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Abstract We have develo~ed a molecular cluster method for the calculation of defects in 

semiconducting material8 by imposing proper crystalline embedding conditions to the well 

known multiple scattering X ,  method. The proposed modification introduces a common 

energy referente for the clusters representing the crystal and the defect, which makes 

~ossible to compare the energy eigenvalues coming from both calculations. The method 

has been applied to determine the electronic structure of the copper substitutional impurity 

and the cationic vacancy in cubic zinc sulphide crystals with very satisfactory results. 

1. Introduction 

When considering the problem of a localized defect in an insulating matrix, 

one is mainly interested in those states (associated to the defect) whose energies lie 

into the host energy band gap. If the impurity gives rise to shallow energy levels, 

the effective mass aproxiniationl provides a neat way of determining these states 

and those electronic properties related to them. However, the same does not hold 
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for the deep defects, due to the highly localized behavior of their wavefunctions. 

Severa1 procedures have been developed to describe these states, most of them 

based on the Green's function method2. An alternative procedure is provided 

by the molecular cluster methods, which are also frequently used due to their 

greater computational speed and conceptual simplicity. In this type of procedure 

the defect and its immediate crystal environment are considered as if they form 

a large and isolated molecule or molecular i ~ n ~ - ~ ,  assuming that such a small 

cluster of atoms can reproduce at least those crystal features that depend mainly 

on short range interactions. However, in some cases, the reduction of a crystal to 

a few atoms may not preserve the main crystal features. For instance, the finite 

cluster size can turn the cluster energy spectrum into a mixture of bulk and surface 

states3. These effects can be minimized, but not avoided, by using some art in the 

introduction of arbitrary embedding conditions4 or by increasing the number of 

atoms in the clusters. Besides these inadequacies, the molecular cluster methods 

suffer from the lack of a unique energy reference for the cluster representing the 

crystal and the defect. The absence of this energy reference makes it very difficult 

to determine the position of the defect energy states with respect to the band 

edges or to decide among the severa1 possible defect charge states. 

A molecular cluster that avoids most of these inadequacies is the crystalline 

cluster model (CCM)Qv'O. In this self-consistent-field procedure the Schrôdinger 

equation is solved in a finite cluster of atoms, by using some quantum chemistry 

method for large molecules, but the self-consistent potential is obtained solving 

the Poisson equation in the infinite periodic crystal

Q

. Consequently, one avoids 

the potential surface effects and the calculated cluster energy spectrum provides a 

suitable description of the crystalline density of stateslO. Moreover, if a defect cal- 

culation is performed through this method, the localized energy states associated 

with the defect becomes properly located with respect to the crystal band edges 

because the reference used to define the potential for the cluster representing the 

defect is the same as that used in the crystal calculation. 

In this work we have used the crystalline cluster method, within the framework 

of the multiple scattering X,  methodl', to perform first principle investigations 
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of the electronic structure of the ZnS crystal, as well as of the localized states 

associated to the copper cationic substitutional impurity and the zinc vacancy in 

that material. 

2. Theory 

We begin our discussion of the CCM following the Hamiltonian 

where H, is the Hamiltonian of an electron in the infinite crystal, A is a large and 

positive constant, and O is the Heaviside step function. The effect of the second 

term on the right-hand side of eq,(l) is easy to understand. This term raises the 

energy of the electron if it ventiires outside the sphere of radiiis R. Consequently, 

each energy band of the spectrum of H, is given by a set of discrete energy states 

herein designated as cluster energy spectrum, and a continuum of states shifted by 

A from the original band. This can be easily seen if one works in the Wannier 

representation. In this representation, the matrix elements of H can be written in 

the forrn: 

where 

and 

230 



where I$  > represents the minimai width Wannier function associated to the n-th 

crystal band and to the lattice vector i 12. Each matrix of eqs. (3) and (4) breaks 

into four submatrices. The upper left submatrix refers to the internal Wannier 

states, namely 

the lower right diagonal submatrices refer to Wannier functions outside the cluster, 

that is, 

I1 11, I1 2 I1 > R 

and the off-diagonal submatrices mix the internal and externa1 Wannier functions. 

