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Abstract We study the structure of tricntical points in continuum theories using as 

a prototype the 93 theory in three dimensions. We map the phase transition surfaces, 
localizing the tricritical line. We define the theory on a lattice and use the Monte Carlo 
method to perform the numerical simulation. 

1. Introduction 

There are many models which exhibit phase transitions of second order which 

change to first order at  tricritical points, such as the Abelian Higgs model both 

at d = 4 ' s S  and d = 3 and the SU(2) Higgs model with scalar fields2. The 

main problem with these models is that we still do not know how the order of 

the transition lines in these models will be affected by the use of larger and larger 

lattices. 

In this paper we study the phase diagram of the r]@: theory using the Monte 

Carlo numerical simulation method. We were motivated to approach this system, 

in order to understand the structure of tricritical points, which we have encoun- 

tered in the study of the Abelian Higgs model at  d = 4 and d = 3 4 .  The r]@: 

is the simplest system, with continues variables, which exhibits this phenomenon, 
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and it allows us to study with care the dependence of the order of the phase transi- 

tion lines and the position of the tricritical points with the lattice size. The large N 

limit of the @Q theory was studied recently5 and it has been observed that N 30 

is the lower bound for the occurence of the Bardeen, Moshe and Bander (BMB) 

phenomena6. In the phase diagram for these large values of N ,  the second order 

transition line ends on the first order line such that the first order line continuous 

into the O(N)-s~mmetric phase, while for values of N < 30 the second order line 

goes over into the first order line leading to a tricritical point. 

In this paper we study the phase diagram of this theory in the space of 

parameters p , v  and a', to be defined below. We establish the contour for the 

region of second order and first order transition in the phase transition surfaces. 

We subject the system to an small external magnetic current in order to expose 

the phase transition line. On a second order line, the external field drives the 

magnetization slightly out of the discontinuity, forcing it to take a finite value 

which can be identified as the expectation value of the order parameter at the 

transition. This method is very effective, allowing the simulation to be done with 

a not so large a number of Monte Carlo steps. We study this model using lattices 

that range from 5 sites to 15 sites in order to study the dependence of the order 

of the phase transition lines with the lattice volume. 

2. The theory 

We investigate in this work the theory defined in the continuum by the Eu- 

clidean Lagrangian 

where the field @ is real and 

It is convenient to rewrite this potential in the form 
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such that its structure is more transparent. The relations between the'parameters 

of both potentials are given by 

When a < 0, the theory is uninteresting, since the potential has a simple 

structure, having a single minirrium at Q = O and growing monotonically with Q. 

We will consider in this study the case where õ > 0, only. 

We rescale the field 4, making it dimensionless through 

and defining the dimensionless parameter 

such that the potential 

has the behavior depicted in thc fig. 1, as v varies. When v < -1 the poten- 

tia1 has a double minimum at 8' = 1 and we expect the phase transition to be 

analogous to that of the XQ4 theory (fig.la); when -1 < v < 1, the potential 

has a triple minimum, at O2 = 1 and 0 = O. There, one may expect a first order 

phase transition for values of v near zero, where the minima of the potential are 

degenerate. (Fig. l b  and lc). When v > 1 the points 8' = 1, are now maxima 

and the minima occur at 0 = O and 6' = (1 + v ) / 2 .  The minima at 0 # O will be 

lower than that at 0 = 0, for values of v > v, = 4.236 ..., therefore we expect a 

first order transition for v v , .  
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Fig.1- Behaviour of the potential V(O) = (O2 (O2 - ~ ) / 6  for different 

values of V. 

The lattice version of this theory is written in terms of the action 

where we have replaced the continuum derivative by 
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a is the lattice spacing, 

x = v  /a2 a2 

and 

/3 = a3 a3 / v2  

It is more convenient to present the numerical results in terms of the param- 

eters v, v  and a' = ( x - l I2 ) .  In the lirnit v  + 0, the theory collapses into the 

A@: model, which is a non trivial theory. In this limit, a -,,, 4$, so that 

the inverse temperature /3 is proportional to v, however the products /3x and pu 
remain finite and this point corresponds to v + co on then v = a' = O axis. 

3. Numerical simulation of the phase diagram 

We performed the numerical simulation of the v63 model using the Monte 

Carlo method with the Metropolis algorithm. To generate a new trial field a t  

each site, we chose a random value in a given interval. We controled the width 

of the interval by plotting the a,ccepted fields distribution and allowing a safety 

margin on each side of the distribution. We adjusted the safety margin by having 

an acceptance rate for new fields a t  each trial around 0.5. 

We searched for the transition line by running first hysteresis loops on coarse 

grained lattices with 53 points. After that, we repeated the hysteresis loop on 

large lattices of 1s3 points, to localize the transition line with higher resolution, 

keeping a11 parameters equal. A.ctually, the coarse grained approximation to the 

transition line gives a good resolution line. 

When doing a complete Monte Carlo simulation for a set of parameters, we 

typically run through 10000 configurations, discarding the first 2000 allowing for 

thermalization. We used only every hundredth configuration, thus avoiding corre- 

lations between them, to compute averages. In order to improve the efficiency of 

our code, we did between 5 and 10 trials to change the value of the field a t  each 

site, before moving to the next site. 



The phase transition diagram of the theory 

We use a small externa1 magnetic field to drive the transition. The magnetic 

field will push the expectation value of the order parameter towards a finite value, 

when the system is in the broken symmetry phase across a second order phase 

transition. The diagram of j versus < O > which is used to compute the effective 

potential in the region mentioned, has a flat piece at  j = 0, and then a piece which 

increases sharphy starting at  O,, for j > O, so that the small value of j drives < O > 
towards O, '. We checked that the appropriate value for j was used in each case, by 

computing in a coarse grained lattice the j versus < O > diagram. However, this 

trick is not of much use in the regions across a first order phase transition, for there 

the flat piece of the j < O > diagram occurs at  finite values of j. Nevertheless, 

this j < O > diagram is of help in identifying the nature of a phase transition. 

