p = M~ , M~ = const . 

Substituting eqs. (12) and (15) into eq. (11) we obtain 

This reduces the original problem to the well-known harmonic oscillator in a 

constant magnetic field wit,h mass and frequency constants, given respectively by 

Mo and woc. Therefore, the desired solution is given by 
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+(.,t) = {exp[if (z ,~,z . ,~) lx(z ,Y,z . , r )}  2 = ,/,(,) (17) 

Y = yls(r)  
= z/s(r),  7 = ~ ( t )  

However, let us obtain explicitly the propagator K ( 2 , t ;  &,to) of our problem, 

instead of writing the wave-function $(?, t). The propagator is simply the special 

solution of the Schrodinger equation for t > to, subject to the condition 

lim K(Z,t;Zo,to) =b(?-Zo) , 
t -40 

with 

? = (x, y, z) and 20 = (xo, yo, zo) 

This K (kernel or propagator) give us the solution for any arbitrary initial state 

+(Zo,to) : 

Analogously, for the harmonic oscillator in a constant magnetic field, the fol- 

lowing also holds 

+ -, 
where ~hB,.(f, r ;  6, rO) is the respective propagator and z r Z, Y, 2, 20 so, jjo, %. 

By using these results,.we have 

where f *(;o, ro) means complex conjugate. Substituting eqs. (10), (13) into eq. 

(21) and by using the well-known result of K ~ ~ . ( S ,  T; $0, rO) l1 we finally obtain 

the sought propagator K 
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where we have brought back h and made the identification 

(e)(") =i, 
dt dr 

(the dot (.) here means differentiation with respect to t ) .  

It is interesting to note that g(r) is imaginary and thus, exp[ ig(~)]  is not a 

phase, but assumes a real value, contributing to the pre-exponential factor. In 

other words, this term is exactly the jacobian arising from the change of variable 

in the path integral rneasure when one works with Feynman's f~rrnalisrn.'~ 

We would like to thank Antônio B. Nassar (DP-UCLA) for very stimulating 

discussions and correspondence on the subject of this work. 

References 

1. B.K. Cheng, J. Math. Phys. 25, 1804 (1984). 

2. E.W. Montroll, Commun. Pure Appl. Math. 5, 415 (1952). 

3. A.B. Nassar, J.  Math. Phys. 27, 755 (1986). 

4. B.K. Cheng, Phys. Lett. 100A, 490 (1984). 

5. A.B. Nassar, J.M.F. Bmsalo, and P.T.S. Alencar, Phys. Lett. 113A, 365 

(1986). 

6. A.K. Dhara and S.W. Lawande, Phys. Rev. A30 (1984) and J. Phys. A17, 

2423 (1984). 

604 



Feynman's propagator for the time-dependem! ... 
7. H. Kohl and R.M. Dreizler, Phys. Lett. 98A, 95 (1983) and J. de Phys. 45, 

C635 (1984). 

8. G. Junker and A. Inomata, Phys. Lett. l lOA, 195 (1985). 

9. A.B. Nassar and R.T. Berg, Phys. Rev. A34, 2462 (1986). 

10. C.F. de Souza and A.S. Dutra, Phys. Lett. 123A. 297 (1987). 

11. J.R. Ray, Phys. Rev. A28, 2603 (1983). 

12. J.L. Reid and J.R. Ray, J .  Math. Phys. 24,2433 (1983) and Z. Angew. Math. 

Mech. 64, 365 (1984). 

13. A.B. Nassar, J.M.F. Bassalo, H.S. Antunes Neto and P.T.S. Alencar, I1 Nuovo 

Cimento 93A, 195 (1986). 

' 14. R.P. Feynman and A.R. Hibbs, Quantum Mcchanics and Path Integrais 

(McGraw-Hill, New York, 1965). 

Resumo 

Neste trabalho, calculamos exatamente o propagador de Feynman para O os- 
cilador harmônico tridimensional dependente do tempo em um campo magnético 
também dependente do tempo, resolvendo a equação de Schrõdinger por in- 
termédio de uma adequada transformação de eicala no tempo e no espaço. 


