
Revista Brasileira de Física, Vol. 19, no 3, 1989 

Coherent states for certain time-dependent systems 

I.A. Pedrosa 

Departamento de Física, Universidade Federal da Paraíba, 58000, João Pes- 
soa, PB, Brasil 

Received 28 September 1988; in final form 27 August 1989 

Abstract Hartley and Ray have constructed and studied coherent states for the time- 
dependent oscillator. Here we show how to construct coherent states for more general 
time-dependent systems. We also show that these states are equivalent to tl;e well-known 
squeezed states. 

1. Introduction 

In a very interesting paper, Hartley and Rayl constructed exact coherent 

states for a special case of the time-dependent oscillator where only the frequency 

is allowed to change with time, by making use of the Lewis-Riesenfeld quantum 

theory for the time-dependent harmonic oscillator2. According to Hartley and 

Ray, these new coherent states have most, but not all, of the properties of the 

ordinary coherent states for the time-independent o ~ c i l l a t o r ~ - ~ .  For example, 

these coherent states give the exact classical motion, but they are not minirnun- 

uncertainty states. 

In this paper, we wish to show how one can construct Hartley-Ray coher- 

ent states for more general time-dependent oscillators. To this end, we use a 

time-dependent canonical transformation, which reduces the more general time- 

dependent oscillator to the special time-dependent oscillator with a modified fre- 

quency, and an auxiliary time-dependent transformation. Thus, we can perform 

the Hartley-Ray construction for the transformed system and then map the states 

so obtained back to the original system via inverse transformations. We also show 

that these coherent states are equivalent to the well-known squeezed states. 
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This paper is organized as follows. In sec. 2 we briefly review some of the 

properties of the ordinary coherent states. In sec. 3 we construct coherent states 

for more general time-dependent oscillators. In sec. 4 we show that these states 

are equivalent to the squeezed states. Finally, some concluding remarks are added 

in sec. 5. 

2. Review of coherent states for the time-independent os- 
cillator 

For the time-independent harmonic oscillator of mass equal to unity and fre- 

quency wo 

where p is the momentum conjugate to q with [q,p] = ih. Now, writing the usual 

annihilation and creation operators 

which satisfy the commutation relation 

we can rewrite eq. (2.1) as 

The operators a and a+ have the properties 
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where In > are the number states and 10 > is the oscillator ground state. 

The coherent states Ia > where a = u + iv is a complex number may be 

defined 3 , 5 t 2 1  as (a) minimum uncertainty states (see eq.(2.12) below) that have 

the additional property Ap = mw,Aq (in our case the mass m is equal to unity); 

(b) eigenstates of the annihilation operator, i.e., ala >= ala >, and (c) as states 

displaced from the ground state via the operator D(a)  = exp[aa+ - a'a]. However, 

for the time-independent harmonic oscillator a11 three definitions yield the same 

result4, namely, 

Using eq. (2.6) and the fact that Hln >= hw, (n + 1/2) , we obtain the time 

dependence of the coherent states as 

where 

a ( t )  = a exp(-iwot) 

Then, trivially, from eq. (2.4) and eq. (2.7) we obtain the expectation value of H 

Now, by calculating the uncertainties in q and p in the state la , t  >, one finds 

and 

Thus, from eq. (2.10) and eq. (2.11) we see that the coherent states are minimum- 

uncertainty states, i.e., 
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Also, using eq. (2.7) we calculate the expectation value of q for the coherent state 

Ia, t > and find 

where 6 is the argument of the complex number a. As pointed out by Glauber3, 

the classical limit is obtained from taking h + O, /a[ + m, such that fila12 + 

finite. Now from eq. (2.9) we see that the classical Hamiitonian is 

1 
H,, =< a ( H l a  > --hw, 

2 

Thus, the expectation value of q in eq. (2.13) follows the classical motion. It 

satisfies the classical equation of motion of a time-independent oscillator with 

energy given by eq. (2.14). 