One can easily see that the cluster states are those states coming from the upper- 

left submatrix of & . Now, if A is large enough (later on one will see how large A 

must be) , the effective cluster Hamiltonian becomes: 
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The second term in eq.(5) is of ccder B2 / A ,  where B is the width of the band one 

is dealing with. So, if A is much larger than the bandwidth B, this term becomes 

negligible when compared with the first term in eq.(5). One can readily see that 

the third and fourth terms in eq.(5) are of the order of the product of A by C, 

where C is the largest eigenvalue of the matrix: 

Then, if A is much smaller than B/C, these terms can also be neglected. Finally, 

if the above conditions are satisfied, the last term in eq.(5) being of the order of 

the product of B by C can also be neglected. Summarizing the above results one 

can say that, of the constant A in eq.(i) can be chosen so that 

the effective Hamiltonian for the discrete states of H is reduced to the first term 

in eq.(5). In other words, the potential barrier at the cluster surface decouples the 

interna1 and externa1 Wannier functions, and the cluster energy spectrum consists 

only of bulk states with energies lying between the top and the bottom of the 

crystal band to which they are related. 

Since the cluster energy spectrum depends very litle on the details of the 

electronic potential outside the sphere of radius R, the potential to be used in the 

cluster calculation can be rewritt,en in a more practical way as 

V O ( f ) - A ;  if r < R 

vc (4 = (7) 

w(q;  if r > R 

where w is a smoothly decaying function of r, which has only been introduced to 

simplify the solution of the Schradinger equation. 

In order to obtain the electronic structure corresponding to the crystal, one 

has to solve simultaneously the Schrodinger and the Poisson equations. The 

Schrodinger equation is solved ir1 the cluster for the potential defined in eq.(7) 



Electronic structure of ZnS:[Cuz,, VZ,] 

and the resulting number density is put into a muffin-tin format. The crystal 

number density is then obtained according to Brescansim and Ferreira
g
. This 

model nurnber density is used to solve the Poisson equation in the periodic lat- 

tice by means of standard Ewald techniques13. Now, as we have shown above, 

the cluster energy spectrum obtained in the CCM becomes a good sampling of 

the crystak density of states provided the self-consistent potential V, is truly the 

crystalline potential, that is, if the model density of charge defined in the CCM 

reproduces that of the crystal. Populating a11 of the cluster states associated to  a 

crystal band means to generate a nurnber density given by 

while the corresponding crystal number density would be 

Comparing eqs. (8) and (9) one observes that the cluster density leaves out the 

contribution coming from the Wannier functions outside the cluster. But, when- 

ever inequality eq.(6) is satisfied, this contribution is very small and the crystal 

number density becomes well described by the cluster. 

The Hamiltonian of a crystal containing a defect can always be decomposed 

into the Hamiltonian of the unperturbed host lattice plus an effective perturbation 

U introduced by the defect. If U is well localized inside the cluster, a condition that 

can be easily attained for deep defects in semiconductors, the only nonnegligible 

matrix elements of U are those corresponding to Wannier functions localized inside 

the sphere of radius R. Then, if a development similar to that used in the case 

of the crystal is performed, one can easily show that the effective Hamiltonian for 

the cluster representing the defect becomes 
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One can readily see from eq.(lO) that preserves the same energy reference 

used in the crystal calculation. Thus, the cluster representing the defect provides 

energy levels which become properly localized with respect to the crystal band 

edges. 

