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Abstract We discuss the ferrnionic description of bosonic string theory, which turns 

out to be a Thirring model. The relationship of continuous spin to compactification is 
discussed, and regular solutions with finitely many fields can be found if the spin is a 
rational number. The relation between Wess-Zumino-Witten theory and SU(n) Thirring 
rnodel is also treated. 

1. Introduction 

The main ingrediente in the modern description of string theory implying its 

relevance to the unification of a11 interactions is reparametrization invariancel. In 

two-dimensional space time it is described by the conformal group, which in this 

case is infinite dimensional, the generators being the Laurent coefficients of the 

expansion of the energy momeiitum components - for further details see ref.2. 

The description of s t r ing~ in terms of fermions by means of bosonization 

techniques has been recently discussed3. As a result, different formulations of 

the Thirring models arose, some of them presenting twisted boundary conditions. 

We shall discuss these results in terms of conformal field theory. We also draw 

attention to the relation between the conformal invariant S U ( n )  Thirring model 

solution4" and the chiral Wess-,Zumino results of ref. 5. 
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In section 2 of the paper we set the problem in the abelian case, and write 

down the relevant bosonization formulae. The role of spin is discussed, as well as 

compactification constraints. 

In section 3 the SU(n) Thirring model and W.Z.W. theory are studied to- 

gether with their solutions, which can be written pairwise. At the end of the 

section we treat the case of bound states, which are relevant to impose compact- 

ification constraints (equivalent to Gliozzi-Scherk- Olive projection)'5. Section 4 

closes the paper with conclusions, and an outlook of further idem. 

2. Abelian fermionization 

We consider a bosonic string propagating on a torus T d ,  often comparing with 

the simple case d = 1, namely the circle S1. We do not take into account flat space 

components, which in this discution remain as passive bystanders. It is convenient 

to treat the tori a s  Riemann surfaces described by complex coordinates z and 2, 

which are related to the usual euclidean string variables a and r by 

z = exp(-i(a - ir)) 

The action is the usual quadratic one, supplemented by a Wess-Zumino term 

which we rewrite as an antisymmetric tensor field (torsion) and reads 

where a = 1, ..., d and Bab is the antisymmetric tensor field. 

Later on, we will discuss the existence or not of a conformally invariant theory 

in general manifolds. 

In the following, conforma1 invariance in the quantum theory is taken for 

granted as a result of the antisymmetric field interaction6,'. Therefore left and 

right movers split. They are functions of z and ,Z respectively. 

We have the following mode expansion for the bosonic X," and X; fieldss. 
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and 

Let us restrict ourselves, for a moment, to the case d = 1. The field X ( z , z )  

is the sum of right and left mover fields. We may also define the difference field 

X ( z , z )  = X ( z )  - X(z)  (2.3) 

The following commutation relations are a consequence of the Dirac bracket 

quantization of the zero modesO 

i 
[ P O Z , X O Z ]  = -- (2.4b) 2 

We have also the usual cornmutation relation for the creation and annihilation 

operators 

[ % , % I  = 126%-"2 

Contraction of the string field is given by 

Whenever no confusion arises, X a 
(2) stands for X," ( 2 ) .  

This is also the first terrn in a Wilson expansion for the product of two X 

fields, which we write as 

1 
X ( z ) X ( w )  - -- ln(z - w) (2.6b) 

In the above formulae we may assume a symmetry group U ( l ) d  @ U ( l ) d .  

The non abelian generalization will generate a Kac-Moody algebra. For the time 
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being we discuss further the generalized abelian case, namely a torus. The only 

difference with respect to the previous case is a kronecker delta on the right hand 

side of eq.(2 .4) .  

We define the currents for the string model as 

i a 
J a  ( z )  = - - Xa 

( 2 )  J. az 

They have the following Wilson expansion 

6ab J a  ( z )  J b  ( w )  = - - 
4 ã  ( z  - w ) ~  (2.8)  

This corresponds, in the usual Minkowski formulation to a current 

J a ( x + )  = 2 .Ja(4Jr& 

where x+ is the Minkowski left moving coordenate (x+  = T + a). 
The commutator of the currents above defined reads 

i 
I J a ( x + ) ,  J b ( y + ) l  = 2 6 a b 8 ( x +  - Y + )  

Further Wilson expansions can be easily obtained and read 

1 6ab J= (z )Jb  (a) = + - --- 
4 ã  ( Z  - a)2 

The energy momentum tensor is of the Sugawara form 

T ( z )  = 2 ã  : J ( Z ) ~  : 

