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Abstract We compare the two vacua associated with accelerating observers to Rindler 
vacuum and to the Milne vacua, by means of Bogoliubov coefficients. This conürms pre- 
vious results o£ the literature according to which two o£ these vacua are equivalent to 
Cartesian vacuum, and the three others behave like a thermal gas in the Cartesian vac- 
uum. 

1. Introduction 

In this series of papers we study a massive scalar quantum field in coordinate 

systems that are not-static but also simple enough to allow the separation of 

the Klein-Gordon equation. We hope that the understanding of these non-trivial 

examples will throw some light on the concept of particles outside the frame of 

the Poincaré group. In the first paperl we described the separable orthogonal 

coordinate systems of the two-dimensional Minkowski space. In the second paper2 

we picked up one of these systems, where stationary observers are inertial in the 

past and become constant accelerated in the future. These observers are somehow 

more interesting than uniformly accelerated observers as they allow one to compare 

two particle definitions in the framework of only one coordinate system: We defined 

a set of positive frequency modes of the scalar field in the phase where the observers 

are inertial, and another one in the phase of constant acceleration. We found a 

thermal spectrum of inertial particles in the accelerated vacuum at a temperature 

proportional to the asymptotic acceleration of the observers, thus confirming the 
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well known interpretation of the Fulling effect3 in Rindler coordinates. We also 

compared these vacua to the cartesian one, that is plane waves, and saw that the 

accelerated vacuum also has a thermal spectrum at the same temperature but that 

the inertial vacuum is not thermal. 

Here we investigate this problem further, first by trying to sample more infor- 

mation about the modes themselves, i.e., by calculating the Bogoliubov coefficients 

between them and the natural modes of Rindler and Milne coordinates. These co- 

ordinate systems are in a sense more adequate than the cartesian one because they 

are the right asymptotes of our coordinate system. 

In a forthcoming paper we will finally conclude the investigation of this coordi- 

nate system by computing more physical magnitudes, like the Feynman propagator 

and the Hamiltonian. We will then proceed by studying a coordinate system where 

the observes are inertial in both time asymptotes, only suffering a boost on their 

velocities. 

The paper is organized as f'ollows. In the next section we define a11 the Fock 

spaces we will deal with. In section 3 we briefly compare them. The conclusions 

are obtained in section 4. 

2. Characterization of the vacuum states 

We will study the quantization of a massive scalar neutra1 field in curvilinear 

coordinate systems. For that we compare six different Fock spaces which are 

constructed in the usual manner through the complete function sets defined below. 

2 .I. Minkawski Cartesial modes 

1 
$f (t, x) ,- - exp[-id - kx)] 

'- J47;; (1) 

These are plane waves with mass m, wave vector k and positive frequency E = 

+ d m .  The basis is completed with their complex conjugate (which we will 

omit hereafter). The concept of positive frequency appears in, at least, two ways. 
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First, we note that d / &  is a Killing vector field and must have Gk as eigenfunction. 

Its eigenvalue is the frequency 

We use the additional fact that the Hamiltonian operator is defined by 

in such a way that it generates time (t) translations 

a 
[d(t,x), W] = i-d dt  (4) 

Second, we may require that the positive frequency mode go to zero like exp(-ct) 

when t goes to -i w. Of course the plane waves obey these two criteria. 

2.2. Rindler modes 

These modes are more easily defined in Rindler coordinates4, that is 

for O < XR < co and -w < TR < w ,  where we write 

where Ki, is a modified Bessel function5 and p > O. These modes were first 

used by Fulling in his PhD thesis, and have since been well studied6. Rindler 

coordinates are adapted to observers with constant acceleration, in the sence that  

the coordinate lines describe world lines of constant acceleration. The field d/aTR 

is a Killing vector field, a fact that allowed Sanchez7 to solve even the inverse 

problem of finding the coordinate transformation for a given vacuum spectrum. v 

is the frequency associated to the time TR in the two previous senses, as one may 

verify. 
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2.3. Sommerfield modes 

These and the next are the modes associated to geodesic observem living in 

Milne universes. They are indeed more easily written in Milne coordinates 

t = YM coshaXM 
s = YM sinhaXM (7) 

for O < YM < 00 and -00 < XM < oo. It is useful to introduce another variable 

TM , defined by 

This mapping covers the future light cone. In this paper we will be also interested 

in the past light cone, where 

I=-YM COS~XM 
x = -YM sinh aXM 

and 
1 

kM = - exp(-aTM ) 
a 

Here the two frequency definitions split: the time coordinate lines are not trajec- 

tories of a Killing vector field and the modes are not eigenfunctions of d/aTM. 

Two proceduress can be followed: first we may, like SommerfieldD, choose the first 

frequency concept by defining a dilatation operator D as 

such that it generates time translations 

If we expand 4 in the basis ($:, $: *), given by 

- I  *J (YM ,XM) = id= exp ( ivaX~  ) J- ( ~ Y M  ) 

and substitute it in the dilatation operator it becomes, in the light cone 
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D(TM -+ -m) or l /2  do lu1 [at (o)a(o) + a(u)at (o)] (12) 

One can check this using the expression 

, exp (iaXTM ) 
Iim .'i* OL p r ( l + i l )  

TM--Cc 

These modes can be called positive dilatation frequency modes. 

