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Abstract A study is presented of the sensitivity of the energy density of the massless 
Bose field on a finite lattice, at finite temperature, when modes of different components 
are excluded from the partition function. 

1. Introduction 
1 

The idea of describing Quantum Field Theories (QFT) on a lattice' has given 

many new insights into non-perturbative phenomena. From analogies drawn with 

statistical mechanics, it has become possible to borrow many well-known tech- 

niques. These include high temperature expansions (strong coupling), mean field 

theory, random walks and Monte Carlo simulations. The latter is used to evaluate 

path integrals numerically2. 

When QFT was studied on a lattice, questions about finite temperature cal- 

culations, in the continuum, were being investigated3~'~'. The next step was nat- 

urally the study of QFT at finite temperature on a finite lattice6. Either at finite 

or zero temperature, the finite lattice serves as  a useful to01 from which the con- 

tinuum limit can be recovered. 

A particular point of interest is to know the effect of finite lattice structure 

in finite temperature calculations. One attempt to answer this question came 
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p e r i o d i c  

Here U(q5,n) is the Hamiltonian density, given in terms of the Wick rotated field 

r$(%) and its conjugate momentum r(x) ;  p = (kB T)- '  is the inverse of the physical 

temperature, kB is the Boltzmann constant, set equal to 1 and N is a normalizing 

factor. (Note that 4 = d4/dr). The periodic paths considered in the above 

functional integral are those for which 4(2,0) = r$(?,@). As U usually has only 

quadratic dependence on r, the r-integration can be performed to give 

where N'(P) is a temperature-dependent normalisation factor and S(4)  is the 

Euclidean action, given in terms of the Lagrangean density of the system 

The above finite temperature field theory formalism is used for the case of the 

free rnassive scalar Bose field on a Euclidean lattice7. The aim is to evaluate the 

partition function and the thermodynamic properties derived from it. Consider 

the following Hamiltonian density 

U(4,r)  = 1/2(ã2 + rn2&?)  (2.5) 

and introduce it in eq.(2.2). The discretized partition function is given by 

where the scalar field 4 takes a value 4(z,) on each site x, of a lattice of N,3 x No 

sites, with spacings a, and ap in the space and temperature directions respectively. 

Here N' is the temperature dependent normalisation factor 
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(fixed so that the partition function is dimensionless) and the action S ( 4 )  is 

where E,, is a vector of length a ,  ( p  = 1 ,2 ,3)  or ao ( p  = O )  in the p direction. The 

sum in cr runs over a11 sites of the lattice. Also, periodic boundary conditions in 

a11 directions are imposed on the fields: 4 ( x a  + Na E , )  = + ( z , ) ,  p  = 1 , 2 , 3 ;  4(za + 
NB to) = d(x,). Notice that in the naive continuum limit a , ,  a, --+ /3 the action 

of the massive free field theory is recovered. 

The diagonalization of S ( 4 )  by means of a Fourier transform gives the result 

where ( r a u l a p  and G ( a , ,  t, q) is the dimensionless lattice free field propagator 

given by 

The four-momenta q take values in the first Brillouin zone of the reciproca1 lattice 

O, *i, ..., * ( N o  / 2  - I ) ,  N ,  / 2 ;  ( N o  even) 
j o  = { o ,  f 1, ..., f ( N ,  - 1 ) / 2 ;  ( N ,  odd) 

(2.11) 
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o, *i, ..., f (Nu 12 - i ) ,  Nu 12; (Nu even) 
O, 3~1 ,  ..., *(Nu - 1)/2; (Nq odd) 

The important feature of expression (2.9) is that for the free massless case 

the zero mode q, = O for a11 H ,  gives an infinite contribution, as can be seen from 

eq.(2.10) with m = O. Tracing this contribution in the functional integral, we 

find that whenever q5(sa) is the same constant for a11 sites z, ,$(z,) = $(zk), the 

integrand in eq.(2.6) is also a constant and therefore the contribution of constant 

configurations to the integral is infinite. It is then clear that the divergence arises 

because periodic boundary conditions were imposed not only in the temperature 

direction but in the space direction as well. If we take 4 = O boundary conditions, 

this divergence disappears. The integration along the line of constant field config- 

uration for a11 sites then gives one contribution, which is zero. By performing this 

calculation with zero boundary conditions we get a finite answer, but we have an 

extra constraint, 4(xa + Na ,@ E,,) = 4(xa ) = 0, therefore restricting the number of 

degrees of freedom. 