3. Results and Discussion 

It is well known the the 11-VI semiconducting compounds have highly ionic 

bonds. This means that one can. assume that the muffin-tin approximation can be 

used to properly describe their electronic properties. Thus, we have used the CCM 

within the framework of the multiple-scattering X ,  method to perform investiga- 

tions of the zinc sulphide electronic properties. One can also presume, from this 

ionic character, that even small clusters can be used to reasonably describe the 

electronic properties of these 11-VI compounds. Two clusters with seventeen atoms 

have been used in the present calculations of pure ZnS. These clusters, labelled as 

Zn, S4Zn,, and S, Zn4S,, , consist of a central atom surrounded by its four near- 

est neighbours and twelve next-nearest neighbour atoms, which are arranged in 

a tetrahedral configuration compatible with the undistorted host lattice geome- 

try. The radii of the atomic muffin-tin spheres have been chosen to be Rzn=2.436 

a.u. and Rs=1.988 a.u., in such a way that they are proportional to the tabu- 

lated covalent radii for zinc and sulphurl* and their sum reproduces the crystal 

interatomic distance. The outer sphere radius has been chosen to be tangent to 

the outermost atomic spheres. The a: exchange-correlation parameter inside the 

atomic spheres were chosen according to the atomic tables16 to be a z ,  =0.706 and 

as=0.725. Our experience has :jhown that, provided a value close to that of the 

atomic species is chosen, the cluster energy spectrum depends very litle on the 

value of a: in the inter-sphere region. On the other hand, in our model, the cluster 

energy spectrum does not depend on the a: value outside the sphere of radius R. 

Thus, we choose an ad hoc value a=0.700 for the exchange-correlation parameter 

in these inter-sphere and extramolecular regions. For a11 valence orbitals the basis 

functions include angular momenta up to 1 = 2 in the central sphere and up to 

I = 1 in the remaining atomic sites. The 3d orbitals for the outermost zinc atoms 
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in the Zn, S, Znlz cluster have been included in the self-consistent process but have 

been imposed to be confined inside their muffin-tin spheres. 

As can be seen from fig.1, the crystalline electronic structure for the full 

occupation regime obtained in the present calculation agrees with previous self- 

consistent band structure calc~lat ions~~~".  One can also see from fig. 1 that, 

as anticipated in the previous section, our model provides larger gaps and smaller 

bandwidths than those obtained in a band structure calculation. One can also con- 

clude, by comparing our results with the calculations of Ferreira and De Siqueira'', 

that for materials like zinc sulphide the cluster energy spectrum is not very sensi- 

tive to the details of the exchange-correlation potential. 

Fig.1- Calculated one-electron energy spectrum for pure ZnS crystals in the filled shell 

configuration obtained in the present calculation. The band structure determinations by 
Bendt and Zunger (ref.16) are also presented for comparison. (a) - present calculations 

with Znl S1 ZnI2, (b) - Zunger and Cohen, (c) - present calculations with S1 Zn4 S12 
cluster. 
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According to Ferreira and De Siqueirals, the transition state concept has to 

be used to determine the electronic ionization potential whenever the electron self- 

energy is larger than the width of the band one is dealing with, while the energy 

eigevalues have to be used to estimate the ionization potential if the bandwidth 

is much larger than the electron self-energy. In this work we have found that the 

electron self-energies for the Zn-3d and S-3s bands are 4.5 eV and 1.1 eV. These 

values are large compared to the respective bandwidths of 0.6 eV and 1.2 eV, 

obtained by means of band striicture c a l c ~ l a t i o n s ~ ~ ~ ~ ~ ,  and our estimates of 0.2 

eV and 0.9 eV. One can conclude from these results that the hole created in the 

ionization process of the Zn-3d band is highly localized around the zinc atom, so 

that its ionization potential can be obtained through the transition state concept 

by means of a cluster calculation. For the S-3s band we have that the created hole 

becomes more delocalized than that created in the former case. However, it is still 

localized enough to be properly described by means of a smalll7-atom cluster such 

as that used in the present work. The self-energy for the S-3p band we obtained is 

about 2.5 eV, a value smaller than our estimate of 3.4 eV for the S-3p bandwidth, 

or the value determined by means of band structure ca l~u la t ions~~~" .  We have also 

observed that the hole created has a much highly delocalized behavior in this case, 

that is, the cluster is too small to describe the excited state wavefunction, which 

becomes artificially confined inside the cluster volume, then increasing the electron 

self-energy. Thus, if it is non-negligible, this self-energy cannot be determined by 

means of a cluster calculation, unless a much larger cluster is used. The same does 

hold in the case of an electron promoted to the conduction band (Zn-4s). So, for 

the S-3p and Zn-4s energy bands, the best one can do is to use the electron energy 

eigenvalues to estimate the electron ionization energy. 

