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Abstract A model based on coupled random waiks (CRW) is proposed to
investigate the current and the frequency-dependent mobility. The system
is composed o particles, hopping from mode j at site mtomode i at site m'
under a driving force, E(t). We get an expression for the current in which
the mobility depends on a "tunneling factor” and the difference of energy
levels. The frequency-dependent mobility depends on the cell structure as
well as the tunneling factor.

1. Introduction

Stochastic descriptionshave been realized to be important for studying dynam-
ical systems'. Specifically the approach based on random waiks (RW) has been
extensively utilized?=¢. Montroll and Weiss? proposed the continuous-time RW
(CTRW) considering the individual jumps specified by a time dependent distribu-
tion. This formalism provided many applications and models*~®. For transport
phénomenain a medium with traps, there are trapping or hopping models* includ-
ing repeated capture and release. Recently, Kehr and Haus® studied tha relation
between the CTRW and the trapping models. Furthermore, Zwerger and Kehr®
gave a more general moddl to investigate the influence of the internal state on the
frequency-dependent mobility. In this model, however, the particle can make a

transition to neighboring sites, only when it is on the top of a potential barrier.
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In previous papers”®, one of the present authors proposed the coupled RW
to take into account the couplings or interactions between the walker (particle)
and the environment (medium and the other particles). On stochastic descriptions
for the hopping among potential wells, it is necessary that successive jumps are
uncorrelated and particles are supposed to remain long enough.

The purpose o this paper is to propose a model based on coupled random
walks (CRW) having a "tunneling ” effect. The tunneling effect represents direct
transitions between sites at the same modes, not located at top modes correspond-
ing to the usual tunneling effect on the energy description. In the CRW, the
jumping probabilities (JP) (transitions) between sites are "correlated* through
the normalization o the JP, while the successivejumps are not correlated directly
with weight functions. To clarify the effect, we derive a genera expression o the

current, and the frequency dependent mobility is studied.

2. Coupled random walks

Here we assume that the particle (walker) in a well resides long enough at
each mode. The time scale (step) that the particle’s stay is short enough in a
macroscale such that we can define modes, corresponding to energy levels having
intervals AF;, AE,, ..., AE,, .... The latter condition leads us to describe a prop-
agation in terms of the transition probabilities specified by the energy intervals:
AE, AE,, ...

We give the model of the CRW expressed in a form similar to the trapping
models. The CRW isexpressed by a set of coupled recursion relations in which the
walker makes a site-to-site and /or mode-to-mode jump in therange —L < m < L.
Let W) (m, N) be the probability that the walker starting from the origin arrives
at site m on a mode i after N steps. The recursion relation for W(){(m, N) is

written in theform

wW®(m, N) = PF (M|m - )W (m - 1,N - 1)
+ P,;(_‘i(m|m + W (m+1,N —1)
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i-1 o o
+ 3 R m)w 6D (m, N — 1)

+ 3 R myw ) (m, N — 1)
j=1 '
(i =1,2..M) (2.1)

and W (m=xL,N) =0 and W) (m, N) is normalized as follows

S5 wlhm, Ny =1 (2.2)

where mode i represents the sequence number of energy intervals at each site, and

Pi(’ 1(m|m ¥1) and Ry, ”:”)(m) are jumping probabilities normalized as

: —i i~1
PO (m+1|m) + Py (m - 1|m) + IZV: R (m) 43 R (m) =1 (2.3)
j=1 '
(seefig. 1).
Note here that the jumping probabilities are correlated through the normal-
ization eq.{2.3), while the succesive jumps are uncorrel ated.
Following the previous papers™®, we convert the recursion relation eg. (2.1) into
the corresponding continuous form. The system we consider here is a lattice walk

o particles. To this end, we introduce only a continuous time t defined by

t = NAt (At:unittime) (24)

and use aset o continuous functionsfor t but discrete ones for i and m.* Thetime
region we consider here is assumed to be long enough such that we can describe
the stochastic motions of a particlein awel t <<, but r issmall enough that

we can defineenergy intervals AE (i=1,2,...).

* Here we use the same notations for the continuousfunctions W8 (m, t), Pt(i)At(mim— a.l)
vl ; afd

and 7{:"At‘:t J)(m) for @ = $.,—,0 corresponding to W(')(m, N), Py (m|m — a.1) and

Ra(:’;—a'J) (m) , respectively.

