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Abstract A model based on coupled random waiks (CRW) is proposed to 
investigate the current and the frequency-dependent mobility. The system 
is composed of particles, hopping from mode j at site m to mode i at site m' 
under a driving force, E ( t ) .  We get an expression for the current in which 
the mobility depends on a "tunneling factorn and the difference of energy 
levels. The frequency-dependent mobility depends on the cell structure as 
well as the tunneling factor. 

1. Introduction 

Stochastic descriptions have been realized to be important for studying dynam- 

ical systemsl. Specifically the approach based on random waiks (RW) has been 

extensively utilized2-'. Montroll and weiss2 proposed the continuous-time RW 

(CTRW) considering the individual jumps specified by a time dependent distribu- 

tion. This formalism provided many applications and m ~ d e l s ~ - ~ .  For transport 

phènomena in a medium with traps, there are trapping or hopping models4 includ- 

ing repeated capture and irelease. Recently, Kehr and Haus5 studied tha relation 

between the CTRW and the trapping models. Furthermore, Zwerger and Kehr6 

gave a more general model to investigate the influence of the interna1 state on the 

frequency-dependent mobility. In this model, however, the particle can make a 

transition to neighboring sites, only when it is on the top of a potential barrier. 
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In previous papers7~8, one of the present authors proposed the coupled RW 

to take into account the couplings or interactions between the walker (particle) 

and the environment (medium and the other particles). On stochastic descriptions 

for the hopping among potential wells, it is necessary that successive jumps are 

uncorrelated and particles are supposed to remain long enough. 

The purpose of this paper is to propose a model based on coupled random 

walks (CRW) having a "tunneling " effect. The tunneling effect represents direct 

transitions between sites at the same modes, not located at top modes correspond- 

ing to the usual tunneling efFect on the energy description. In the CRW, the 

jumping probabilities (JP) (transitions) between sites are "correlated* through 

the normalization of the JP, while the successive jumps are not correlated directly 

with weight functions. To clarify the effect, we derive a general expression of the 

current, and the frequency dependent mobility is studied. 

2. Coupled random walks 

Here we assume that the particle (walker) in a well resides long enough at 

each mode. The time scale (step) that the particle's stay is short enough in a 

macroscale such that we can define modes, corresponding to energy levels liaving 

intervals AEi, AE2, ..., AE,, .... The latter condition leads us to describe a prop- 

agation in terms of the transition probabilities s~ecified by the energy intervals: 

AEl, AE2, .... 
We give the model of the CRW expressed in a form similar to the trapping 

models. The CRW is expressed by a set of coupled recursion relations in which the 

walker makes a site-to-site and/or mode-to-mode jump in the range -L 5 m 5 L. 

Let ~ ( ~ ) ( m ,  N) be the probability that the walker starting from the origin arrives 

at site m on a mode i after N steps. The recursion relation for ~ ( ' ) ( m ,  N) is 

written in the form 
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-t 

and w(') (m = f L, N )  = O and ~ ( ' ) ( m ,  N )  is normalized as follows 

where mode i represents the sequence number of energy intervals at each site, and 
+(i& j )  

~i!i(m1m + 1) and RN-l (m) are jumping probabilities normalized as 

(see fig. 1). 

Note here that the jumping probabilities are correlated through the normal- 

ization eq.(2.3), while the succesive jumps are uncorrelated. 

Following the previous papers7'8, we convert the recursion relation eq. (2.1) into 

the coriesponding continuous form. The system we consider here is a lattice walk 

of particles. To this end, we inkoduce only a continuous time t defined by 

t = NAt (At : unit time) (2-4) 

and use a set of continuous functions for t but discrete ones for i and m.* The time 

region we consider here is assumed to be long enough such that we can describe 

the stochastic motions of a particle in a well t << r, but r is small enough that 

we can define energy intervals A E; (i = 1,2, ...). 
- 

* Here we use Lhe same notations +r the continuous functions ~ ( ~ ) ( m ,  t), ~;!~*(mlm- ff.1) 

(i,;-0.j) .(i) 
and (m) for ff = $., -, O corresponding to ~ ( ~ ) ( m ,  N), PNel (mlm - a.1) and 

R;?;-'") (m) , respec tiveiy 
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Fig. 1 - Coupled random walks. (a) Graphical representation of eq. (2.1). (b) Normal- 
ization of jumping probabilities given by eq. (2.3). 