3. Time-dependent coherent states 

We consider the time-dependent harmonic-oscillator Hamiltonian 

where q is a canonical coordinate, p is its conjugate momentum and w ( t )  and f ( t )  

are arbitrary real functions of time. The variables q and p satisfy the canonical 

commutation relation 

I%PI = ih . 

The canonical equations of motion are 
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which, when combined, yield the equation 

Note that the so-called Kanai-Caldirola Hamiltonian6 is recovered when f (t) = 

exp(-rt) with constant 7. 

To construct time-dependent coherent states for the Hamiltonian eq. (3.1) we 

proceed as follows. Consider the time-dependent canonical transformation given 

by the generating function' 

1 
F(q,P, t )  = i ( q ~ + ~ q ) f - ' / 2 ( t )  - ?qzf-l(t) . (3.7) 

The transformation equation are Q = aF / âP ,  p = aF/ag, from which we obtain 

the new canonical variables 

& = qf - (t) , ( 3 . 8~ )  

This is a generalization of the canonical transformation proposed by Gzy18. Also, 

note that [Q, P] = [q,p] which implies that the commutation relations remain the 

same in both coordinates. Then, under this transformation the Hamiltonian eq. 

(3.1) is transformed into a new Hamiltonian H, (t) = H(t) +aF / a t  which, in terms 

of the new variables, is expressed as 

where 

506 
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is the modified frequency. Here we observe that the Hamiltonian eq. (3.9) is of the 

form of that considered by Lewis and Riesenfeld2 and Hartley and Rayl. Hence, 

an exact invariant for (3.9) is given by1t2 

1 
I( t )  = 5 [(PP - 88)' + ( Q / P ) ~ ]  , (3.11) 

where Q(t) satisfies the equation of motion 

and p(t) is a c-number quantity satisfying the auxiliary equation 

In order to make I ( t )  Hermitian, we choose only the real solutions of eq. (3.13). 

Let us now introduce the time-dependent transformation7 

where x(t) is a real function of time which is to be determined.  hei using eqs. 

(3.8), (3.10) and (3.14)~ the equation of motion (3.12) is converted into eq. (3.5) 

and the  auxiliary eq. (3.13) into the equation 

2 + $t)Z + u2(t)x = f2(t)/x3 . 

The invariant eq. (3.11) is converted into the form 

Thus, eq. (3.16) is an exact invariant for the Hamiltonian eq. (3.1) with p given 

by eq. (3.3) and q(t) and x(t) satisfying, respectively, eqs. (3.5) and (3.15). For 

f (t) = 1 we recover the invariant for the time-dependent Hamiltonian where only 

the frequency is allowed to change with time1v2. Note that in this case the function 

(3.7) generates the identity transformation. 

Next we consider the time-dependent ~pera tors ' .~  
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where 

[b( t ) ,  b+ ( t ) ]  = 1 . (3.18) 

From eq. (3.17) we can deduce 

h " 1 2  1 
P = '(s) ((! - ib) b+ ( t )  - (; + ii) b( t ) )  . 

The invariant operator' given by eq. (3.11) can be written in terms of b(t)  and 

b+ ( t )  as 

1 
I ( t )  = h (b+ ( t )  b(t)  + i) . (3.20) 

Using eqs. (3.18) and (3.20) the eigenvalue problem for I ( t )  can be exactly solved 

just as for the Hamiltonian in the time-independent case. Thus, we h a ~ e ' , ~  

The general solutiori of the time-dependent Schrõdinger equation for H, ( t)  in eq. 