546



Tunneling effectson the current and the mobility...
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Fig. 1- Coupled random walks. (a) Graphical representation of eq. (2.1). (b) Normal-
ization of jumping probabilities given by eg. (2.3).
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After expanding therecursion relation (2.1) of acontinuousform aroundt =0

we get a master equation

‘l) .
6 m t Z Pa(z) m|m _ a.l)W(')(m _ a.l,t)
a(=+-)
) M‘+"’ N L ~
3 (3 R w2 (m, 1)) = 3 PO+ a1 )W O (m, 1)
a  j=1 @
e
Z( Z R z+aJ,1)( ) m(m,t)) +O(At) (2.5)
a j=1
with o)
I _
EPQ(‘) (m+ e.l)m) + Z( Z aliteit)( ) =1 (2.6)
where
ot 1 als
PFO(mfm ~ o) = At [PN( (mim all)]N—_-t/At
(2.7)
alii-ag);, y - 1 [palii-aj)
RGN m) = = [REIm)]
and
M) = J\?ﬂ(l;a,l) - %(11 al) tai (a=+,-) (2.8)

and a prime on C means to omit a = 0 in the sum. In the derivation of eq.
(2.5), we have used the normalization eq. (2.3) and the fact that the jumping
probabilities PA® and RS are o the order of At, The master eq. (25) is a
general expression corresponding to the set o basic equations for the trapping
models due to Kehr et al.>%. In the present master equation, the jumps between
sites are taken into account considering modes corresponding to the intermediate
energy intervals of the potential barriers as shown in fig. (1a). Also note that

"hopping rates” are related themselves with the normalization eq. (2.6).
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3. Tunneling (shift) factor

As seen in fig. 1, the mode i corresponds to an energy interval of the particle
motionsin the trapping model or hopping model. In this paper, we call the energy
intervals "energy levels’, for simplicity, and we call the top energy interval i = M
the "hopping level”. To take into account the jumping processes between sites
P,i(i) {m + 1}jm) occurred at the intermediate energy levels, we introduce a shift
factor 79 defined by

PEO(m £ 1m) = PEM (m 1 1}m)T®) (3.1)

for each i, see fig. (2a) and T™) = 1. Processes described by the shift factor are
corresponding to the tunneling effect. Fig. (2b) showsthat theshift factor depends
on thickness, a, and heights of potential barrier, #; and V from the corresponding
energy levelsi and 1.

In the following analysis, we study hopping models in which the T (which
will be discussed shortly) is specified by

(1) Exponential type (n;a* > 1)

T = g PV o2
and (V — ) + V2[4 (V 1))
9 -9 +V2q2 — N
A (s o E TN () a2
where

n=V-i, (mrV), (i=23.M) (3.3)

n; and V(= ;) express the height of the potential barrier from energy levelsi(# 1)
and 1. The parameter a denotes thickness o the potential barrier.

In the derivation of the forms expressed by egs. (3.2) and (3.3), we have
used the fact that the one-dimensional square potential of barrier height V and

thickness a gives the transmission coefficient T :

‘ stinha\/V~5)—1 (3.9

s
T_\l-r 4¢(V —€)
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{a)
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(o)

= =r ¥

(b)

Fig. 2 - Tunneling (shift) factor. (a) Tunneling effects of potential barrier. (b)
Specification of potential barrier by geometrical factor @ and V.

where e is the energy of an incident particle having wave number k °. Replacement

V —cr n; (c =1) yields asymptotic forms

(0 18V —min o 16V —n)m 2 \-1
T V2 eXp( Zﬁa)(l'f' exp(2v/n—ia)v2 EXp(Z\/ﬁa)

(Vma>1)  (3.50)

and
4V —n)
4V —m) +Via®

70 ~ (Vma < 1) (3.5b)
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according to whether the magnitude of (/7;a) is greater than unity or less than
unity. The shift (tunneling) factorseq.(3.2a) or eqg. (3.2b) are obtained from the
ratio of eq.(3.5a) or eg. (3.5b) to the corresponding expression for 7y.

Fig. 3 shows the models o the tunneling factors for the exponential type |
and the fractional type II, respectively.

In fig. 4 we explicitly show the behavior of T® for two different cases. Here,
for convenience, we took, V = 4, ; € [1,4]nps =1 and a= 2 (a= 1/5) for the
case | (caseIl).