The main optical transition energies associated with bulk ZnS are summarized 

in table 1. The first transition corresponds to the ground state energy band gap, 

namely the promotion of an electron from the uppermost valence state to the lowest 

conduction state. Our predictions of 3.13 eV and 3.96 eV, obtained by means 

of the Znl S4Zn12 and S1 Zn, SI?, clusters are in good agreement with previous 

theoretical calculations16-18 and the 3.91 eV experimental valuelQ. The other 
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optical transitions correspond to the position of the Zn-3d and S-3s bands with 

respect to the top of the S-3p valence band. These energies have been determined 

to be 9.4 eV and 12.9 eV, respectively, while the experimental values arez0 9.5 eV 

and 13.5 eV. Thus, one can conclude that our 17-atom cluster calculations provide 

a good descripton of the pure ZnS electronic structure. These results also suggest 

that these clusters can be used to describe the localized states associated with 

deep defects in this material. 

Table 1 - Theoretical estimatives of pure ZnS crystal obtained in the present 
calculations. A11 energies are quoted in eV. 

optical cluster present Ferreira Bendt and Stukel experim. 
transition used calculation De Siqueiraa Zungerb et alic 

energy Znl S4 Znlz 3.13 4.46 
band 1.95 3.77 3.91d 
gap S,Zn,SI2 3.96 

position 
Zn-3d ZnlS,Zn12 9.4 7.6 7.4 14.1 9.5" 
band 

position 
S-3s S,Zn4S,, 12.9 14.1 12.9 11.8 13.5" 
band 

- - - 

a - ref.18, b - ref.16, c - ref. 17, d - ref. 19, e - ref.20. 

The cluster used to represent ZnS:Cu has been labelled Cu, S4 Zn12 and has 

been obtained by replacing the central zinc atom of the Zn, S4 Zn,, cluster by a cop- 

per one. In this cluster we kept the same atomic radii and a exchange-correlation 

parameters we have used in the crystal calculation for a11 cluster regions. Accord- 

ing to our calculations the substitutional copper (Cu2+ ) impuriw in zinc sulphide 

gives rise to a resonant state with e symmetry, which is localized in the upper- 

most valence band, and a partially filles t2 orbital that appears in the fundamental 

gap. Since these defect states associated to copper in zinc sulphide have wavefunc- 

tions that are well localized within the cluster volume, one can assume that the 

transitiòn state concept should be used to determine the energies of the optical 
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transitions associated with such a defect. Two main absorption lines have been 

observed in copper-doped ZnS. The first consists of an interna1 e -+ ta transi- 

tion from the resonant state with e symmetry to the ta acceptor state Iocalized 

in the gap. According to our calculations this transition occurs at an energy of 

0.97 eV, in agreement with the experimental data21*aa and previous theoretical 

c a l c u l a t i ~ n s ~ ~ J ~ .  The second absorption line corresponds to the ionization of the 

defect, that is, the promotion of an electron from the top of the uppermost va- 

lente band to the half-filled t2 state in the gap. We obtained for this transition an 

excitation energy of 1.17 eV which is in good agreement with the experimentally 

obtained values (1.25 eVal , 1.44 eV4) .  

Table 2 - Optical transition energies associated with the substitutional Cu impu- 
ri@ in zinc sulphide. All energies are in eV. 

Transition Chacham Ferreira and Ours Experimental 
et alia De Siqueirab 

e -+ t, -. 0.71 0.97 0.77', 0.85d 

(v0,,:) -+ (ü1 , t ; )  0.57 2.28 1.17 1.15d, 1.44" 

green luminescence -- - 2.5 2.4f 

a - ref.23, b - ref.18, c - ref. 22, d - ref. 21, e - ref.24, f - ref. 25. 