(3.9) is given by 

where the c, are constant, the subscript S indicates that the states evolve in time 

according to the Schrodinger equation and the phase functions a, ( t )  are given by 
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The coherent states for the Hamiltonian eq. (3 .9 )  are given by '3' 

On the other hand, by using eq. (3 .14)  the eq. (3 .25)  is converted into the 

eqiiation 

Also, using eqs. ( 3 . 8 )  and (3 .14)  the operator in eq. (3 .17)  are converted into the 

form 

1 ' 1 2  

bt ( t )  = (-) (q /r  - i ( z p  - f -  '24) (3.28b) 
2 h  

These operators are a generalization of the operators originally introduced by 

Lewislo to factor the invariant eq. (3 .11)  as eq. (3 .20)  in the first exact quantum 

treatment of the harmonic oscillator with a time-dependent frequency. Thus, the 

states Ia, t >, are coherent states for the time-dependent Hamiltonian eq. (3 .1 )  

with an exact invariant given by eq. (3 .16) .  Notice that for f ( t )  = 1 the states 

eq. (3 .26)  become the coherent states constructed by Hartley and Ray. 

The coherent states Ia, t >, are eigenstates of the operator b ( t )  the eigenvalue 

a ( t )  : 

where 

a ( t )  = a exp ( 2 i a o  ( t ) )  , 
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Also, these states can be created from then oscillator ground states by the unitary 

displacement operator D(a)  =: exp[aa+ - a* a] using the same procedure of ref. 1. 

From eqs.(3.20) and (3.29) we obtain the expectation value of I ( t )  

.7 < a, t l I ( t ) la , t  >S= h(la12 + 112) . (3.32) 

After some calculation, using eqs. (3.8), (3.14), (3.19), (3.29) and the well-known 

tricks, we find that the uncertainties in q and p in the state la, t  >, are 

Thus, the uncertainty product is expressed as 

and, in general, does not attain its minimum value. 

Next, using eqs. (38a), (3.14), (3.19a) and (3.29), we find that the expectation 

value of q in the state la, t  >s is given by 

where 

and 6 is the argument of the complex nurnber a. Here we observe that the results 

eqs. (3.33) and (3.36) can also be obtained from eqs. (3.28) and (3.29). On 

the other hand, it is known" that the solution to the equation of motion for the 

classical time-dependent harrnonic oscillator 

& j e i  + 'Y(t)Q,i + w2(t)qcl = 0 

can be expressed as 

510 
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where A, is a constant and z(t) satisfies the auxiliary eq.(3.15). In this case, 

the invariant I ( t )  is defined in the same way as eq. (3.16) but using classical 

variables. Notice that eq. (3.39) provides a physical interpretation for z(t)  and 

d ( t )  as quantities related to the amplitude and the phase of the time-dependent 

oscillator eq.(3.38). Now, as we have already mentioned in the last paragraph os 

sec. 2, the classical limit is obtained from taking tL --+ O, tal -+ CO, such that 

h1al2 -+ finite. Thus, the expectation value of q in eq. (3.36) is exactly the 

solution for a classical time-dependent oscillator with invariant (see eq. (3.32)) 

ti]a12 =S < a, t l I ( t ) la , t  >s -;ti . 
In finishing this section, we remark that for f ( t )  = 1 a11 our results reduce 

to those of Ilartley and Rayl. Clearly, a11 of the properties of the coherent states 

constructed in ref.l, are possessed also by the coherent states Ia, t >s given in eq. 

(3.26). 

4. Squeezed states 

In this section, we wish to show that the time-dependent coherent states 

10, t >s constructed in the previous section are equivalent to the so-called squeezed 

states12-". To show this let us consider the operators b(t) and b+ (t) given by eq. 

(3.28). It is easy to verify that these operators can be expressed in termii of the 

operators a and a+ (see eq.(2.2)). In fact, using eqs. (2.2) and (3.28) we can write 

b(t) and b+ (t) as 

b+ (t) = p* (t)a + v* (t)a+ , (4.lb) 

where 
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Also, a straightforward calculation shows that the complex c-numbers p(t)  and 

~ ( t )  satisfy the relation 

) p / 2  - = 1 . (4.3) 

Thus, from eqs.(3.29), (4.la) and (4.3) we see that the coherent states Ia, t >s 

are, by definition, equal to the well-known squeezed states12- 17. The properties 

of the states have been studied in detail by some a ~ t h o r s ' ~ ~ ' ~ .  