T ( z )  = 2 ã  : Y ( z ) ~  : (2.12) 

The following expansion hold for the products involving the energy- 

momentum tensor 

169 
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J" (4 T(z) Ja (w) = ---- 
(z - w),  

P (2) 
T(z)P( tù)  = --- 

( 2  - w)" 

T(z)T(w) = 
d + T(z) + T(w) 

2(2 - w)' (z - w ) ~  

T(z)T (w) = d +  
T (2) + T (a) 

2(z - a)* (2 - 

The above relations allow one to obtain the Virasoro algebra 

C 
[Ln,L,] = (n - rn)Ln+, + -n(n2 - 1)6,,-, 

12 

where 

L = dzzn+'T(z) f 
Expanding in eq(2.13a) J a ( z )  around w, one obtains 

which tells us that Ja has canonical dimension, being conserved in the quantum 

theory. 

It is possible to define creation and annihilation operators for the current 

mode expansion, obtaining the bosonic string spectrum on a torus. 

Bosonization techniques are a very efective means to simplify field expression 

relating fermionic composite operators to bosonic fundamental fields and vice- 

versa. A possible starting point for the bosonization procedure is the observation 

that, given the Fourier representation for the massless fermionic field, which in 

the d = 1 case reads (for the abelian multi flavor case d # 1, the modífications are 

trivial) 
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where 

and 

(a(kl), a+ (k")) = {b(kl), b' (k")) = 6(k1 - k") 

one can compute the conserved current 

3, (4 =: $(47,'$(4 : 

obtaining its Fourier decomposition as" 

where 

obeys canonical commutation relations, implying that 3, (x) is the derivative of a 

free massless scalar field 

1 
j, (2) = -a, J(4  (2.20)  

fi 
The above result has far-reaching consequences for the solution of the Thirring 

model, defined by the lagrangian density 

whose formal equations of motion are 

where J ,  = S) is the current, which satisfies two conservation laws: namely its 

divergence and curl are zero. 
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We can write, in two dimensions 

1 
.J, (x) = -a, J(x) 

J. 
Considering now the following field 

one readily verifies that 

-r& (4 = ~(47,' ~ ( 4  (2.26) 

therefore J(x) is a two dimensional free massless field. The quantum operator 

+(x) can be defined as 

$(2) = exp { j :  J(+)(X))~(X) exp {% J(-) ( E ) }  
v'- d- 

As a matter of fact the whole theory can be rewitten in terms of a massless 

bosonic field. In order to understand what happens, consider exponentials of free 

massless fields in two dimensions 

where 

a,$ = - E p v ~ Q )  

Notice that = + a , , , t  (x,) and $ , I , -  , I  = (x- ), and we rewrite 

the above fermion field as 
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where 
1 

[x- ("), X+ (Y)] = -- ln(z - Y) 4n 

Products of the exponential fields generate local functions of x (z+)  or X(X-).  

We have 

$,+,, (z  + ~ ) $ , , o  (z) = ~ X P  ( - ~ Q X ( + )  (2 + 4) exp ( - iaX(-) (Z + E))  

x exp (iax(+) (x)) exp ( k d - ' ( x ) )  (2.31) 

joining the creation operators on the left (resp. annihilation to the right) we have 

$ J ~ , ~ ( Z  + ~ ) $ ~ , o ( z )  = exp ( - i a ( x ( + ) ( x  + c) - x(+'(x)))  

x exp ( - ia(X(-)  ( z  + E) - x ( - )  (2))) 

x exp (a2 [& ) (z + c), x(+ ) (z)]) (2.32) 

Now we expand the first two exponentials to get 

a2 a 
$2,0(x + t)$,,o(z) = ( 6 - 1 -  - ia€+ -x(z+)) (2.33) 

ax+  

Thus we define 

In the Euclidean space we have the usual substitution exp(-iz+) + z and 

exp(-iz-) -+ Z. 

The solution of the Thirring model is written as follows 
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where p = s/&. In terms of tliese fields, the Euclidean equations of motion are 

We obtain now the right.left moving components of the energy-momentum tensor 

T(% ) = i*; (x)(& * a1 )$; (4 (2.38) 
a 

which due to eq.(2.34), and eq.(2.35) are of the Sugawara form, and in Euclidean 

formulation 

Comparing with the bosonic case we see a complete isomorphism between 

the currents and the energy - momentum tensor of the corresponding theories12. 