S. J.  Lee and H. Hara 

After expanding the recursion relation (2.1) of a continuous form around t = 0, 

we get a master equation 

with 

where 

and 
M 1 MY) = T(l f a.1) - - (1  * a.1) rt a.2 (a = +,-) 

2 (2.8) 

and a prime on C means to omit a: = O in the sum. In the derivation of eq. 

(2.5), we have used the normalization eq. (2.3) and the fact that the jumping 

probabilities pNi) and are of the order of At, The master eq. (2.5) is a 

general expression corresponding to the set of basic equations for the trapping 

models due to Kehr et a1.'p6. In the present master equation, the jumps between 

sites are taken into account considering modes corresponding to the intermediate 

energy intervals of the potentiaI barriers a s  shown in fig. (ia).  Also note that 

"hopping rates" are related themselves with the normalization eq. (2.6). 
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3.  Tunneling (shift) factor  

As seen in fig. 1, the mode i corresponds to an energy interval of the particle 

motions in the triipping model or hopping model. In this paper, we call the energy 

intervals "energy levelsn, for simplicity, and we call the top energy interval i = M 

the "hopping leveln. To take into account the jumping processes between sites 

~:(')(m + 1Jm) occurred at the intermediate energy levels, we introduce a shift 

factor T(,) defined by 

for each i, see fig. (2a) and T ( ~ )  = 1. Processes described by the shift factor are 

corresponding to the tunneling effect. Fig. (2b) shows that the shift factor depends 

on thickness, a,  arid heights of potential barrier, q, and V from the corresponding 

energy levels i and 1. 

In the following analysis, we study hopping models in which the T(') (which 

will be discussed shortly) is specified by 

(I) Exponential type (qia2 > 1) 

and 

where 

qi = V - i , (q1 r V) , (i = 2,3 ... M) (3.3) 

qi and V(= qi) express the height of the potential barrier from energy levels i(# 1) 

and 1. The parameter a denotes thickness of the potential barrier. 

In the derivation of the forms expressed by eqs. (3.2) and (3.3), we have 

used the fact that the one-dimensional square potential of barrier height V and 

thickness a gives the transmission coefficient T : 

v2 sinh a- -1 1 
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Fig. 2 - Tunneling (shift) factor. (a) Tunneling effects of potential barrier. (b) 
Speciíication of potential barrier by geometrical factor and v. 

where c is the energy of an incident particle having wave number k '. Replacement 

V - c r v; (c = i) yields asymptotic forms: 

and 
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according to whet,her the magnitude of ( f ia)  is peater than unity or less than 

unity. The shift (tunneling) factors eq.(3.2a) or eq. (3.2b) are obtained from the 

ratio of eq.(3.5a) or eq. (3.5b) to the corresponding expression for VM. 

Fig. 3 shows the models of the tunneling factors for the exponential type I 

and the fractional type 11, respectively. 

In fig. 4 we explicitly show the behavior of T(') for two different cases. Here, 

for convenience, we took, V = 4, r]; E [1,4]t)M = 1 and a = 2 (a = 115) for the 

case I (case 11). 

For a case in which the height of chain of the potential barriers is ifferent from 

site to site, we have to generalize the tunneling factor in eq. (3.1) as follows 

where 

and an argument m in V and r]; implies that V and t) depend on site m. 

4. Current for coupled random walks 

To get a general expression for current in which tunneling factors are explicitly 

expressed, we rewrite the recursion relation (2.1) in which particles are hopping 

from energy level j at site m' to energy level at site m under a driving force. 