For a case in which the height of chain of the potential barriers is ifferent from

site tO site, we have to generalize the tunneling factor in eg. (3.1) as follows
PEO(m £ 1jm) = PEM (m + 1{m)T(m) (3.6)

where

1), = V() = ni(m] () exp(—2a+/n;(m) — m) for Ta
Tomy = [V {m) — nae(m)[7ae(m) p(—2av/ni(m) — nm(m) for (I}  (3.Ta)

70 - V{m) —nnlm) + Vi(m) a*/4 V(m)—nim)
Tom) = V(m) — ni(m) + V¥(m) a®/4 'V (m) — np(m)- for (II) (3.75)

and an argument m in V and q; impliesthat V and n depend on site m.

4. Current for coupled random walks

To get ageneral expression for current in which tunneling factors are explicitly
expressed, we rewrite the recursion relation (2.1) in which particles are hopping
from energy level j at site m' to energy level at site m under a driving force.

Instead of eg. (2.1) we get the recursion relation

‘) (m,N) ZZP ") 1(m|m )W(J)(m N-1) (4.1)

m
ZZ PYA (m'jm) = 1 (4.2)
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Fig. 3 - Models of tunneling (shift) factor. (a) Exponential type. (b) Fractional

type.
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Fig. 4 - Behaviors o 7). (a) Exponential type. (b) Fractional type. In the evaluation, we have
put V =4, n; E[1,4], n;r = 1and a = 2(a= 1/5) for the case (I) (case (II}).
where the jurnping probabilities Pﬁf)l(mlm’)’s are reduced to the Pﬁ(_q(m|m:}:1)
for j =i and m' = m + 1 or REC9 (m) for m' = m.

The continuum limit of eq. (4.1) yields

(%) ;
ow aﬁm’t) = AmJO(m, 1) (4.3)
AmJ O (m,t) = JO(m + 1,t) = IO (m, 1) (44)

IO (m,t) = 37 [BFD 4 1fm)w O (m, 1) = POV 1m)W O, 1)) (4.5)
7 .

From eg. (4.5) the current J{t) per particle is expressed by

J(t) =Y > JO(m,1) (4.6)

i
For j =i ineq. (4.5), J(¢) isfound to be equivalent to the expression

J(t) = ) (mdW (m,t)/0t)

m

which is used by Zwerger and Kehr® {ZK].
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The expression (4.6) with (4.5) is a general expression very convenient for
modelling the current in terms o the jumping probabilities Pti’j)(m[m’). For a
restricted case with j =i in eq.(4.5), the J(t) expressed by the tunneling factor

eg. (3.1) reads

=3 ([ o+ 11m) - P74 = 1)m)

TOW® (my)
(1 WO, 1) )W (m, 1)) (47
i(#M)
The contributions having Tw () (m¢)/w M) (mt) represent a "local current”

due to the jumping processes occurring at intermediate level i of potential barrier
at site m under the driving force E(t).

We consider a transport process on the hopping level M in which the mobility
B(t) o the particles (ions) having the charge e, under the driving force E{t) is
defined by

J(t) =we t B(t — t")E(t')dt' (4.8)

v —00
where WC(JW) is the thermal equilibrium value o wM)(t), that is the number
density of particles.

Here we suppose that under the driving force E(t) the jumping probabilities
PO (m|m!)'s(= P (m|m')) are specified by

P M(m +1|m)

o =exp( - Blul, — ua)) = exp(BeE() =1 t BeE(t) (4.9)
P

m — 1|m)

ujt!:u(m:i:%) Eo:f:ﬁ , (ﬂ“m) (4.10)

where u(m + 1/2) is a chemical potential at intermediate site m+ 1/2, Eg is an
activation energy, and 7" is the temperature. We define a hopping rate
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7= B (m 4 1jm) + Py = 1m) (= 1- EM " M(mlm))  (4.11)

Firstly, we consider a very wesk driving force SeE(t) << 1. We have

PE(m +1|m) = %(1 + eBE(t)) + O(E?) (4.12)

For a special case in which the m-dependence of a ratio W) (m, t)/WM)(m,t) is
omitted

W) (m, 1)
W M) (m, t)
We can simplify the expression for J(t) in eg. (4.7)

= f(i,M;t) (4.13)

E(t) (M D etr g
J@) = Zw gl + Y T s, M;e) (4.14)
2kgT [ 1(?&21“)
where
wM(1) =Y WM (m,¢) (4.15)

Here note that the current is expressed by the contributions on the hopping level
M.