In ref.7, which we refer to as (EKS), the interest was in the massless case and 

this problem was circumvented by dropping the zero mode term from eq.(2.9). A11 

the subsequent calculations were therefore performed using the partition function 

where the dash stands for the absence of the q = O mode, q = (q,, 3. 
The value of the energy density, normalized to zero at  T = O, (see appendix), 

was then given by 
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We can sum the jo component
g 

to get 

E 1  b  
- {cth [N ,  sinh- l ( b j t ) ]  - 1 )  + '""" = (&2 + Ç2)',2 (2.14) 

i N,3 N, a: 

with 
3 

(again the dash means that the zero mode is absent). 

The effect of the finite lattice approximation was seen by comparing the above 

expression for the energy density with the well-known continuum form for the 

energy density of a photon gas. This is given by the Stefan-Boltzmann law" 

This problem was next examined by Gorenstein, Lipskikh and Sorin8, here- 

after referred to as (GLS), when considering the quantization of the free massless 

Bose field in a finite volume V. Starting from the Hamiltonian 

they considered the quantized system in which the above Hamiltonian is written 

in terms of creation and annihilation operators and the vacuum energy is zero 
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where the dash rneans absence of the k = O mode. 

Repeting the same analysis as before, their partition function for the massless 

free field, with the above Hamiltonian is given in terms of 6 function 

per iod ie  

exp { /Od 

d~ / d3 x (ir4 - N (H, 9)) } 

And the final partition function on the Iattice is 

where GP'(a,, E,q) is given by eq.(2.10) for m = O and N is a E-independent 

normalisation factor. 

The comparison between eq.(2.20) and eq.(2.12) shows that the total 3- 
i. 

momentum zero mode contribution has been extracted from the propagator via 

the term 

q G1I2 (a , ,  t ,  9 = (90,s)) 

The contribution of this term to the energy density is such that 

It is clear then that the role of the 6 function in eq.(2.19) was to subtract 

the term E/(N,3Npa:). The main feature of this subtraction is that this term 

contributes with an NB-independent term to the specific heat C,, which does not 

vanish in the zero temperature (Nd -+ co) limit, preventing the validity of the 
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third law of thermodynamics. We should remind the reader that the third law of 

thermodynamics concerns the .fact that in the zero temperature limit the entropy 

vanishes and, as a consequence, so does the specific heat. 

We see that the exclusion of modes in the (GLS) case has changed the thermo- 

dynamic properties of the lattice model, so that the third law of thermodynamics 

now holds. However, even though we have some advantages brought up with the 

exclusion of these modes, the ,way this is carried out in both approaches ís still 

arbitrary. On the one hand, (EKS) treated the zero mode in a way such that the 

supression of the integration over constant field configurations resulted in dropping 

the zero mode from the partition function. On the other hand, when considering 

the Hamiltonian as the one that has zero vacuum energy, the (GLS) case, the 

actual claim was that the constant field configurations were excluded from the 

functional integral via 6 functions. But this turned out to suppress not only the 

zero mode but modes of the form q = (q,, O) as well, for any q,, that is, the 3- 

momentum zero mode for the whole temperature range. As a result, the third law 

now holds; the thermodynamics of the discretized system has really changed. 

Therefore, facing this apparent contradiction in dealing with different modes 

of the partition function, it remains inconclusive how other modes actually con- 

tribute to the energy density, without altering the continuum limit or thermo- 

dynamic quantities like the specific heat. To study the sensitivity of the energy 

density we take (EKS)'s partition function as a standard result, because it has a11 

modes of the 4 components - except the q = O mode. We then consider various 

cases in which different modes are suppressed each time from ZEKS and evaluate 

the energy density c. Then we analyse the ration €/cSB for different size lattices, 

which show how the initial results were affected. We therefore shall be dealing 

with partition functions that are written as 

where I; (a,, E )  denotes the contribution of isolated modes taken away from the 

massless propagator G(a, , E ,  q), given by eq.(2.10) for m = 0, that is 
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Thus the energy density will be of the form (see a~pendix),  

where 

3. Results 

We have considered 5 different cases at random, for which we present joint 

graphs for comparison with the (EKS) and (GLS) cases. 

Case 1 - Consider li (a,, e) such that it removes from the propagator the zero 

modes: q, = O for p = 0,2,3 or equivalently j, = O, p = 0,2,3 

We can immediately see from eq.(2.10) that Ii is E-independent, which means 

that 6~1 given by eq.(2.25) is zero, that is, C, = E E K Ç .  In other words, modes that 

do not contribute with a 6-dependence can be removed from the partition function 

without altering the (EKS) result. 