Therefore we get the Virasoro algebra. We identify the above bosonic field for 

the Thirring model, namely ~ ( 3 : + )  and ~ ( z - )  with the corresponding left moving 

bosonic fields. 

The short distance expansions in the Thirring model are 
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and in order that 91, be a solution of the Thirring model we must have 

We conclude that $J above, in terms of the string field, is a two-parameter 

family of solutions to the Thirring model. We have to consider shifts in the string 

variables. 

AI1 results may be readily generalized to the U(l)d case, considering the 

fermionic action 

with fields equations 

where Hi, = FaiKa,.  

Notice that there is no relation among the various U(1) coupling constants. 

The right and left movers and Euclidean holomorphic and antiholomorphic 

position operators are given by eq.(2.2) and eq.(2.2a). 

The position operator is obtained by adding the two expressions above, while 

2 is the difference field eq.(2.3). 

In a compactified space, we have symmetries associated to the period of non- 

trivial closed orbits; in the present case we shall, for the time being restrict our- 

selves to compactification and a d-dimensional torus, with a common radius R. 

Thus we have for each Xa ( z , ~ )  a symmetry 

This symmetry is rather intuitive; but it is not the only one. Consider the 

mode expansion on a torus 
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The momentum p, is quantixed in unities of 1/R, corresponding to the above 

symmetry. On the other hand the momentum conjugate to Xo , po , has eigenvalue 

2LR, thus a multiple or 2R. This means that Xo lies on a circle of radius 1/2R; 

therefore the symmetry 

is obeyed. 

The fermionic field constructed out of X and 2 is given, in the case of a single 

W) by 

and under eqs.(2.44), (2.46) transform as 

One should note at this point that eq.(2.48a) and eq.(2.48b) correspond, in 

terrns of strings and moduli space, to modular transformations. Thus, modular 

invariant amplitudes require that physically relevant operators be invariant under 

the above transformationa. Thase are either bilinear of the type $J+ (x)$(x), or 

bound states 

(+a , /?  ( z ) ) ~  := $Fa,FB (z), 

such that 

F ( a  + ,í?)R = 2n 
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where F, n, m, are integers. This implies, for the spin, the relation 

which is a rational number. 

We can work out in some detail the free field case, a = O, X = a2/4. For spin 

one, X = 2,$,,, is a physical field alone for R = h, since $ is invariant under 

eqs.(2.48a,b) in these circunstances. For half-integer spins, we need R = 1 and 

bound states of two fermions. 

In general we have more complicated relations. The energy momentum tensor 

0 is of the Sugawara form. 

The commutation relations between currents and elementary fields are 

1 
[Jo  (x),$f (y)] = --Aai$: 6 ( ~ -  - Y- ) (2.51a) 

2 

[JT (x), ?lf; (Y)] = -!~"'$f 6 ( ~ +  - Y+ ) (2.51a) 
2 

1 
[ J z  (z), $S (x)] = - -Dai$:6(z- - 9- ) (2.51d) 

2 

Thus, using the Sugawara form of the energy-momentum tensor we find 

i [e- (x- ), $f (x: , x: )I  = -2ãA ai : ~ o ( ~ - ) $ f  : 6(x- - x l ) + - ~ a i ~ a ' $ f 6 ' ( ~ -  -d) 
4 
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I [e- (E-),$:(z) ,z;)] = -2nDai : J: (E-)& : 6(2- -Z:)+-D"~D"~$~~'(X-  -x:) 
4 

(2.52) 

For the $'s to satisfy the equations of motion we need Ba' = 2Fa' and 

Pi = 2Ka'. Demanding also that $ have spin s = X/2 we have 

There is a possible solution to these equations given by 

where Z is symmetric, Z = Z-' and Yab = -Yba. 

The fermionic operators are given by the usual Mandelstam formulae 

If we consider now that thc torus is obtained dividing the space by a lattice 

A generated by the vectors E," we have the symmetry 

Xa -+ Xa + 2nE; n
p 

(2.56) 

where np are integers, while the dual lattice É," defined by the relation 

generates the symmetry 

-+e +nE;mfi 
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For the fermionic fields these transformations act as 

and 

$f -+ $f exp(-niZai &mp) (2.596) 

These twists are rather complicated; modular invariant operators must be 

defined in an invariant way. Some particular cases have been analised in eq.(16) 

but the general discussion is too complicated. 