In thelinear response to force E(t), wecan replace W) (t) by We(;) , thethermal
equilibrium value of W) (t) before applying the external field E(t). Theexpression

for J(t) then becomes

Bt
J(t) = ————’Y;,:Bl(, )We(éw ) (4.16)

where

Yeff = '7[1 + Z T(i)fcq(iaM)]a
i(#M)
(4.17)

e (M)
fegli, M) = Wf;)/ Weq

and the mobility B corresponding to the expression in eq. (4.8) is then
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_ eff (M)
= —Weq 4.18
B ZkBT ( )

Specifically, when we assume that fe,(r, M) is expressed in a form exp(—3(e; —

€r1)), i Teads

Vet = [1 + > TWexp (- Ble - €M)] (4.19)

i(#M)
The mobility shows no fregiiency dependence and reveals that its variation depends
on two factors: one is the tunneling factor TG and the other is the difference of

energy levelse,, EM.

5. F'requency-dependent mobility

We consider a case that yields frequency dependent mobility. In the case that
the driving force E(¢) is assumed to charige energy levels at each site, the force
modifies a chain of potential barriers, and eventually forms a repeated structure
o cells. Tothisend, westart the general expression for J(t), corresponding to eq.
(4.7),

=S [P+(M) (m + 1m)T* (m) — P M (m - 1|m)T‘(m)}W(M)(m,t) (5.1)

m
with
r*m=it Y 7*0m)/ (M) (5.2)
i(#M)
where new notations T+(* (m) are introduced instead of the tunneling factor
T®(m) in eq. (3.6) to distinguish energy level shifts in Pti(')(m + 1jm} and

PEM)(m £ 1}m) due to the driving force

PE(m £ 1jm) = PEM (m & 1|m)T=0) (m)

here we assume that the chain of potential barriers is characterized by a set of
cells with repeated structures and the processes are specialized by the "balance
condition" appearing in the cell under E(t), see fig. 5.
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energy level

site

| cell n | cell n 41

cell no)

Fig. 5 - The appearing cell structures due to the driving force, the repeated structures yield
frequency-dependent mobility. Each cell is specified by a set of jumping probabilities of hopping
levels, probabilities and tunneling factors.

Namely, each cell isspecified by a set of jumping probabilities of hopping levels
Pf(M)(mi 1|m), the probabilities W (M) (m,t) and an "effective” tunneling factor

Ty (m)

Pl ity = QI (), (! =m 1) (5:30)
Pt+(M) (m' + 1]m') = QM) (m' = m) (5.38)
M+ 1m) = o™, (m=m+1) (5.3¢)
P M — 1) = Q4™ (m! = m 1) (5.4a)
Pt—(M)(ml _ llml) — Q;(}V!), (m’ =m) (5.4b)
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P[(M)(m' - 1m) = QxM-9(t), (m=m +1) (5.4¢)
WM (! 1) = wMED (1), (m! = F1) (5.5a)
WM (m! 1) =wM (), (m'=m) (5.5b)
and'
THmY =T, , (m' =m+1,m) (5.6)

Jumping probabilities Qif(M %4 are t—dependent ones, while Qf(M) are con-

stant ones. Anindex nof @5, W, and T, represents that the quantities are defined
in the n-th cell. Superscripts (M + d) of Qf(Mid) (t) and W,SMid) denote energy
levels modified by the driving force E(t).

Egs. (5.3c) and (5.4a) represent the balance condition mentioned above: slopes
and shapes o outer potential barriers o the cell are supposed to regulate the
jumping probabilities Z¥™*% (s £ 2jm F 1) as follows

Py 9lm — )YWMH (i — 1,1)T (m — 1)
= PM(m 4 1jm)W M) (m, )T+ (m) (5.7)

M (m 4 ojm + YWM Y m + 1,67 (m + 1)
= B 1jm)W D (m, ) (m) (5.8)

In other words, transition rates between energy levels (M —d) at cdl nor n — 1
and (M + d) at cdl n+ 1 or n, respectively, are regulated by changing shape to
match transition rates between energy levels M and M + d. From eq. (5.6), we

can rewrite T*(m + k) = T,, for k = 1,0.
+(M+td)

Here hote that the @ (t) depend on the E{t) as follows
+(M+d)
9 () _ oxp( - plut - 7)) = exp(BeE(t)) = 1+ BeE(?)
QM)

