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Abstract Quasi-free ($,2p) reactions at medium energies (with polarized incident pro- 
tons) are considered. In this context, a simple and rather direct method to extract infor- 

mations about cluster correlations in nuclei is presented. It is shown that, if the initial 
nucleus has a non-vanishing spin, the quasi-free effective polarization for a knock-out lead- 

ing to a given final state can be expressed as a linear combination of effective polarizations 
defined on the basis of an angular momentum quasiparticle approach to cluster states in 

nuclei. Analyzing the effects of the nuclear medium on the quasi-free effective polariza- 

tion, some information about nuclear structure - particularly that associated with orbital 

angular momenta and/or cluster correlations in nuclei - may be obtained. 

1. Introduction 

Numerous experimental and theoretical investigations on quasi-free nucleon- 

nucleus reactions, performed in the last three decades, have resulted in a large body 

of information about binding energies and momentum distributions of nuclear nu- 

cleons, widths of one-hole states and spin-orbit splittings of nuclear single-particle 

shells'. This considerable amount of work has established, in a very consistent way, 

the basic conceptual framework of quasi-free processes, i.e., the understanding of 

the reaction mechanism, the limitations of the Distorted Wave Impulse Approxi- 

mation (DWIA) and of the Factorization Approximation, the role of the residual 
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interactions in the initial and final states 2nd the properties of the states of the 

final nucleus. 

Quasi-free nucleon-nucleus scattering at medium energies emerged from these 

studies as one of the most important tools for investigating the single-particle 

properties of a nucleus (its shell structure), in special for the most strongly bound 

states, and effects of the nuclear environment on the short range structure of the 

bound nucleons. 

With the advent of quasi-free processes with incident polarized particles a 

new dimension in the investigation of the nuclear structure was added. Theoretical 

predictions2, which have been later on experimentally c ~ n f i r m e d ~ - ~ , ~ ~ ,  have shown 

that the nuclear nucleons which is knocked-out in these processes was in general 

(effectively) polarized in the nucleus. In recent years, considerable prbgress has 

been made in this subject both on the theoretical and experimental domains. 

Experimentally, intense polarized medium-energy proton beams with a good duw 

cycle have become available and have been used a t  TRIUMF* in ($, 2p) reactions 

and also precise (p,pn) scatterings have become possible7. The most extensive 

($,2p) measurements have been made for the nuclei l6 0 and 4 0  Ca a t  200 MeV3-4,5 

and quite recently for *Oca at  300 MeV1. In these experiments, the measured 

asymmetries have clearly confirmed a large (effective) polarization of the nucleons 

in the nucleus. The matrix element for the scattering of two protons is strongly 

spin dependent - by using a polarized proton beam this effective polarization may 

be measured in (G, 2p) reactions. Theoretically, the exploitation of the spin2 and 

i s o ~ p i n ~ , ~  degrees of freedom has been shown to eliminate many uncertainties in 

the description of this kind of reactions. This allows one to detect, for instance, 

the influence of the nuclear medium on the short-range structure of a nucleon. 

The calculations are most often based on the single-particle shell model 

and the Distorted Wave Impulse Approximation (DWIA)". The Impulse 

* ~uasi-free experiments with polarized protons were also performed in ~ u b n a ~  at 635 MeV 

on 5 ~ i  and 4 0 ~ a .  In these experiments appreciable asymmetries, compatible with estimates in 

the DWIA, have been obsemed. The energy resolution of the experiments did not allow, however, 

for a clear separation of single- hole states. These states in 160 and 4 0 ~ a  were resolved in the 

TRIUMF experiments for particular kinematical conditions. 
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Approximation2 states that, if the energy of the incoming proton and the momen- 

tum transfer to the nuclear target-nucleon are sufficiently large, the dynamical 

influence of the other nucleons in the nucleus on the knock-out process itself can 

be neglected. This approximation then assumes that the rest of tlie nucleons play 

the role of 'passive spectators" during the process of ejection of a nuclear nucleon. 

Of course, this assumption would be completely wrong if, for instance, the target- 

nucleon is strongly correlated to another nucleon in the nucleus which could, in this 

case, also be ejected. This latter process corresponds, however, to a two-hole final 

state and does not contribute to the single-hole quasi-free spectrum, only to its 

background. The same occurs, of course, for more complex long-range correlations 

between the target-nucleon and the environment. And, in fact, investigation~'~ 

have shown that the short-range effects are dominant in quasi-free reactions. The 

rest of the nucleus has, however, a significant influence on the dynamics of the 

knock-out process due to multiple scatterings of the incident and emerging parti- 

cles by the nuclear nucleons. These effects are taken into account in the DWIA. In 

this approximation, the wave functions of the incoming and outgoing protons are 

distorted by complex optical potentials14.15.16. As was pointed out in ref. 13, the 

distortion smears out the shapes of the angular correlations, naively expected from 

the momentum distributions in the various shells, and also reduces the intensity. 