It has been well established in the literaturea6 that the green luminescent 

emission in copper-doped ZnS is due to a donnor-acceptor transition, from a single 

shallow substitutional donor, say chlorine on aluminium, to a single acceptor, 

usually copper or silver. It can be showna6 that, neglecting the electron-phonon 

interaction, one has that the donor-acceptor density of states has a maximum at 

the energy 

where EG is the host energy band gap, ED and EA are the donor and acceptor 

ionization energies, e is the electronic charge, ND is the concentration of donor 



i~iities, and c is a proper dielectric constant2' which, for convenience, will 

ue taken as the crystal static dielectric constantZ8. Since the single donor states 

associated to the green emission are shallow, they cannot be determined by rneans 

of a cluster calc~lation'~, so that we have assumed for ED the experimental ~ a l u e ~ ~  

Ed = 0.24 eV. We have also assumed the experimental data19 for the energy band 

gap, and our theoretical estimates for E,. Thus, for a typical donor concentration 

of ND - 1016 - 10" ~ m - ~ ,  one has that the green emission line has a maximum 

at about 2.5 eV, in remarkably good agreement with the experimental value of 

2.4 eV2\ Thus, one can conclude that our cluster calculation provides a neat 

description of the localized states associated to the copper impurity in inc sulphide. 

We have also performed calculations on the neutra1 Zn2+ cationic vacancy 

V.n)  in zinc sulphide. The cluster representing the cationic vacancy has been de- 

fined in a similar way as that used to obtain the cluster used in the copper impurity 

calculation, the only difference being the value of cu in the defect spheres which 

has been diosen to be a = 1. According to the atomic tabulations15, a increases 

as the atomic number Z decreases, and the vacancy can be considered as an atom 

with nu11 Z. In this case we obtained that a filled a, orbital and a t2 state occupied 

with only four electrons, that correspond to the dangling bonds associated to the 

vacancy, are introduced into the host gap. The Zn-3d states associated to the 

outermost cluster atoms for the cluster representing the vacancy become shifted 

by about 0.4 eV, when compared with those of the cluster representing the crystal. 

This shift suggests that the perturbation potential spreads out over a region larger 

than that defined by the cluster. On the other hand, our calculations indicate that 

the vacancy wavefunctions have a spread larger than that observed in the case of 

the copper impurity. So, one can conclude that the 17-atom cluster used in the 

present calculations is too small to properly describe the zinc vacancy. We have 

also observed that when the singly (VZ,) and doubly (V,On) ionized vacancy states 

are determined, the t ,  and e valence states also merge into the gap as this defect 

becomes ionized. So, one can conclude that clusters with more than 17 atoms 

must be used if one intends to obtain a proper description of the zinc vacancy. 
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4. Summary 

When performing first-principle calculations of localized defects in semicon- 

ductors by means of a cluster calculation one usually suffers from the lack of a 

unique energy reference for the clusters representing the crystal and the defect. 

This makes the localization of the defect states with respect to the band edges 

a matter of free interpretation. Such a shortcoming can be avoided by using the 

crystalline cluster method. In this work we have applied that method in the study 

of ZnS:[Cu,, , V,,] by means of calculations performed with small 17-atom clus- 

ters. We have shown that, due to the highly localized behavior of the Cu-related 

wavefunctions, these clusters provide a good description of ZnS:Cu,,, with the 

theoretical predictions closely reproducing the experimentally determined optical 

transition energies. In the case of zinc vacancy we have been unable to determine 

the stability of the many charge states of the defect because the cluster used was 

too small to properly describe this defect. 
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Resumo 

Nós desenvolvemos um método de agregado molecular para o cálculo de defeitos em materiais 

semicondutores impondo condição de contorno cristalino ao conhecido método do espalhamento 
múltiplo X ,  . A modificação proposta introduz um referencial de energia único para os agregados 
representando o cristal e o defeito, o que possibilita comparar os autovalores de energia proveniente 

de ambos os cálculos. O método foi aplicado para determinar a estrutura eletrônica de uma 

impureza substitucional de cobre e de uma vacância de cation no sulfeto de zinco com resultados 
bastante satisfatório. 