Therefore, in order to obtain modular invariant operators, we need to consider 

bound states of the above defined operators. The most important ones we consider 

in this work are the vertex operators. The first is the tachyon vertex 

V (x) = exp(ik X(x)) (2.60) 

which in a compactified theory can be written as a product of the Minkowski space 

piece 

VM ink (x) = exp(ikP X" (x)) (2.61) 

where p = O, ..., dMink - 1 are unbounded coordinates, times the compactiffied 

piece 

V,,,,(x) = exp(ikiX'(x)) (2.62) 

where i = dMi,, , ..., D - 1 are compactified coordinates. According to Gepner and 

Witten18, we have to consider for the compactified part of the vertex 

which is equivalent to the above expression after using non abelian fermionization, 

and abelian bosonization prescriptions. 

With these preliminaries out of the way we pass to the discussion of the non 

abelian case which is far more important, since non abelian symmetry groups 
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appear naturally in compactification processes, such as that defined in heterotic 

strings compactification, namely 26 right moving bosonic coordinates turn into 10 

open and 16 compactified, the latter having symmetry group E(8) x E(8).  

3. The non abelian case 

In general, the action of a o.-model with a Wess-Zumino-Witten term describ- 

ing the compactification of the string variables in invariant under a non-abelian 

group, rather then U(l)d, due to the solitons wrapping around the tori

Q

. It is by 

now well known that the non ahelian fermionic determinant, computed in13", can 

be written in terms of a chiral model action plus a Wess-Zumino-Witten term6z13b, 

which is the root of the non abelian bosonization procedure, generalizing previous 

formulae to 

J+ i j  ( E ;  E )  = igk, (+€Ia+ gkj (z) (3.la) 

J- ( x ;  E )  = ia- gik ( X  + E )  (gi ( x ) )  + 
(3.16) 

and 

gi j ( E )  = P- ' : $_'; (x)$+ ( x )  : (3 .1~)  

These formulae may be obtained by various methods. A typical conformaliy 

invariant model was discussed some years ago by Dashen and Frishman4. It is the 

SU(n) invariant Thirring model described by the lagrangean density 

whose field equations are 

180 
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i Pllt = g j 4  + g j " ~ ~ l l t  

The symmetries of the theory are given by the conservation of the current j, 

(charge conservation), j,5 (pseudo-charge conservation) and j," (SU(n) transfor- 

mations). The current j,", is not conserved but obeys 

a b c  'Xb ' c  
= g f  J 3 ~ 5  (3-5) 

The most important result we can use from refs. 4, 14 is the fact that for a 

particular value of the coupling constant g ,  given by 

where Q, is the Casimir of the group (n for SU(n) which is the only case to be 

discussed) and k is the coefficient of the central term of the Kac-Moody algebra, 

conforma1 invariant solutions for the quantum equations of motion may be found. 

The fundamental point lies in the fact that the theory can be written in terms of 

currents. 

The relevant commutators are4"* 

which implies a Kac-Moody type algebra for the currents. This is a Kac-Moody 

algebra of the leve1 k = 2&, ; a, ã and C. are constants to be determined in terms 

of the spin and anomalous dimension of the theory. 
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The energy momentum tensor is of the Sugawara type 

1 
T(x,) = - : j* (x*)' : + 1 

: jf (x,)" 
zco 2 (C1 + * (3.8) 

implying a VirasoreKac-Moody algebra. 

where the coefficient c is given hy 

and D is the dimensionality of the group. 

The full solutions for the 2 and 4 point functions are known. We list them 

for later comparison with other results. 

and 
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where 

[i(z-, - x-z + +(Y- - y-,) + €1 v = (3.12b) 
[i(x- - y-, + +(y- - x-,) + E ]  

and s is the spin and d the anomalous dirnension. 

We can go to Euclidean space, where we use the following notation (to com- 

pare with ref.5 this is not the same as previously, therefore we use now greek letters 

E and i for complex variable) 

é = x1 + i x ,  

- 
= x1 - ix2 

The solution is then 

In Dasher and Frishman4 only the case k = 1 was discussed. The generalxase 

(k # 1) may present non regular solutions and has been discussed recently14. For 

6 = +1, H's are anti-holomorphic, while 6 = -1 implies that H's are holomorphic 

functions. It has been shown that they satisfy the hypergeometric equation. We 

write H,,, = HlV2 (t), which obeys 

In order to have regular solutions, Dasher and Frishman4 took C, = 1/2ã or 

k = 1 in the Kac-Moody algebra. 