Case 2 - In this case, we choose I, (a , ,  E )  in order to remove from the propagator 
1 

a fixed non-zero 3-momentum vector q', or equivalently, a non-zero 3-vector 3 as 

in eq.(Z.ll), i.e., 

12(a,,E) = I I ~ , G ~ / ~ ( ~ , , [ , ~ =  (j,,;)),for fixed;I#0 (3.2) 

This is a very special case which can be directly compared with (GLS), for which 
.., 
j = 0 (cf. eq. 2.20). 
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The energy density here is given by 

t 
E, = S - - {cth [ N @  sinh- ' ( ) / e ) ]  - l} (3 .3 )  

Nba; (b2 + (2)1/2 

+ 
where b is given by eq.(2.15). We have considered particular values of j : 

Comparing E , / E ~ ~  with éEKS/çSB we found that the only significant difference 
-+ 

comes from j = (O,& I), which we show in figs. 1, 2, 3. For all the other values of 

;, the difference is negligible, especially for increasing values of N u ,  N D ,  where we 

have é, = é,, , . 
We should point out that the (GLS) case can be recovered by taking the 

$+ O (6 -+ 0) limit in 6 6 , .  The behaviour of 4 e s n  is therefore crucially different 

from the one where Q # O, and so are other thermodynamic properties as for 

instance, the specific heat. Here, unlike the c= O case, the specific heat (derived 

in the appendix) does not vanish in the limit No + w (T -t O). 

Case 3 - Let us remove from the partition function the two zero components 

of the 3-momentum, through I$ (a,, () given by 

I 3 = ~ ~ o ~ 1 ' 2 ( a u , t , j = ( j o , O , ~ ) , o ) ) . ~ j o , j , ~ 1 ' 2 ( a b , t , j ) = ( j O , j l , O , 0 ) )  (3.5) 
io # O 

This shows directly that we have included the (GLS) case. Hence the energy 

density is 
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where in this case 

Once the (GLS) case has been included, we expect the ratio to be 

smaller than / é s B .  In fact we should note that this case is actually a combi- 

nation of a Case 2 and (GLS) case, which stresses even more the difference from 

E ~ ~ ~ / E ~ ~ ,  especially for small values of N, and No ,  (see fig. 1). An increase 

in Ng a t  fixed Nu (low temperature limit) makes E ~ / E ~ ~  approach zero rapidly 

again, as opposed to the divergent behaviour of c,, , / E , ,  . Larger values of Na 

and NR (with Nu >> No) make this ratio converge to 1, but in a slower way than 

in (GLS), see figs. 2 and 3. 

Case 4 - This is the simplest case considered, in which only one mode is sup- 

pressed from the original partition function 

~ ( a , ,  C) = ~ " ~ ( a , ,  t , j ) ,  for fixed j = (j~,;), j # 0 (3.8) 

In contrast with the previous case, its contribution to the energy density has 

increased E* by a positive number 

The reason why we now have 6 6  > O is due to the fact that  the vacuum 

contribution of this isolated mode is zero (see eq.2.25). To see by how much E E K S  

is increased, we have considered special values of j ;  j = (jo , il ,  j2, j3) 
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The ratios of energy densities: C E K  / cSB ,  ~ E K Ç  / c S ~  and c i /cs ,  (i = 2,3,4,5) as 
functions of Ng at fixed No and with < = 1 .  Fig.1 - Nu = 10. Fig.2 - No = 20. 
Fig.3 - Nu = 30. 
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When we take j as in a) or b), because their 3-momentum j = 0, the energy 

density is trivially reduced to 

that  is, 6 6 ,  gives exactly the same absolute value at  6eGLs (cf. eq. 2.21). Thus the 

deviation from E E K ~  is very large. For the other values of j we note that  when jo 
-4 

is large and j has small j, , j2 and j3 components, c4 / t S B  is very large, compared 

to € E K Ç / E Ç B  as shown in figs. 1, 2, 3 for different values of Np and No, with c = 1. 
.... 

If j has higher values of j, , j2 , j3 , the result is that E r €E . 