Instead of eq. (2.1) we get the recursion relation 

w(') (m, N )  = C C P!$ (mlm1)w(j)(m', N - 1) (4.1) 
m' j 
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I 

a : very a: very 
small large 

I Exponentiol case 

P Fractiorml case 

Fig. 3 - Models of tuniieling (shift) factor. (a) Exponential type. (b) Fractional 

tY Pe. 
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Fig. 4 - Behaviors of ~ ( ~ 1 .  (a) Exponential type. (b) F'ractional type. In the evaluation, we have 

put V = 4, vi E [1,4], v~ = 1 and a = 2 ( a  = 1/5) for the case (I) (case (11)). 

+( i )  where the jurnping probabilities ~ i " (mlm' ) ' s  are reduced to the PN-i(mlrnf 1) 

for j = i and mf = m f 1 or ~ z p l ) ( r n )  for m1 = rn. 

The continuum limit of eq. (4.1) yields 

From eq. (4.5) the current J ( t )  per particle is expressed by 

For j = i in eq. (4.5), J ( t )  is found to be equivalent to the expression 

which is used by Zarerger and ~ e h r ~  [ZK]. 
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The expression (4.6) with (4.5) is a general expression very convenient for 
( '  . modelling the current in terms of the jumping probabilities ~~" ' ) (mlm' ) .  For a 

restricted case with j = i in eq.(4.5), the J ( t )  expressed by the tunneling factor 

eq. (3.1) reads 

T(') w(') (m, t )  

(I + C w(M)(m, t )  ) . w ( ~ ) ( m . t ) )  
i (#W 

The contributions having T(;) w(;) (m, t ) / ~ ( ~ )  (m, t )  represent a "local currentn 

due to the jumping processes occurring at intermediate level i of potential barrier 

at site m under the driving force E ( t ) .  

We consider a transport process on the hopping level M in which the mobility 

B ( t )  of the particles (ions) having the charge e, under the driving force E ( t )  is 

defined by 

t 
~ ( t )  = ~&?)e ~ ( t  - t ' ) ~ ( t ' ) d t '  (4-8) 

where wY) is the thermal equilibrium value of ~ ( ~ ) ( t ) ,  that is the number 

density of particles. 

Here we suppose that under the driving force E ( t )  the jumping probabilities 

pii)(m 1 n l ) ' s (=  ~/ '")(n 1,')) are specified by 

~ : ( ~ ) ( m  + llm) 
= exp ( - P(pM - p;)) = exp (De E ( t ) )  = 1 + p e ~  ( t )  (4.9) 

~ ; ( ~ ) ( r n  - llm) 

where p ( m  f 112) is a chemical potential at intermediate site m f 112, Eo is an 

activation energy, and T irr the temperature. We define a hopping rate 
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Firstly, we consider a very weak driving force peE(t) << 1. We have 

For a special case in which the m-dependente of a ratio w(')(m, t ) / ~ ( ~ ) ( m , t )  is 

omitted 

We can simplify the expression for J ( t )  in eq. (4.7) 

where 

~ ( ~ ) ( t )  = E ~ ( ~ ) ( m , t )  (4.15) 
m 

Here note that the current is expressed by the contributions on the hopping leve1 

M. 

In the linear response to force E ( t ) ,  we can replace w(') (t) by w$), the therrnal 

equilibrium value of w(') (t) before applying the externa1 field E(t). The expression 

for J ( t )  then becomes 

where 

feq(i,M) Weq 1 wY) 
and the mobility B corresponding to the expression in eq. (4.8) is then 
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Specifically, when we assume that fep(i, M) is expressed in a form exp(-P(ei - 

EM)) 3 Yeff reads 

The mobility shows no freqiiency dependence and reveals that its variation depends 

on two factors: one is the tunneling factor T(;) and the other is the difference of 

energy levels E,, EM. 

5. F'requency-dependent mobility 

We consider a case tbat yields frequency dependent mobility. In the case that 

the driving force E( t )  is a:ssumed to charige energy levels a t  each site, the force 

modifies a chain of potential barriers, and eventually forms a repeated structure 

of cells. To this end, we start the general expression for J ( t ) ,  corresponding to eq. 