There is a phase transition surface in the vva' space, which follows roughly 

the va' plane at the v = O axis. The phase transition lines in the ?v plane for 

different values of a' are shown in the fig. 2. There the first order transition is 

indicated by a full line, while the second order piece is indicated by the broken 

line. For small values of a' and large values of q the transition line seems to bent 

in the direction of large and negative values of v .  As we are mainly interested 

in studying the structure of tricritical points of this model we have not shown in 

this figure that part of the parameter space. The section of the surface on the 

a'v plane at  q = 0.001, described in the previous figure, is shown in figure 3. We 

have computed the transition line at a value of q small but not zero, for then one 

has B -+ co, /3x = 4m2a/X and Pv = 36m2a3/X. However a' and v can be kept 

finite, provided that X 2  goes to zero at the same rate as q. But then, the effective 

temperature of the system, (Px)-', goes to zero. The transition stays at a value of 

v close to zero as a' grows large, implying that the value of mZ is also very small. 

There is a piece of this transition line which is first order for a certain range of a'. 

The field distribution of the configurations, at  q = 0.0001, a' = 2.0 and v around 

a first order transition point is shown in fig. 4. This field distribution is computed 

by sumrning a11 field configurations used to compute the Monte Carlo averages, 

counting their contribution to each bin of specified length, and then normalizing 

the integral of the distribution to 1. In this figure we may observe that the field 
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distribution jumps from a strongly peaked distribution near < B >c= 1, to a 

distribution peaked near v cz 0.120. The strongly peaked distribution are a reflex 

of the small energy stored in the kinetic part of the Lagrangean. 

I 
I 
I 

------ second order 
f irst order 

Fig.2 - Phase transition line in the t,~v plane, for different values of a'. The 
solid lines correspond to first order transitions, while the broken ones are 

second order. 

The phase transition points are localized through the use of hysteresis loops. 

We show in fig. 5 an example of hysteresis loop in v taken at a' = 3.0, for 

different values of v .  In this diagram the differences between first and second 

order transitions appear clearly. While figs.5a and 5b, for t , ~  = 0.8 and 0.6 show 

no gap in the loop, 5c and 5d, corresponding to t , ~  = 0.5 and 0.3 show a gap which 

widens as r) is lowered, characteristic of first order transitions. The tricritical point 

at a' = 3.0 is located between = 0.5 and 0.6. The arrows in the diagram indicate 

the phase transition point, taken to be the middle point between the points where 
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Fig.3 - The phase diagram at f l  = 0.001 in the a'v plane. The solid line is 
a first order transition while the dashed line corresponds to a second order 
line. 

P((8J) r v 1 =-0.12 = 0001 

o ' =  2.0 

cold slort 

I .  

Fig.4 - The field distribution at two values of u at a' = 2.0, = 0.001, 
on different sides of the phase transition surface. 
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Fig.5 - Hysteresis loop in the v parameter at a' = 3.0. Diagrams a) and 
b) show a second order transition, while c) and d) are first order loops. The 

arrows indicate the position of the phase transition. 

the hysteresis loop has maximurn derivative. The nature of the phase transition 

is checked through the Monte Carlo evolution of the system, starting from two 

different initial configurations, either cold, where a11 fields are ordered and take 

the value where the classical potential is a minimum, or hot, where the fields take 

random values. An example of this Monte Carlo time evolution is shown in fig. 

6, for a' = 3.0 and for the values of r] shown in fig. 5. There, for r] 2 0.6, the 

evolution shows the characteristics behaviour of second order phase transitions, 

while for r1 5 0.6 the existence of two metastable configurations, indicated by a 

gap opening is typical of first order transitions. 
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Fig.6 - Monte Carlo time evolution starting from hot and COM initial config- 
urations. Diagrama a) and b) show second order behaviour, while c) and d) 
show a gap, typical of first order. 
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We may summarize the tricritical line in the surface of phase transitions 

around v = O, in fig.7, by plotting the contour of the first order region projected on 

the a' plane. The contour of the first order region shows a peak at a' = 6.7 f 0.1, 

with a maximum value = 2.22 f 0.04. We have checked the position of this 

peak in a' and r], running simulations in latticeç with S3, 103 and 1S3 sites. The 

position of the peak and its value in are quite insensitive to the size of the lattice. 

We summarize in fig. 8 the other phase transitioin surface which is roughly 

parallel to the one described above, around 11 = v, (= 4.236 ...). 

4. Summary 

We have investigated the phase structure of the ~46, in 3 dimensions using a 

Monte Carlo simulation on lattices of size 15'. We intended to map the tricritical 

line on the phase transition surfaces. We found that the phase transition surfaces 

are quite insensitive to the size of the lattice, allowing us to use data generated 

by configurations of size 5' ,  and to check some of this simulation data by running 

configurations with 15' sites. This theory is particularly proper to emulate the 

structure of systems where a tricritical transition occurs. 

Fig.7 - Line of tricritical points on the phase 

transition surface. 
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- - - second order 
- first order L 2nd order 

Fig.8 - Phase transition lines in the plane, for differentvalues ofa', for the 

surface around V, = 4.236 ... 
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Resumo 

Estudamos a estrutura de pontos tricríticos em teorias continuas, usando a teoria '3:: em 

três dimensões como protótipo. Mapeamos as superfícies de transiqáo de fase, localizando a linha 

tricrítica. Definimos a teoria na rede e usamos o método de Monte Carlo para fazer a simulação 

numérica. 