The smearing out of the angular correlations (provided by the real part of the 

optical potentials) corresponds to diffraction processes of the wave functions of 

the colliding particles in the mean field of the spectador nucleons. The reduction 

in the intensity of the angular correlations (from the imaginary or absorptive part 

of the optical potentials) reflects inelastic multiple scattering out of the quasi-free 

channel. The intensity reduction caused by absorption can be one order of mag- 

citude. Fortunately, the large number of inelastically scattered particles do not 

upset the "quasi-free" spectrum because their energies and momenta are spread 

over a large energy range originating, in special for the low momentum compo- 

nents, a smooth background in the summed energy spectra13. For the l6 0 and 

4 0  Ca nuclei, in experiments in geometries for which the on-shell D WIA is expected 
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to be a good approximation, the measured effective polarizations are in reasonable 

agreement with the theoretical expectations. 

In this note we consider quasi-free reactions and the cluster model description 

of nuclear states. We shall see that if the inifial nucleus has a nonvanishing spin, we 

can express quasi-free the effective polarization for a knock-out leading to a given 

final state as a linear combination of effective polarizations defined on the basis of 

an angular momentum quasiparticle approach to cluster states in nuclei, weighted 

by distorted momentiim distributions of the nuclear nucleons. By determining 

the quasi-free effective yolarization, which strongly depends on spin correlations, 

details of the nuclear struciure may be investigated. An interesting example of 

the nuclear structure information contained in the effective polarization is given by 

the quasi-free reaction on a nucleus that is modeled as consisting of an inert core 

surrounded by a deuteron cluster; such models have often been used for 'Li, l 4  N 

and other nuclei. The triplet spin correlation in the deuteron results in an effective 

polarization that has the opposite sign to the one expected for the single-particle 

shell-model description of the same nucleusZ0. Therefore the observation of the 

asymmetry in such a case might help to shed light on the two models. 

2. Review of the theory 

In the following we assume an experimental situation where the DWIA is 

applicable. In this case, the cross section is given by* l3 

* The DWIA produces a drastic reduction of the unmanageable number of the nuclear many- 

body degrees of freedoni, but we still have to make an additional approXimation to obtain the 
factored form of eq.( l) .  In the I>WIA, we arrive at a two-body scattering-matrix element taken 

between the (distorted) wave fumctions of the initiaI and final states. The distortion introduces 

new momentum cornponents into the scattering states in addition to the asymptotic mornenta 



Angular momentum quasiparticle approach to cluster ... 

Above and further on, we use the following notation: 0, 1, 2, and 3 refer, 

respectively, to the incoming particle (O), to the two outgoing particles (1 and 

2), and to the particle in the nucleus that is subsequently knocked-out (3). The 

symbols i and f (or A and A - 1) indicate quantities of the initial nucleus (in its 

ground state) and the final nuclear system of A - 1 nucleons. E denotes the full 

energy, T the kinetic energy, and k is a momentum. The barred quantities are 

taken in the centre of mass system of the nucleons 1 and 2. The selection of the 

final nuclear state is experimefitally achieved (via the energy conserving 6 function) 

by fixing E, + E2. The centre of mass cross section for the free scattering of the 

nucleons O and 3, with their actual momenta and polarizations in the laboratory 

system, is dexioted by dõfr /dfi(T, 6, Po, P3).* 
4 4 - 4  * 

The momentum of particle 3 is taken to  be k3 = k, + k2 - ko = -kA - (see 

fig. 1). The momentum distribution, lg1(&) 1 2 ,  is given by 

and spins of the particles. If the value of the two-body matrix element is smooth compared to 

the nuclear parts of the full matrix element, it is reasonable to consider this asymptotic value, 

as a good average and take it out of the overlap integral. This gives the factored form of eq.(l) 

which comprises Lhe Factorization Approximation. This approximation then assumes that  the two- 

body knock-out collision occurs with the finally observed momenta and spins. The factorization 

becomes questionable for outgoing nucleons with low kinetic energy, for pions under and above 

the A-resonance and in the regions where the undistorted momentum distributions are small (in 

a minimum or in a high-momentum tail). It would also become questionable if charge exchange 

and spin-flip were important effects in this kind of reactions. It seems, however, that  these last 

effects produce only small corrections in quasi-free reactions. (See ref. 1 for a discussion of a11 

these points.) 