(4.71, 

with 

Ff (m) = i + T*(') (m) j (i, M) (5-2)  
i(#W 

where new notations ~ * ( ~ ) ( m )  are introduced instead of the tunneling factor 

T(')(m) in eq. (3.6) to distinguish energy leve1 shifts in P:(')(m i- l lm) and 

~ : ( ~ ) ( m  f I jm) due to the driving force 

here we assume that the chain of potential barriers is characterized by a set of 

cells with repeated structiires and the processes are specialized by the "balance 

condition" appearing in the cell under E(t ) ,  see fig. 5. 
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Fig. 5 - The appearing cell structures due to the driving force, the repeated structures yield 
frequency-dependent mobility. Each cell is specified by a set of jumping probabilities of hopping 
levels, probabilities and tunneling factors. 

Namely, each cell is specified by a set of jumping probabilities of hopping levels 

~ : ( ~ ) ( m  f 1 lm), the probabilities w ( ~ )  (m, t )  and an "effective " tunneling factor 

?,'(m) 

P:(~) (m' + i lml) = Q : ( ~ + ~ )  ( t )  , (ml = m - 1) ( 5 . 3 ~ )  

~ ; ( ~ ) ( r n '  + ilm') = Q $ ~ ) ,  (m' = m) (5.3b) 

P : ( ~ )  (m' + I lm') = Q ; ( ~ ) ,  (m' = m + 1) (5.3~) 
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(M) -(M-d) P; (m' - 1 lm') = Qn (t), (m' = m + 1) (5.4~)  

and' 

F+(mr) =Tn  , ( m l = m f  i ,m)  (5.6) 

Jumping probabilities are t-dependent ones, while Q : ( ~ )  are con- 

stant ones. An index n of Q,, Wn and Tn represents that the quantities are defined 
f (M*d) 

in the n-th cell. Superscripts (M f d) of Q, (t) and WLMfd) denote energy 

levels modified by the driving force E(t).  

Eqs. (5 .3~)  and (5.4a) represent the balance condition mentioned above: slopes 

and shapes of outer potential barriers of the cell are supposed to regulate the 

~ ( ~ + " ( r n  T 21m 1) as fo~~ows jumping probabilities Pt 

In other words, transition rates between energy levels (M - d) at cell n or n - 1 

and (M + d) at cell n + 1 or n, respectively, are regulated by changing shape to 

match transition rates between energy levels M and M f d. From eq. (5.6), we 

can rewrite T*(m IC) = T, for k = 1,0. 

Here hote that the ~ n ( ~ ' ~ ) ( t )  depend on the E(t) as follows 

Q p f + d )  
= exp ( - P[,LL: - p; ] )  = exp (BeE(t)) = 1 + PeE(f) 

~ i ( ~ - ~ ) ( t )  
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m is a site in cell n, whereas the Q * ( ~ )  are independent from E( t ) :  center sites of 

each cell are neutra1 points. For a special case in which Rt(m 7 1) have separate 
f (Mf d) 

forms: Rt(m 1) = R f ARt we note that Qt (or Q * ( ~ ) )  and ~ i ~ * ~ )  (or 

wLM)(t)) are related by 

Qi"+d) + Q + ( ~ )  = 1 - (R - ARt) (5.10~) 

QW + Q-M = 1 - R (5.10b) 

Q+) + Q;(~-I)  = 1 - (R + ARt) (5.10~) 

from C, P:(m.' + a.1 (m') = 1 for m' = m 1 and m. When Rt(m f 1) and Rt (m) 

are n-independent these relations lead us to define the hopping rate 7 in eq.(4.11) 

b Y 

= Qy"'4 + Q I ' ~ - ~ '  (= 1 - R) (5.11) 

The hopping rate and the relation eq. (5.9) give us 

After considering contributions for rn f 1, and m in the n-th cell, and taking 

account of eqs. (5.6), (5.7) and (5.8), substitutions of eqs. (5.3a)-(5.5b) into 

eq.(5.1) lead us to 

Consideration of eq.(5.12) in eq.(5.13) yields an expression of J ( t )  for the present 

model 
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The J ( t )  has an expression similar to the ZK model, except for the pres- 

ente of the tunneling factor, Tn and cell structure. The first terrns ( ~ i ~ + ~ ) ( t )  - 

w ; ~ - ~ ' ( ~ ) ) T ~  in eq. (5 .14 )  contain implicitly the contribution of order E ( t ) .  To 

get the explicit form, we have to solve a set of master equations in each cell. 

