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Abstract We present a theory of dual charges with the introduction of a generalized 

potential and a generalized field which are locally respectively elements of the odd and even 

parts of the Grassmann algebra of space-time, with values in the Lie algebra of a gauge 

group G.  Defining a generalized Dirac operator and its dual, we get the field equations 

of the theory. When G = U(1) we obtain a theory of electrodynamics with magnetic 

monopoles without string. We show that the generalized field is invariant under harmonic 

gange transformations and we obtain Dirac's quantization condition for the dual charges. 

1. Introduction 

It is well known that the generalized Maxwell equations including magnetic 

monopoles can be written in the language of differential form as: 

where J,  = (p,,i) is the eletric-current i-form and J, = (p ,  is the magnetic 

current i-form and F is the usual electromagnetic field 2-form *, is the Hodge 

star operator and 6 is the Hodge coderivative. For the definitions of these objects 

see Appendix B. 
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If we wish to write the field F in terms of a potential as required by the 

lagrangian approach, we are brought up against a serious problem, since if F = dA, 

where A is a global electromagnetic potential, we have 

d F  = d(dA) = O (since d2 = 0) 

which is incompatible with the second equation (lb).  

Differently from Dirac's (introducing singular potentials) and the topological 

solutions, we propose in this paper an algebraic solution of this problem with a new 

definition of potential and field that generalizes the usual definitions for abelian 

gauge groups (electrodynamics). 

The idea is simply to consider a potential not as an a I-form but as a odd 

element of the Grassmann Algebra of space-time, A(M).  The natural differential 

operator D in h(M) is an obvious generalization of the Dirac operator d + 6 for 

a general gauge group G. Then we show that the field F is nothing but an even 

element of the same Grassmann Algebra h(M).  

Despite the fact that there are no conclusive evidences for magnetic 

monopoles, the physical motivation for the present approach is that although, 

in the principal fiber bundle formulation of electromagnetism and general gauge 

theories, monopoles appear as solutions of the dynamical equations of theory, there 

is a price to be paid. For example, for the existence of the Dirac monopole it is 

necessary to change in the topology of the base manifold of the U(1) bundle from 

IR4 to R4 - {line). Obviously there are no empirical evidences for such a drastic 

change in the topology of space-time. A complete discusson of these points can 

be found in refs. [1,2,3]. 

The present approach is a preliminary step towards the presentation of the 

completely geometrical theory of the non topological monopole, formulated in a 

spliced-bundlel. 
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2. General theory 

Let P(M,G,lr) be a principal fiber-bundle over space-time M here con- 

sidered as a Lorentzian manifold where the metric is taken with signature 

(+I,  -1, -1, -1). Let a ancl a' be two connections defined in P ( M ,  G, ./r) with 

values in the Lie-algebra of G, and such that the pull-backs to M are respec- 

tively the gauge potentials A and B. 

Definition 1. The Generalized Potential is 

Definition 2. The Generalized Dirac operator associated to w is 

where D A and bB are the usual covariant derivatives and coderivatives of the usual 

gauge theories with gauge group G 1 4 1 .  Next, we need 

Definition 3. The generalized field is given by 

+ ! I A  + *RB + b B A  + D A( * B )  

2 -  J o r m  O- J o r m  4- f o r m  

where RA = P A and RB = DB B as usual. 

Eqs. (2) and (3) show that in the general theory the potential is an element of 

the odd part of the Grassmann algebra of space-time A(M, 6) and the generalized 

field is an element of the even part of A(M, e). 
The first important remark is that contrary to the usual gauge theories4 here 

we do not have the validity of Bianchi's identity. Instead we have 
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which is in general different from zero. The tripotential * B allows degrees of 

freedom to describe a generalized magnetic monopole. As we will see below it is 

then responsible for the non-integrability of the generalized field R. 

In order to present the field equations of the general theory we need 

Definit ion 4. The dual operator to D' is 

We have, 

Eq. (7) can be simplified since as dim M  = 4 and A, B E A' ( M ,  6) we have 

identically 

We now introduce the field equations through: 

P o s t u l a t e  1' The field equation of the general theory is 

where J and * G describe the sources of the generalized field. 

In what follows we cal1 dual charges the charges associated to the current *G. 

Eq. (9) can be written using eq. (7) and eq. (8): 

In this paper we have used the opposite signs for the electric and magnetic currents of ref. 1. 