1 eF
pi=n(mey) =Bt
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m is asite in cdl n, whereas the Q™) are independent from E{t): center sites ot
each cell are neutral points. For a special case in which R;(m F 1) have separate
forms: Ry(m ¥ 1) = R £ AR; we note that Qf‘(Mfd) (or Qi(M)) and W,SMM) (or
W,gM)(t)) are related by

QEM-Hi) + QM) — g (R - AR) (5.10a)
QM) + oM _1_p (5.108)
o-M) + Qt—(M~d) =1-(RTAR) (5.10¢)

from 3°, Pa(m'* a.1|m') = 1 for m' = m¥1 and m. When R;(m £ 1) and R¢(m)
are m-independent these relations lead us to definethe hopping rate <y in eq.(4.11)
by

¥ = r+d) 4 ;MY (=1 - R) (5.12)
The hopping rate and the relation eg. (5.9) give us

Q:‘t(Mid)(t) — jz_/<1 + ﬁ_c;g_(t_)) + O(Ez) (5.12)

After considering contributions for m + 1, and m in the n-th cell, and taking
account o egs. (5.6), (5.7) and (5.8), substitutions of egs. (5.3a)-(5.5b) into
eq.{5.1) lead us to

16 =Y [@M aw ) - M w9, (5.13)

n

Consideration of eq.(5.12) in eq.(5.13) yields an expression of J(t) for the present

model

+ T(W,E“*“)(t) +wM “‘)(t)] T, (5.14)
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The J(t) has an expression similar to the ZK model, except for the pres-
ente of the tunneling factor, T, and cell structure. The first terms (W,EM”)(t) -
,EM'd)(t))T,. in eq. (5.14) contain implicitly the contribution of order E(t). To
get the explicit form, we have to solve a set d master equations in each cell.
The second term contains E(t} explicitly, hence we can replace (W,{MH)(t) -
W,SM"d)(t)) by the corresponding equilibrium ones.
The master equation for W,(,Mid)(t) and W,EM)(t) becomes

W’EM-d)(t)
Wo=QW,, W.=| wi(q (5.15)
W,-(;M+d)(t)
_Q;(M—d)+5£M—d) O+ _g-(») 0
Q= Q;(M'd) —(Q—(M)+Q+(M))+S§M) Q+(M+d)
0 H-0D _ g+ QM) g+
(5.16)
where
S$M+k) - nQ:-(M-f-k—l) _ Qt—(M+k) , (k - :td) (5.17&)
P =@t M - =) (k=0) (5.175)
QM) = QM)(1 1 §7) (5.18)
Parameters b and 6% are defined by
bW,(LNH) - W,£M+k-l) (5.19q)
sEWNTR = (MR (5-19b)

to get the master equation for hopping levels M +d, M and within the n-th cell.
Notations R* (M+¥) denote jumping probabilities (vertical transition rates )

between energy levels REM+EM+EFL) i o (2.3).
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The parameter b converts energy level and the parameter §* adjust the
W,(Lf:'k) (t) tothe W,£M+k)(t), (k = £d,0). Zerosin elements Qy3 and Q3; are ob-
tained by applying the conditionsegs.(5.7) and (5.8) in eg. (5.6), and eq. (5.19b).
To specify the unknown parameters, we put a new condition that k-surnmation
of W,gk) (t)’s over M + d and M leads to a constant, a conserved quantity: in
each cell, the probability is conserved. The condition yields relations among the

jumping probabilities referred toin eq. (5.15)

sM=4) _ o (5.200)
Q-(M)(,;— -1)+ Q+(M)(5+ -1)+ Sb(M) =0 (5.200)
sM+d o (5.20¢)
In the following analysis, we put
SM¥) —o, (k= +d,0) (5.21)

This means that the difference of respective energy levels are smaller than the
displacements of hopping levels due to E(t). Consideration of the requirements
of egs. (5.8), (5.19a) and eq. (5.19b) in eq. (5.16) and the statements below eq.
(5.14), leads us to rewrite eg. (5.15) into

W = GoW + eG1 E(t) W, (5.22)
e L(GHM - - o
Go=| 1 ~L(Q@ M + @™ 1 (5.23)
0 3(G00 gy
1 0 0
G = ;3_21' (—1 0 1 ) (5.24)
0 0 -1 '

and W, is the solution to the W = 0.
The Fourier transform of eq. (5.14) then reads