The second term contains E ( t )  explicitly, hence we can replaee (wiMid)(t) - 

wiMTd)(t)) by the corresponding equilibrium ones. 

The master equation for wnMkd)(t) and wnM)(t) becomes 

where 

Parameters b and 6* are defined by 

to get the master equation for hopping levels M f d, M and within the n-th cell. 

Notations R* ( M + k )  denote jurnping probabilities (vertical transition rates ) 

between energy levels R * ( ~ ~ ~ - ~ + ~ F ~ )  in eq. (2.3). 
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The parameter b converts energy leve1 and the parameter 6* adjust the 

w;Tk) (t) to  the ~ : ~ + ~ ) ( t ) ,  ( k  = f d, O). Zeros in elements Qls and Q3] are ob- 

tained by applying the conditions eqs.(5.7) and (5.8) in eq. (5.6), and eq. (5.19b). 

To specify the unknown parameters, we put a new condition that k-surnmation 
(k) of Wn (t)'s over M f d and M leads to a constant, a conserved quantity: in 

each cell, the probability is conserved. The condition yields relations among the 

jumping probabilities referred to  in eq. (5.15) 

In the following analysis, we put 

This means that the difTerence of respective energy levels are smaller than the 

displacements of hopping levels due to E(t) .  Consideration of the requirements 

of eqs. (5.8), (5.19a) and eq. (5.19b) in eq. (5.16) and the statements below eq. 

(5.14), leads us to rewrite eq. (5.15) into 

and w,, is the solution to the ~ = 0. 

The Fourier transform of eq. (5.14) then reads 
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where A(w) denotes the Fourier transform of A( t )  defined by 

and No is the number of cells. 

In the second expression of (5.27), we have used eq. (5.19a) with eq. (5.27) 

and the Fourier transform of eq. (4.8). We can express B(w) as follows 

B(w) = A W $ r ) [ l +  V (w)] 
2 k ~ T  

where V (w) is the frequency-dependent velocity given by 

V(w) = - ----- 
e E (w)  ~ i $ )  ' 

The frequency-dependent velocity V (w) becomes zero as w -, O (t -i O), while 

V ( w )  becomes minus one as w -i O (t -+ w) ,  and then B(w) becomes zero, as 

w -, O, as w -+ O. The present special case describes a frequency-dependent 

process. In the evaluation, we have put the conditions for transition rates: eq. 

(5.7) and eq. (5.8) with eq. (5.6); and used the parameters eq. (5.19a) and 

eq. (5.19b). Furthermore, we have assumed that eq. (5.21) holds and used the 

eq. (5.18b) in whieh ,SiM) = O from eq. (5.19). The expression B(w) has no 
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Fig. 6 - Graphical representation of "higher order direct hoppingn 

J ( t )  in which the jumping probabilities P i ' s  are specified by a non-linear mapping 

F, 

the processes then show chaotic behavior by varying the parameter K 15. 

Finally, we remark that energy levels of the particle correspond to the walker's 

mode in the original CRW. 'i'he expression J ( t )  then can be directly applied to 

the diffusion processes in ecological problerns16 by reinterpreting the factor T ( ~ )  as 

a factor representing these phenomena. 
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Resumo 

Um modelo baseado em caminhos aleatórios acoplados é proposto para inves- 
tigar os fenômenos de corrente e mobilidade dependende da frequência. O sistema 
é composto por partículas, saltando do modo j no sítio m para o modo i no sítio 
m' sob a ação de um termo forçante, E(t) .  Obtemos uma expressão para a cor- 
rente na qual a mobilidade depende de um "fator de tunelamenton e da diferença 
entre os níveis energéticos. A mobilidade dependente da frequência é função da 
estrutura de célula, bem como do fator de tunelamento. 


