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Abstract A Yang-Mills approach for gravitation is considered here. It 
shows two dynamical equations, one for curvature and other for torsion. In 
the Riemannian limit Einstein's equation is obtained. 

1. Introduction 

An argument to consider a Yang-Milis (YM) ciassical approach for gravitation 

is its geometrical analogy with general relativity (GR). If we look for a space-time 

gauge model for gravitation, it is necessary to investigate the features of space-time 

gauge-like characteristics. On any differentiable manifold there is the bundle of 

affine frames, naturally defined, whose structural group is the affine linear group 

AL(n, R) = GL(n, R) x T,,. For the space-time case, in particular, the requirement 

of Lorentz frames reduces .4L(n, R) to the Poincaré group P = L: x T4. 

However, there is a 1ot of criticism concerning a YM gravitational model for 

the Poincaré group. The ~nain point frequently made is that GR does not have 

the entire Poincaré local symmetry of space-time. Gauge theories for the Poincaré 

and de Sitter groups have been extensively studied as alternative theories for 

gravitation' . 
In a previous paper2 we have shown a YM gravitational model for the Poincaré 

group, under a Inonu-Wigner contraction of the gauge Eelds. The absence of 

metric, because P is not a semi simple group, does not allow one to establish a 

lagrangian for the theory. Such a problem has been circumvented by means of Lie 
- 
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algebra invariants. This approach turns out to be a de Sitter theory, supplemented 

by weak constraints. 

Stelle and west3 analysed in detail the local geometrical structure of GR, as 

a gauge theory for the de Sitter group S0(3,2). To reproduce the structure of 

Einstein-Cartan theory, the S0(3,2) gauge symmetry was spontaneously broken 

down to the Lorentz group. In this approach the gravitational vierbein and spin 

connections were derived from the original S 0 ( 3 , 2 )  gauge fields, by passing over to 

a set of non-linearly-transforming fields, through a redefinition involving a Gold- 

stone field. The original S0(3,2) gauge fields generated pseudo-translations and 

rotations in the so-called interna1 anti-de Sitter space, under a kind of parallel 

transport. 

Norris et proposed an underlying fibre-bundle strwture' for gauge theories 

of gravitation, and an extension to an affine structure group. They considered an 

extension of the linear frame bundle to the aEne frame bundle, and pointed out 

that the torsion is just one part of the 'total curvature" (curvature + torsion). 

~ i e l k e ~ ,  within the framework of differential geornetry, considered a Yang9s 

parallel displacement gauge theory with respect to pure gravitational fields. He 

showed that, in a four-dimensional Riemannian manifold, double self-dual solutions 

obey Einstein's vacuum equation with a cosmological term, whereas the doubie 

anti-self dual configurations satisfy the Raynich conditions of geometrodynamics. 

Under duality conditions the Stephenson-Kilmister-Yang theory not only embraces 

R,, = 0, but Nordstrorn's vacuum theory as well. 

The lagrangian structure of Poincaré gauge field equations for gravitation, 

and their Einsteinian content, under duality conditions for the sourceless case, is 

already known6. 

The disagreements to a Poincaré gauge model for gravitational may be justified 

by two main reasons: it is not a lagrangian theory under gauge-like conditions and 

if one tries to quantize it, vertices are not well defined7. The principal argument 
I 

to discard GR, as a candidate to a gauge model, is because it is not renormal- 

izable. An amended theory, Iike the de Sitter theory, which is renormalizable in 

the sourceless case, becomes divergent if one considers the stress-energy T,, as a 
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source. Moreover, Tpv cannot be a source for a microscopic case, because it is a 

macroscopic quantity (it describes a distribution of mass-energy). 

In this paper our objecive is to deal with YM equations, for the Poincaré group, 

and show how Einstein's equation can be derived by considering a macroscopic 

case. 

2. Field equations 

Poincaré Lie algebra is a vector space, and it is the direct sum of the Lorentz 

and translation sectors. In a basis with generators [Jab,  .Ic], an affine connection i; 

on the P bundle decomposes into 

F=r+s  (2.1) 

where I' = ~ ~ ~ I ' ~ ~ ~ d z p  is a Lorentz connection form and S = ich$dzA is the solder 

form8. 

Such a decomposition affects the curvature of r 

where F and T are the curvature and torsion of I' 

T = d s + r ~ s + S ~ r  (2.4) 

The above decomposition of the Lie algebra gives rise to Bianchi identities 

d F +  [I',F] = O  (2.5) 

dT + [I',T] + [ S , F ]  = O (2.6) 

Yang-Mills equations can be written, by duality symmetry, for any group, once 

its structure constants are known. For the P group they are 
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d * T + [ r , * T ] + [ S , * F ]  = O  (2.8) 

stating field equations for the sourceless case. Sources may be inserted in the above 

equations, by considering a break of such a symmetry. These sources should be the 

Noether current densities, whose charges are the generators of the P group. There- 

fore, at a first sight, they could be the density of relativistic angular momentum 

M and the stress-energy 8 : 

One notices that torsion is always present in the bundle of frames, and its 

vanishing must Iead to general relativity. 

3. Riemannian limit 

The above equations may be projected onto the base-manifold, Minkowski 

space-time, of the P-bundle, by means ,of the four-legs h:. Localy this base- 

manifold is endowed with a Riemannian structure, if we consider a Levi-Civita 

connec tion: 

which .means in components 

Sbka.X - da 
X b.p - p (3-4)  

where k is the dual of F. 

In the dual basiss these equations become, in Riemann space-time, 



where R is the dual Riemann tensor, whose components are 

1 jeaRAo = -ÉaP7646rpf 
- 4 

By lowering and raising suffxes, we may write 

1 = - - ~ P I ~ R ~ P  
4 7 6 f A @ ~ ~  

and contracting with a = X we get 

1 %ta = - É ~ P ~ ~ ~ ~ ~ ~ ~  RTPI6 
4 

Using the property 

we are led to 

RUO,= -?$R+ R$=G$ 
2 

which axe the components of Einstein tensor. 

So, eq.(3.5), by contraction (a = P ) ,  Ieads to 

which'violates the conservation law v ~ G ~ ~  = O. We conclude that M cannot be 

inserted in eq.(2.9) a s  a sorirce. However, if we take 0; = RTf: (k being a constant) 

eq. (3.6) becomes Einstein's equation 
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4 .  Conclusion 

The scenario developed here points out that Einstein's equations emerge from 

a break of dual symmetry of Bianchi's identity for torsion. Such a break cannot 

be taken for curvature, otherwise the conservation of Einstein's tensor will not be 

satisfied. Moreover, this approach yields a dynamical equation of the torsion field, 

for a general connection. 

The author is indebted to Prof. R. Aldrovandi for discussions and suggestions 

given to this paper. 
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Resumo 

Considera-se aqui um modelo de Yang-Mills para a gravitação. Este apresenta 
duas equações dinâmicas, uma para a curvatura e outra para a torção. No limite 
Riemaniano as equações de Elinstein são obtidas. 