Wn,eq

Jw)= léiweq[ + E(w)] (5.25)
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where A(w) denotes the Fourier transform of A(t) defined by

o<
Alw) = / Aft)eidt (5.26)
—00
L wid ~ o
Vo ='7'{1+ E T(’)-————ng)} =q'[1+ Z T(’)r)M_’] (5.27
M) We i(#M)

We(;d) = NOWn,eq

and Ny is the number o cells.
In the second expression of (5.27), we have used eg. (5.19a) with eq. (5.27)
and the Fourier transform of eq. (4.8). We can express B(w) as follows

Yeit
2kpgT

where V (w) is the frequency-dependent velocity given by

B(w) = w1 + V()] (5.28)

kgT _ \
o=~ -
AR
R %’-
(5.29)
! 1
= 72—;—(;:?52{— (w— o0)
=0 (w—0)

The frequency-dependent velocity V (w) becomes zero as w — 0 (t — O), while
V(w) becomes minusone as w — 0 (t — oo), and then B{w) becomes zero, as
w — 0, asw — 0. The present special case describes a frequency-dependent
process. In the evaluation, we have put the conditions for transition rates: eg.
(5.7) and eg. (5.8) with eq. (5.6); and used the parameters eq. (5.19a) and
€g. (5.19b). Furthermore, we have assumed that eq. (5.21) holds and used the
eq. {5.18b) in whieh S,SM) = 0 from eq. (5.19). The expression B(w) has no
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contribution due to the cell structure through 6% and 6~ as seen in eq. (5.29).
So we have the very simple expression for V (w), but from eq. (5.1) we can study
more general cases.

Closing this section, we remark that Pietronero and Strassler!® have proposed a
model in which hoppings of the particles are modulated by an additional ha.rmqnic

variable.

6. Concluding remarks

Based on the coupled random walks (CRW), the expression for the current
was obtained for trapping or hopping model. In the present treatment, jumping
probabilities (transitions) between sites apbea,r through intermediate energy levels
of the potential barrier. The processes are called tunneling effects, different from
the usual trapping models®, in which the particles are hopping only when they
are on the top of the potential barrier. In the CRW, we regard a particle as the
walker whose potential barrier and energy levels are modified by the driving force
E(t). As a factor representing the tunneling effects, we discussed typical cases: (1)
Exponential type and (2) Fractional type. These functional forms are expressed
by the geometrical parameters #; and a for the potential barrier, see eq. (3.2a)
and eq. (3.2b).

The expression of J(t) given by eq. (4.7) is a general expression in which
tunneling effects are considered. By changing the role of arguments in T, we
can regard the T(9) as representing “higher order direct hopping” as shown in fig.
6.

For a model of frequency-dependent mobility, we considered a system in which
cell structures appear due to the driving force E(t). This feature and inclusion of
tunneling factor are different points from the ZK model®. In the analysis, we have
truncated the master equation within a cell by introducing the parameters. The
problems related to hopping or trapping rate have been studied by using electrical
network!! or scattering theory analogy'?. Recently Fujisaka and Grossman'3, and

Inoue'* have reported hopping processes having chaotic behaviors by solving non-

linear difference equations. In place of eq.(5.15), if we start with the expression
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Fig. 6 - Graphical representation of "higher order direct hopping”

J(t) in which the jJumping probabilities Pg’s are specified by a non-linear mapping
F,

P = F(P§_; K) (6.1)

the processes then show chaotic behavior by varying the parameter K .
Finaly, we remark that energy levels of the particle correspond to the walker's

mode in the original CRW. The expression J(t} then can be directly applied to

the diffusion processesin ecological problems!® by reinterpreting the factor T() as

afactor representing these phenomena.

One o the authors (S.J.L) is very grateful to the hospitality o professor D.C.
Tsui during hisstay at Princeton and support o the Korea Science and Engineer-
ing Foundation (KOSEF) and Ministry of Education, 1989.
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Resumo

Um modelo baseado em caminhos aleatérios acoplados é proposto parainves-
tigar os fendmenos de corrente e mobilidade dependende dafrequéncia. O sistema
é composto por particulas, saltando do modo j no sitio m para o modo i no sitio
m' sob a ag&o de um termo forgante, E(t). Obtemos uma expressdo para a cor-
rente na qual a mobilidade depende de um "fator de tunelamento” e da diferenca
entre os niveis energéticos. A mobilidade dependente da frequéncia é fungdo da
estrutura de célula, bem como do fator de tunelamento.
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