E. Abdalla a n d  M.C.B. Abdalla 

In the general case howevei; the solution is the hypergeometric function. In 

complex variables we have 

where 

and 

where A = (N' - 1 ) / 2 N ( N  -I- A), Al = N / ( N  + k )  1  = - k ( N  + k )  and F is the 

hypergeometric function 

We use also 

1 r ( ( ~ -  l ) / ( N + k ) ) r ( ( ~  + l ) / ( N + k ) )  r a ( k / ( N + k ) )  h = -  
N"((k + l ) / ( N  + k ) ) r ( ( k  - l ) / ( N  + k ) )  r2 ( N / ( N  + k ) )  

(3.18) 
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We may compare the results with those of ref.5 and verify their equality forb6*13 

gij(x) = p-' : :. We turn back to the discussion of compactification, 

requiring the theory to be invariant undei-9 

which is a superselection rule about the correlation functions to be taken for the 

theory, implying that in general we have to deal with correlators involving products 

of operators at equal points. For the spin 1/2 case, X = 1. In the free field case, 

p = O, a = 2fi, and the abelian discussion holds. 

In the general case, to define modular invariant products we have to deal with 

correlators involving 

[e (y f c)$b (E) - cons tan t ]~~  

where 7 is chosen in order to provide a finite result. As an example we take 

eq.(3.15). 

We define the limit E and E' approaching zero, where 

t4 = + €I = E1 + €I 

with x in eq.(3.16) being now 

EÉ' 
x =  

( E  - E')" 

In that case we obtain 
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Substituting 

by 
2 

1 - 
2A(N $2A) 

(see eq.(3.17e)) we are left with 

Notice that the first contribution is trivial and we define the two-point function 

for the normal product of two S>'s 

This is zero for k = 1. In such a case we have to define 

Notice the analogy of the short distance behavior between this last formula 

and the expectation value of two free current operators. Further normal products 

may be defined analogously. 
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4. Conclusions 

We reviewed severa1 facts about abelian bosonization, rewriting them in a 

language familiar to conforma1 field theory, and fermionized the bosonic string, 

obtaining a Thirring model. This model is soluble, and describes a fermion with 

an arbitrary spin X/2. The case X = I was discussed thoroughly in ref.3, and 

we showed that the extension to general(rationa1) X is straightforward. The only 

difference being the type of G.S.O. projection15 used to obtain a modular invariant 

result. The extension of the results to the non abelian case can also be done, once 

we have the solution for the G-invariant Thirring model. This is well known 

for G = SU(n) .  The resulting correlation functions have been computed (in 

case of 2- and 4-point functions) and the result agrees with those of ref.5, which 

deals with the chiral model plus a W.Z.W. term, as far as the usual identification 

gi j  - p-I : $fi$+, : is made. 

An important point is the discussion of the compactification and the type of 

boundary condition obeyed by S,. In3 it has been shown that left and right movers 

have vacua described by charges QL and QR, induced from twisted boundary 

conditions. Boundary conditions are important issues for the discussions of orb- 

ifolds, but it is clear that bosonization/fermionization formulae should be useful 

in that case as we1116. Twisted boundary conditions for the bosonic case were dis- 

cussed in". In that case, constraints defining a sigma model on a symmetric space 

were modified in such a way that twisted boundary conditions showed up quite 

naturally. The relationship between these different types of boundary conditions 

and the construction of the equivalent fermionic model is an open and interesting 

question. 

As a consequence of the bosonization prescription described in the paper, we 

may study vertex operators of compactified bosonic string theories, which turns 

out to be the elementary field operator in the fermionic language. Thus, a fermion 

operator $ e i Q Z  of spin a2 /4  corresponds to a vertex operator of momentum a. 

Bound states of S, obeying modular invariance can be computed, and in the case 

k # 1, anomalous dimensions &se naturally, as discussed in the last section. 
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At last, in the non abelian theory, the number of free parameters is very much 

reduced, contrary to the abelian case, where compactification radii are completely 

uncorralated. Being conected the non abelian symmetry group, correlates a11 radii, 

and the only freedom left is in the abelian piece. This property may have some 

non trivial role in further deve10,pments. 
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Resumo 

Discutimos a descrição fermiônica da teoria de cordas bosônicas, a qual resulta em um modelo 

de Thirring. A relação entre spin contínuo e compactificação é discutida, e soluções regulares com 

um número finito de campos podem ser encontradas se o spin é um número racional. As relação 

entre a teoria W.Z.W. e o modelo de Thirring em SU(n) é também tratada. 