Adolfo Maia J r .  and Waldyr A.  Rodrigues Jr .  

In the usual gauge theory based on a principal fiber bundle we have associated 

to the connections a! and a' the field equations 

6 A R A = J  and 6 ' R B = G  (11) 

The additional terms on tbe left-hand side of eqs. (10) show that the general 

theory contains a non-trivial interaction between the potentials A and B, which 

are represented by interaction currents. 

At this point we make an interesting remark: We would like the potentials A 

and B to be independent from each other, to a certain degree. This is provided 

by the Generalized Lorentz Gauge: 

This condition implies tha,t A and B  are independent from each other (say, in 

the first derivative) but not the corresponding fields RA and RB (second deriva- 

tive). If we use the condition eq. (12), the equations (9) can be written 

These equations can be obtained from an spliced bundle formalism in a very 

elegant wayl. 

Definition 5 .  The interaction currents are 

= * D A R B  + D B 6 ' A  
= *DERA + D A ~ A B  

If we use the Generalized Lorentz Gauge eq.(12) we have: 



Grassmann's Fields and Generalized ... 

We can see that in usual electrodynamics: 

since DA = d for any potential A with values in an abelian group as U(1). This 

shows that the photon field does not have self-interactions in the present theory as 

in the usual electrodynamics. The eqs.(l4') may have a role in strong interaction 

theories in which magnetic monopoles are included since they establish a kind of 

"minimal coupling" . 
Using Cartan's structural equation 0" = da + i [a ,  a] for a = A, B we can 

obtain an expression in components for the generalized field. We get 

where [E,, E,] = C:, E,, with E; E 6. Eq. (15) is a generalization of the Cabibbo- 

Ferrari relation151 for a non-abelian group G. 

3. Grassmann electrodynamics 

When G = U(1) we have [A, A] = [B, B] = O and Dw = A" = d+ 6 and eq(3) 

gives 

n = ( d A + * d B ) + b A + d ( * B )  

The field equations (Postulate 1) then are 

( d + 6 ) n =  J + * G = = + O A =  J ;  CIB=G, O = ( d + 6 ) 2 .  

The equations OA = J; O B  = G are always true in our formalism indepen- 

dently of the 'gauge" since in the Grassmam electrodynamics R is the sum of 
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scalar, pseudo-scalar and two-form terms. This is in contrast with the approach 

of ref [5 ]  where eqs(i7) are valid only in the Lorentz gauge. In order to have Ci a 

two-form its is necessary to fix the Lorentz gauge for the potentials. Indeed, when 

6 A  = 6B = 0, eq(16) yields 

Here we observe that recently Teitelboim and Hennaux6 presented an elec- 

trodynamics including magnetic monopoles where the potential is described by a 

pform,  p # 1. In [6] electric and magnetic charges are extended objects. In our 

approach charges and monopoles (dual charges) continue to be point like-objects. 

This is done through the introduction of the generalized potential as element of 

the odd part of A(M, 6) and the generalized field as element of the even part of 

A(M, e). Here the Dirac operator D = d + 6 is the natural operator in the sense 

that 

p o t e n t i a l a  a n d  c u r r e n t s  f i e l d s  

This generalization of the concept of field and potential can suggest a new 

concept for matter fields if we take also into account that the Dirac spinor field 

can be represented as an element of Ao (M) $ A2 (M) $ A* (M) 7 .  The theory in 

the case of electrodynamics can also be formulated in a Clifford bundle1s9. 

4. Harmonic gauge invariance of the generalized potential 

Recall that in usual electrodynamics the field F = dA is gauge invariant under 

the gauge transformation 

A H A + dg, g : R4 -, R a differentiable function. 

However, the generalized field given by eq(16) is not invariant under arbitrary 

transformations given by (19). The generalized field is invariant under a more 

restrict class of transformations, where g is harmonic. Indeed, let 
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We have that 

and impossing invariance of the field we get 

5. Quantization condition for the generalized electrody- 
namics 

Here we show that our theory satisfies Dirac's quantization condition under 

a reasonable condition. 