Second one may, with di SessalO, require that the positive frequency mode 

follows our second criterium. The problem is that these two criteria lead to two 

different modes 4" The first is GS and the second, i iD,  is defined below. 

2.4. Di Sessa modes 

- 2 
i ipD(yM,X~) = - 

2 J S  
exp(~p/2)  exp(ipaXM )H,(;) ( m ~ ,  ) (14) 

where ~ I ! p 2 )  a Bessel function of the third kind. One can verify that the di Sessa 

condition is satisfied 

lim 4: rn H(:' (-imm) = O 
YM- -ia, 

(15) 

2.5. Inertial modes 

The next two modes were defined in paper I1 of this series and are adapted 

to observes which become smoothly accelerated. The coordinates are defined as 

t +x=2/as inha(TA + X A )  
t - x = -í/aexp[-a(TA - XA)] (16) 

We can see that the proper acceleration 

of a stationary observer parameterized by t' = (TA, X A )  is given by so that 

aAW := lim a, = exp(-aXA). 
T A - m  
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a exp (2aXA ) 
(YA = - 

[ ~ X ~ ( - ~ U T ~  ) + exp(2axA )] 3'2 ' 
(18) 

To write the modes it is better to use the variables (YA, ZA) 

The modes are then +i and 4:. We define q!~: as 

This first mode has a quasi-classical behavior in the asymptotic region. By quasi- 

classical, a concept that, in this context, was exactly defined in a previous paper" , 
we mean 

lim +i o: exp(-iumYA) 
Y,-+ m 

(21) 

These modes have positive frequency following di Sessa's criterium. 

2.6. Accelerating modes 

These are defined as 

~ ~ ( Y A , Z A )  := G ~ i r ( m ~ A ) ~ i r ( m ~ a )  

and are quasi-classical in the accelerated region 

lim S): a Yjr 
Y,, - o 

They satisfy the Sommerfield definition of positive frequency. 

3. Comparison of the vacua 

Now that a11 modes we are interested on have been weel defined, we proceed 

to their comparison. It is well known that 
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Here it is possible to  talk about a temperature because the equivaience principie 

allows one to compare the temperature measured in an inertial system with the 

temperature measured in the proper frame of the observer 

@ = fio,Oo (25) 

so that the temperature is proportional to the proper acceleration (aR = l /XR)  

We also know the distributions of Milne particles in the Minkowski vacua 

and 

I<*kM,SlyD > I 2 = O  (28) 

For Sommerfield quantization, the Milne universe behaves as a big bang, where 

the temperature O is given by 

1  
O = - exp(-aTM) 

2a P9) 

so that as TM 3 -00, O --f w ,  and as TM -+ +w, O -, O. The di Sessa modes, 

on the contrary, lead us to zero temperature. 

In a previous paper we calculated the Bogoliubov coefficients between 

Minkowski and -modes and between Minkowski and 6:-modes 

(note that the associated proper temperature is proportional to a,) and 
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This resonates in (E  - k) /2a and a for E > > k and goes to zero for E - k. 
We also know the relationships 

and 

The new results we are presenting in this paper come from the comparison of 

the accelerating vacua with Rindler and Milne ones. They are 

This is because the proper accelerations of gaussian observem coincide in the 

asymptotic region where both modes are quasi-classical. Secondly, we have 

and 

4. Conclusion 

By drawing a diagram, one sees that the present concept of temperature may 

be seen as an equivalence relation. 

RINDLER 
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The only exception is the Bogoliubov coefficient between the inertial and 

Minkowski modes. Castagnino12 suggested that this result is due to the fact 

that the associated observem' fluid is not rigid. Notice that we have not computed 

the Bogoliubov coefficients between Sommerfield and inertial modes, not between 

Di Sessa and accelerated modes, because the positive frequency definitions are 

incompatible so the calculation would be senseless. 

In a forthcoming paper we will check these results by calculating the Feyn- 

man propagator, Wightmann functions and the Hamiltonian which are needed to 

construct a detector. 

We are indebted to Professor M. Nove110 for his orientation. We also want 

to thank our colleagues from the Centro Brasileiro de Pesquisas Físicas for long 

discussions of the problem, specially Ligia Rodrigues and I. D. Soares, as well 

as the group of M. Castagnino and Nathalie Deruelle. This work was partially 

supported by CNPq - Brazialian Ministry for Science and Technology. 
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Resumo 

Neste trabalho comparamos dois vácuos definidos por obsenradores assintoticamente acelera- 

dos com o vácuo de Rindler e os vácuos de Milne, através do cálculo dos coeficientes ou Bogoliubov. 

Estes cálculos confirmam a conjectura que afirma que dois destes vácuos são equivalentes ao vácuo 

associado a um observador inercial que utiliza coordenadas cartesianas enquanto os outros três se 

comportam como um estado térmico relativo a este vácuo "inercialn. 


