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Abs t rac t  We compute the effective potential for composite operators of 
2+1 dimensional quantum electrodynamics with N fermions. Making use 
of a simple ansatz for the fermionic self-energy, we obtain values for the dy- 
namically generated mass that are in fair agreement with the ones obtained 
solving the non-linear Schwinger-Dyson equation. 

Some years ago Cornwall, Jackiw and Tomboulisl derived an effective po- 

tential for composite operators (at tweloop level) depending on the complete 

fermionic propagator S(p). This potential is stationary with respect to variations 

of S(p), and this condition leads exactly to the Schwinger-Dyson (SD) equation 

of the fermionic self-energy. Therefore the calculation of this potential at its min- 

imum is equivalent to solving a non-linear gap equation. 

The authors of ref. (1) initiated a program of studying chiral symmetry 

breaking, in such a way that one could recover the non-linearities of the theory if 

one introduced into the potential a linear solution of the gap equation. Examples 

of this procedure can be found jn ref. (2) and references therein. 

Although the extreme condition of the effective ~otent ial  for composite oper- 

ators gives the non-linear SD equation, it is far from obvious that we can obtain 

the exact answer of the full non-linear equation, only by using a linear solution of 

the gap equation as an ansatz for the computation of the effective potential. As 

far as we know a comparison of these two different calculations has never been 

done, and it is the purpose of this work to make this comparison in the case of 

2 t l  dimensional quantum electrodynamics (QED3) with N fermions. 
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QED3 is a super-renormalizable theory m d ,  in spite of the fact that it is 

not realistic, it is quite similar to quaptum chromodynarnics in many respects3. 

Working with N fermions we can make use of the 1 / N  expansion to elaborate a 

systematic study of chiral symmetry breaking (~$23). The higher-order corrections 

of the vertex function in the SD equation can be neglected at large N,  and the 

gauge boson acquires a dynamical mass that is calculable to leading order in the 

1/N expansion. These and other aspects make of this model an arena for reliable 

investigation of dynamical symmetry breaking. The SD gap equation of QED3 

was solved numerically for small N by Appelquist et al.', and a value for C(O)/a 

was obtained, where C(0) is the dynamical mass at the origin and a = e2 N/8. As 

cr has rnass dimensionality, C(~)/cr  is a dimensionless number which can also be 

obtained when the potential is minimized, and this will allow us to compare our 

results with the ones of ref. (4). 

Let us briefly review a few aspects of QEDB with N fermions. The massless 

lagrangian density is 

where the coupling constant e has dimensionality m. The global chiral symmetry 

is U(2N) and a mass term m$$ would break it to U(N) x U(N). The gauge-boson 

propagator in the Landau gauge is 

where to leading order in 1/N expansion, II(k) is given by 

II(k) = a /k  . 

The inverse euclidean fermionic propagatbr is 
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where A(p) is the wave function renormalization, which is perturbatively gener- 

ated. Neglecting A(p) to leading order of the 1/N expansion and using the lowest 

order vertex I"' m 7", the SD gap equation for the fermionic propagator is, af- 

ter angular integration and defining the new variables z = pla ,  y = k l a  and 

C(.) = C(z)/a ', 

It can be shown that in the infrared region eq. (5) behaves as a constant 

which, in the sequence, we shall designate as C(0). If we apply the prescription 

of Maris, Herscovitz and Jacob6 and Mandelstam6 which consists in replacing 

x2 + C(x)' in the denominator of eq.(5) by x2 + C(0)2, expanding the logarithmic 

function in eq.(5) and differentiating this equation twice, we obtain the equation 

(for x < 1) 

whose unique solution consistent with a finite mass at the origin is 

where Fl is the hypergeometric function and 7 is given by 

For s2 >> Z(0)2 and N < 32/1r2 the solution of eq.(6) can be reduced to 

C W 
C(.) m cos [5 ~ n ( z )  + 81 , 

where 

For practical purposes we will use eq.(9) which is much easier to handle than eq. 

(7). For N > 32/r2 only the trivial solution (C(z) = 0) exists6. 
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For QED, the expression of the effective potential for composite operators as 

defined by Cornwall, Jackiw and tombou li^'^^ is given by 

and 

where the angular integration has already been performed. Notice that V. and VI 

were divided by a3, and V, (V,) corresponds to the one (two) - loop contribution. 

'R can be seen that 

gives exactly the SD eq.(5), i.e., its solutions are stationary solutions of the effective 

potential. In the case when there is more than one non-trivial solution, the one 

realized in "naturen will be the one leading to the deepest minimum of energy'. 