Let 4(z, I') be Mandelstam's path dependent wave function1° for a charged 

particle in an usual electromagnetic field F = dA.  If $(x) is the usual wave 

function of the particle we have 

where I' is an arbitrary path from co to x. If we choose two paths I' and I'' differing 

only by for a finite part we get, using Stokes theorem 

4(x, I") = 4(z, I') exp -i edA L 
where S is an arbitrary surface such that 8.9 = I" - I'. 

We now want to know how to generalize eq(24) for the case where the charge 

e interacts with the generalized potential given by eq(16). To start we observe 

that as S is a bidimensional surface we must use the Lorentz gauge i.e., we put 

6A = 6B = O and then f? = dA + * dB. We next have 
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Postulate 2. The interaction of an electric charge e with the generalized field is 

described by the path-dependent wave function 4(x,I') which satisfies 

r ' )  = O(., r) / -i .n 
S 

The independence of eq.(25) o:n the surfaces S implies 

e x p i o  -i e ( d ~  + * d ~ )  = I (26) 

where So is a closed surface. By Stokes' theorem we can write eq.(26) as 

Supposing now, without loss of generality that the origin is inside V and that 

we have a static monopole at the origin we have G = (gb(q,O, 0, 0) and 

Using eq.(28) in eq.(27) we have 

eg exp/ -ie*G=exp(-ieg) = 1 -  - =n/2 ,  n E  
v 4ã 

(29) 

We observe here that tbe new point in order to obtain Dirac's quantization 

condition eg/4ã = n/2, n E Z is the postulate 2. This point is not clear in 

ref [SI. We end this paper with the remark that postulate 2 is consitent with a 

quantization scheme of the monopole-charge system which give the right equations 

of motion and from which the Dirac quantization condition can be obtained in a 

very elegant manner

Q 

. 
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Appendix A: Some algebras and their relations 

Let be V an n-dimensional vector space over the real field IR. In the following 

we present the definitions and relations between the various algebraic structures 

used in the paper. 

(i) The temor algebra over IR is the R-vector space of the direct sum of the 

powers @V wit the usual tensor product @ of its elements. We have P 
T (V) = ( $r=, @P V, @) 

T(V) is 2-graded: (@"V) @ (@'V) C @P+qV and has infinite dimension if n 2 1. 

As V is of finite dimension we can identify V with its ima& @'V in T(V) and 

also define @'V = IR. 

In T(V) there are two important involutive morphisms (both being linear 

automorphisms of e,"==, QDP V) : 

(a) The main automorphism a 

a(A @ B) = a(A) €3 a(B) 
a(A) = A, if A E @'V; a(A) = -A, if A E @'V ( A 4  

(b) The main antiautomorphism P (or reversion), mapping T(V) on the re- 

versed algebra 

P(A @ B) = P(B) @ P(A) 
{b(A) = A if A E @ ~ V $ ~ V  (A931 

(ii) The exterior algebra A(V) is defined as the quotient algebra T(V)/ J where 

J C T(V) is the bilateral ideal generated by element of the form a @ a ,  a E V. 

As usual we denote the exterior product by A. As .I is homogeneous in the 

2-gradation of T(V) it follows that A(V) is also 2-graded. A(V) = @Ap(V), 

with AP(V) IRAq (V) C hPiq (V), Here we identify A' (V) = V and Ao (V) = R. 

The subspaces AP(V) are of dimensions (p") and A(V) has dimension 2". 

For A E AP(V) and B E hq(V) the exterior product A A B can be either 

commutative or anticommutative, i.e., 
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The morphisms a and ,B of T(V) pass to the quotient A(V). 

Denoting these morphisms in A(V) by the same letters we have 

a(A A B) = a(A) A a(B)  
P(A A B )  = P(B) A @(A) 

If A E AP (V), then 

(iii) The Grassmann Algebra A(V, Q) is the pair (A(V), Q), formed by an exterior 

algebra A(V) an interna1 product, (, ) : A(V) * A(V) --+ R induced in A(V) by 

the fundamental quadratic form Q in V(Q : V 4 R) and defined as follows 

(a) If A E AP (V) and B E A g  (V), with p # q then (A, B) = 0, 

(b) If A = al , ~ a ,  A . . . A a, and B = b1 A b, A - .  A b,, ai ,  bi E Af(V), then 

( A ,  B) = det(lB(ai, bj)) where E? is the bilinear form associated to Q by 

(c) When A, B E A(V) , (a) and (b) extends by linearity. 