Case 5 - Suppose that we remove from the partition function modes with jo, j2 

and j3 fixed. This is accomplished with I, (a,, E) given by 

for fixed jo , j 2  and j,, jo # O. The energy density, as in case 4, will be given by 

€5 = ~ E K S  + 6 6 5  , 6 6 5  > 0, and with 

where 

b 2 ( j )  = sin2 (ãj2 /Na) + sin2 (ãj3 /No) 

We have analysed the following special cases of (jo, j2, j3)  : 
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Although the amount 6é5 of the contributes to é,,, is much greater than 6 é 4  in 

Case 4, the conclusions for this case remain almost the same: an increase in j2 and 

j3 with small jo makes 6 é 5  small. Nevertheless, going through intermediate values 

of j,, j3 and jo we see great changes in the energy density, especially for the case 

jo = Np/2 and j + 2 = j, = 0, which is shown in figs. 1, 2 and 3. It is interesting 

to note that no change takes place in the energy density c E K S  for jo = j2 = j3 = 0; 

it is when Case 1 is recovered (cf. eq. 3.1 and 3.10). The difference between this 

case and GLS is remarkable, sirice in both there is the lack of one full component 

of momenta, (see figs.). 

4. Discussion and Concclusions 

We have investigated the behaviour of the energy density of a free massless 

Bose field on a finite Euclidean lsttice, at finite temperatures, when different modes 

plus the zero mode contributiori are suppressed from the partition function. 

From two already existing models to correctly evaluate the partition function 

of this field theory, we took the first, the (EKS) case, as standard and studied the 

change caused by the exclusion of other modes to physical quantities such as the 

energy density. We should point out that we were not interested in establishing a 

new model system for this field theory, but in analysing the general contribution 

of isolated modes to the energy density. We have done so in view of the arbitrari- 

ness of those approaches, especially the (GLS) case, which has implemented great 

changes in the thermodynamic quantities such as the specific heat. Notice that 

this case also excludes the 4-momentum zero mode in their treatment and this is 

why we took the (EKS) case as standard. 

Looking separately at each case we have treated, we note that apart from case 

3, cases 2, 4 and 5 present the same general pattern: the ratio of energy densities 

c/cSB shows that they a11 have a. best No (sufficiently large), so that after that the 

curve diverges. This actually occurs in the EKS case. Increasing Np and N,  with 

N, 2 Ng , the curves flatten , and approach the value 1. The finite size effects for 

cases 4 and 5, where the.3-momentum modes were excluded a t  fixed temperature, 

are larger than for the ones where the temperature modes were excluded, as in 
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cases 2 and 3. For the latter, case 3, the ratio of energy densities shows the same 

behaviour as (GLS), and we can see that what really made a change was the 

absence of the full 3-momentum zero mode for a11 temperature values. Here, this 

ratio is mainly a decreasing function of Ng , for fixed Na, <, tending to zero for 

large Ng, (zero temperature limit). If No is also large as Ng -t oo, it can then 

converge to 1, if Na > N o .  The finite size effects are smaller when compared to 

(EKS), but larger if compared to (GLS). The difference that only one mode can 

make to the finite lattice size effects is surprising. Case 4, for instance, shows that 

the isolated influence of one mode is enormous when compared to the case where 

many modes have been dropped, such as case 2. 

Concerning other thermodynamic quantities, like for instance the specific 

heat, there are changes: whenever the zero 3-momentum mode is excluded, this 

change is such that C, vanishes in the T -t O limit. This however only happens 

in (GLS) and case 3. Otherwise C, is a constant in the zero temperature limit, 

contradicting results such as the third law of thermodynamics. 

We conclude that the influence of finite lattice size is not negligibe in quantities 

like the energy density; isolated modes can drastically change finite size effects. 

Therefore, if one studies the free theory in order to use the knowledge learnt from 

it to  apply to.more complicated (interactive) systems, one has to be very careful 

before neglecting unwanted infinities. It may turn out that one would be dropping 

modes that give significant contributions to the energy density. 

Appendix 

Having evaluated the partition function ZE , we can calculate thermodynamic 

quantities like the free energy, the energy density and so on. In the following we 

recall the definition of these quantities and their related discrete forms. On the 

lattice, since V = N,3a3, and p = Noap,  the discrete derivatives, given at fixed No 

and Ng are (for = a, / a p )  : 
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Thus, the energy density, defined by 

is written on a lattice as 

where f is the Helmholtz free energy density, 

1 
f =--h2 

PV 

Its discrete form, normalized to zero at  zero temperatute ( N ,  -+ oo) is 

f = fE - lim fE 
Nn- m 

with 

Finally, the specific heat is defined by 

and takes the following discrete form 
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Resumo 
Apresentamos um estudo da sensitividade da densidade de energia de um campo de Bose 

livre e não massivo numa rede finita e à temperatura finita, quando modos de componentes 

diferentes do momento são excluidos da função de partição. 