This choice can be done by computing the extreme values of eq.(12) which we 

indicate by V,[C]. Its expression can be deduced introducing the SD eq.(5) into 

eq.(lO) which entails 

An important feature of Ve[C] is that, analysing the sign of the integrand, one 

finds V$] < O. It means that every non-trivial solution of the SD equation is 

energetically preferred to C(z) = O and induces xSB.  It is clear that eq.(14) 

has been deduced assuming that C(z) is an exact solution of eq.(5). However, 
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in actual calculations we shall have only rough approximations of C ( x ) ,  and the 

better the approximation the smaller will be the difference between eq.(14) and 

the extremum value of eq. (10). 

To compute the effective potential we will make use of the following ansatz 

for C(x) in the full momentum range: 

E(X> = a{e(i - z) + f(z)e(:  - i)) , 

where 

where B(x) is the step function, z = x/a and a E C(0). The parameter a will 

be determined when we compute the minimum of the effective potential for each 

value of N. Notice that it is the same parameter that is computed in ref. (4), and 

is a small number which decreases at least as fast as e-".  C and /3 in eq.(16) are 

constants that will be determined later, but is is clear that for the continuity of 

eq.(15) we must impose the condition 

Ccos(P) = 1 . (17) 

Introducing the ansatz eq.(15) into eq.(lO) the one-loop contribution to the 

effective potential becomes 

and the two-loop one is 

t t llJa z f W  dt- VI [E] = - ; a  { z2dz d t ~  i z2 + f ( z ) ~  t2 + 1 + 
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We have restricted tbe calculation of the effective potential to the region 

z < 1 (or z < lia). The introduction of this cutoff is consistent with the results 

of Appelquist et al.*, where it is shown that C(%) is highly damped for x > 1. 

The constants C and P in eq. (16) can be determined if we impose that eq. (9) 

and eq. (7) must have the same a.symptotic behavior. With some simple algebra 

we see that C and /3 must satisfy the relation 

besides the continuity condition given by eq.(17). With these two equations we 

find the values of C and ,O contained in table 1. 

Table 1 - Values of tbe constants C ând P appearing in eq.(16). 

We are now in a condition to compute eqs. (18) and (19) but the presence of 

the trigonometric function in eq. (16) does not allow us to perform an analytical 

calculation, even approxirnated, and, in this case, we must do a numerical calcu- 

lation. In table 2 we present the values of a obtained from the minimization of 

V [ C ]  together with the ones of ref.4. Notice that the agreement with the values 

obtained solving the non-linear equation is excellent, even more if we remember 

that we started from a rough linear ansatz for C(x). Table 3 contains the value of 
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the potential V ( a )  at the minimum, where they are compared to the ones deter- 

mined from V,[C] for different values of N. In table 3  we omit the results N = 2.8 

and 3.0 because it was not possible to obtain reliable values without expending a 

very Iarge computational time (the same happened for the value of a  for N = 3.0 

in table 2 ) .  The critica1 behavior at N = 3 2 1 4 '  is the responsible for the slow 

convergence of this calculation. 

Table 2 - Values of a = C(0) from the minimization of the effective potential and 
from ref. 4. 

Table 3 - Comparison of the values of the effective potential at the minimum. 
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In conclusion, we have computed the effective potential for composite opera- 

tors in the case of QEDj with N fermions. Our intention was to make a comparison 

between the calculation of i,he dynamically generated mass by solving directly the 

non-linear Schwinger-Dyson equation for the fermionic propagator, with the de- 

termination of the effective potential using a linear ansatz for the dynamical mass. 

We found an excellent agreement between the different approaches to compute 

the dynamical mass as shown in table 2. It is impressive how powerful the tec- 

nique of the effective potential is. Even considering that we started from a very 

rough approximation of E(s), we arrived to values of a = 2(0)/a  which do not 

differ from the ones of Appelquist et al.' by more than 5% to 10%. We also recall 

that the value of V[C) a t  the minimum shows a reasonable agreement with the 

one of V,[C], as shown in table 3, providing another check for our calculation. 

We believe that in QED, as well as in more complex theories the construction 

of expansions in a linear (and non-perturbative) solution, as in the potential of 

Cornwall, Jackiw and Tomboulis', may recover the non-linearities of the theory, 

and the agreement observed here gives support to a large amount of work which 

adopted this procedure2. 

We are indebted to. Conselho Nacional de Pesquisas (CNPq) (AAN) and Co- 

ordenadoria de Aperfeiçoamento de Pessoal do Ensino Superior (CAPES) (LDA) 
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Resumo 

Calculamos o potencial efetivo para operadores compostos da eletrodinâmica 
quântica com N fermions em 2+1 dimensões. Utilizando-se um ansatz bastante 
simples para a forma da auto-energia fermionica nós obtivemos valores para a 
massa gerada dinamicamente, os quais estão em bom acordo com aqueles obtidos 
através da solução da equação não-linear de Schwinger-Dyson. 