Appendix B: Some vector bundles associated with the 

cotangent bundle 

The algebraic structures considered in A possess an R-linear structure in- 

herited from the vector space V. Then, for its generalization to manifolds it is 

necessary to use the formalism of vector bundles. 

In the text M is a space-time, i.e., a triple ( L ) , g ,  V) where L is a Lorentzian 

manifold, oriented and time oriented, g is the Lorentz metric and V is the Levi- 

Civita connection of g in Jl1.  
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(i) The basic vector bundle for a11 the constructions used in this paper is the 

cotangent bundle denoted by r&. Cross sections c E sec(r&), c : M + r; 

are called one-form fields. The tangent bundle is denoted by r,. 

(ii) Given a cross section g E sec(rM * r, ), such that in each fibers r-' (z), g, 

is a Lorentz metric, then the pair (7; , g) will be called the Lorentzian vector 

bundle. 

(iii) The Cartan bundle, denoted Ar& is the vector bundle where the fibers are 

exterior algebras AT,* M over V = T,* M of the differential forms over M. As 

is well known, over the Cartan bundle the exterior derivative can be uniquely 

characterized by the following conditions 

(a) d(A + B) = dA + dB, 

(b) d(AA B) '=  ~ A A  B +a(A) r\ dB, 

for VA, B E sec Ar& , f E Ao r; and X E sec r, and where 1 is the contraction 

operator. 

In particular d is homogeneous of grade +1 in the 2-gradation of the ring of 

cross sections of Ar; = (@Apr&, A).  

(iv) The pair (Ar;, g) where each fiber (A(T,'M), g,) is a Grassmann Algebra 

is called the Hodge bundle over M with metric g. (This is the fundamental 

bundle for the calculations of the present paper). 

(v) Associated to d we have a "divergence" 6, called the Hodge coderivative and 

that is the operator formally g-adjoint to d. In this paper (differently from 

ref. [1,7,8,9]) we define 
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6wp = * d *  wp, wp E APrL P . 2 )  

where * the Hodge star operator is defined by the linear isomorphism 

given by 

for a11 p-forms p E sec APr& where r is the volume n-form. 

References 

1. M. A. Faria Rosa and W. A. Rodrigues Jr., Mod. Phys. Letters A 4, 175 

(1989). 

2. W. Graf. Ann. Inst. Henri Poincarè A 29, 85, (1978). 

3. W. A. Rodrigues Jr., M. A. Faria Rosa, A. Maia and E. Recami, to appear 

in Hadronic Journal (1989). 

4. D. D. Bleecker, Gauge Theory and Variational Principies, Addison-Wesley 

Reading, Mass (1981). 

5. N. Cabibbo and E. Ferrari, I1 Nuovo Cimento 23, 1147 (1962). 

6. M. Henneaux and C. Teitelboim, Found. of Physics,lS, 593 (1986). 

7. W. A. Rodrigues Jr. and E. C. Oliveira, " Dirac and Maxwell Equations in 

the Clifford and Spin-Clifford Bundlesn , R.T.' 14/89, IMECC-UNICAMP. 

8. M. A. de Faria Rosa, E. Recami and W. A. Rodrigues Jr., Phys. Letters B173 

(1986); B188, 511 (1987). 

9. W. A. Rodrigues Jr., A. Maia Jr., M. A. Faria Rosa and E. Recami, Phys. 

Lett. B220, 195 (1989), Mod. Phys. Lett. A (1989) to appear. 

10. S. Mandelstam, Ann. Phys. 19,  1 (1962). 

11. W. A. Rodrigues Jr. arid M. A. Faria-Rosa, Found. Phys., 19, 705 (1989). 



Grassmann's Fields and Generahied ... 

Resumo 

Apresentamos uma teoria de cargas duais com a introdução de um potencial generalizado 
e um campo generalisado que são localmente respectivamente elementos das partes impar e par 

da álgebra de Grassmann do espaço-tempo com valores na álgebra de Lie do grupo de gauge G. 
Definindo um operador de Dirac generalizado e seu dual obtemos as equações de campo da  teoria. 
Quando G = U(1) obtemos uma teoria com monopolos magnkticos sem cordas. Mostramos que o 

campo generalizado k invariante sob transformações de gauge harmonicas e obtemos a condição de 
quantização de Duac para as  cargas duais. 