On the other hand, it is known that the uncertainties in q and p for a squeezed 

state are given by12-'7,'8 

whence 

From eq. (4.5) we see that the squeezed states, in general, are not minimum- 

uncertainty s t a t e ~ l ~ , ' ~ .  Now, the uncertainty produc eq. (4.5) is minimized if 

p = TU for r real (see refs. 12, 13 and 18). Also, notice that the relations (4.4) 

and (4.5) are equivalent to eqs. (3.33) and (3.34). 

Therefore, from the arguinents presented above we see that the coherent states 

Ia, t >, for the time-dependent harmonic oscillator eq. (3.1) are equivalent to the 

well-known squeezed states. Here, we remark that these states are also known as 

two-photon coherent states in quantum-optics literature12~15. 
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5. Concluding remarks 

In this paper we have used a time-dependent canonical transformation, which 

can be implemented as a unitary change of representations, an auxiliary time- 

dependent transformation and the procedure developcd in ref. 1 to construct 

coherent states for the time-dependent system described by the Hamiltonian eq. 

(3 .1) .  These coherent states have bem expressed in terms of the eigenstates of 

the invariant eq. (3.16) and are more general than those of ref. 1. Furthermore, 

we have shown that these states are equivalent to the we!l-known squeezed states 

which have recently been the focus of considerable attention, specially owing to 

its prospective application in quantum optics. Also, we have obtained a natural 

generalization of the operators originally intmduced by L e ~ i s ' ~ .  

The technique developed here can also be applied to other time-dependent 

systemS. As an example, WP, consider thc system described by thc Hamiltonian 

which possesses an invariant given by7 

where x ( t )  satisfies the auxiliary eq. (3 .15) .  Then, following the same steps as 

those of sec. 3 ,  we convert the Hamiltonian eq. (5.1) into the form 

P2 R2 ( t )  1  
H, ( t )  = - + 2 - Q

2 
2 + p ; g ( Q / ~ )  , 

where R ( t )  is given by eq. (3.10) and p( t )  satisfies eq. (3 .13) .  The invariant eq. 

(5.2) is converted into the form 

Now,Rayl9 constructed coherent states for time-dependent systems described by 

Hamiltonians of the form eq. (5 .3 ) .  Thus, it seems that it would not be any 

problem to construct coherent states for the time-dependent systems associated 
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with eq. (5.1) using the same technique presented in this paper and that of ref. 

19. Work in this direction is in progress. 

Finally, we mention that Dodonov and Man'kozo have constructed coherent 

states for a special case of the Hamiltonian eq. (3.1) with f (t) = exp[-2r(t)]. 

However, the approach used by Dodonov and Man'ko is considerably different from 

the one presented in this paper. Moreover, they have considered linear invariants 

and have not expressed their states in terms of the eigenstates of the invariant. 

Also, those authors have not obtained the relationship to the classical motion. 

As a concluding remark we wish to point out that Hamiltonians of the form 

eq.(3.9) are of physical relevance. In fact, the standard technique for generation 

of squeezed states, i.e., parametric amplification corresponds to the Hamiltonian 

eq. (3.9) with a frequency R(t) = ng [1 + 2 sin(2R0t)]. For a detailed discussion on 

parametric amplification (theoretical and experimental) see refs. 22 and 23. 

The author wishes to thank the referee for supplying the contents of the last 

paragraph of sec. 5. 
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Resumo 

Hartley and Ray têm construído e estudado estados coerentes para o oscilador dependente 
do tempo. Aqui mostramos como construir estados coerentes para sistemas dependentes do tempo 

mais gerais. Também mostramos que estes estados são equivalentes aos bem conhecidos estados 
comprimidos. 