* Compared to the free-scattering of a nuclear nucleon we have in the energy-conserving delta 

function of eq.(l), instead of the free kinetic energy (nonrelativistically k: / 2 m ) ,  the term 6' = 
4 

- ( E = i n d i n g  ( + k i  - /2MA - 1. Since in the extreme single-particle model we take k~ - 1 = -. 
-k3, the energy is, therefore, off-shell by an amount A,, = 6' - k:/2m K ki ,  bringing a 

certain arbitrariness in the choice of the free cross section daf 'ldfi. Studiesl have shown that  

for not too large momentum components, off-shell effects are usually of no great importance for 

nucleon-nucleon scattering. For quasi-free ( e ,  e'p) scattering the strong energy and momentum 

dependence of the matrix element makes an unfactored calculation desiderable. 
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where the gm,,, (k) represent distorted momentum amplitudes and p the spin 

projections ( p  = +or-). In the language of quantum field theory the distorted 

momentum amplitude may be written in the form 

S:,,; (k)  = ( 2 ~ ) -  3/2 / e ~ ~ ( - - i " f l ~ ~ i ( i )  < A -  l ; j jrnjlau(fllj imi;A > d 3 r .  

(3) 

In this expression I ji mi; A > and I jf mf ; A - 1 > denote, respectively, the wave 

functions of the initial and final nuclear states characterized, respectively, by to- 

tal angular momenta ji and jf and their projections mi and m,; the distortion 

function Dji(F) represents the effects of multiple scattering of the incident and 

emerging particles from the rest of the nucleus (the symbols f and i indicate that 

the distortion depends on the selected geometry); the quantity a" (3 is the annihi- 

lation operator annihilating a nucleon at position Fand relevant quantum numbers 

denoted by a. (A11 angular momenta are quantized orthogonally to the scattering 

plane.) 

1 

Fig.1 - First order diagram for a quasi-free process. 

We introduce the function D,, ( k  - k,) and the operator a" (2) as the Fourier 

transforms of Dji (3 and a" ( f )  , respectively. With these definitions, the distorted 

momentum amplitude (eq.(3)) may be expressed in the form 
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In this note we shall consider (@', 2p)  quasi-free processes in a coplanar geom- 

etry. In this case the axial vector effective polarization, which is orthogonal to the 

scattering plane, is given byl0,l3 

As was pointed out in ref. 1, the effective polarization is caused by the fact 

that the kinematical conditions of the experiment, through the distortion, may -. 
destroy the isotropy of the momentum overlap function d:,,, (k) with respect to p. 

(See also the discussion following expression (9) below.) The quasi-free scattering 
-, 

appears to be performed on a proton with momentum k, and spin wave function 
-, 

g'l,m, (k)SP. The expectation value of the polarization of such an ensemble of 

protons, obtained by sumrning over the orientations of the initial and final nuclei, is 

given by eq. (5). The factorization assumption implies, in particular, that the spin- 

orbit part of the optical potential is neglected; explicit cal~ulations'~ have shown 

that this is a good approximation in many case, in particular, at  the maxima of 

the distorted-momentum distributions. In this case the effective polarization of 

the knocked-out nucleon can be determined by measuring the asymmetry 

where the + and - signs indicate the direction of polarization of the incoming beam 

and d a ( * )  / d R  is a short notation for d G ã ( * )  / d E l  d f l l  d E 2  df12.  

The free nucleon-nucleon cross siction rnay be written as1* 
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where Po and P, are the initial polarizations of the collising protons and I. (T, Õ), 

and C N N  (T, 6) are the usual functions from phase shift analysis18. Substituting 

eq.(7) into eq.(l) and the result on eq.(6), the distorted-momentum distribution 

and the kinematic factors drop out and we find 

+ A - P(T, 6) 
Pe,,(k)(= P3) = 

CN (T, Õ) - AP(T, Õ) ' 

The effective polarization can be in general quite large. This can be seen 

easily in a simple geometrical picture2 which is similar to one applied earlier to 

deuteron strippinglQ (see fig. 2). Consider, as an example, the quasi-free knocking- 

out of a pshell proton of 1 8 0  in a nonsymmetrical geometry. The total path in 

the nucleus of the nucleon from the lower event in fig. 2 is shorter than that of 

the upper one and, therefore, because of absorption, the former nucleon is more 

probable to be knocked-out than the latter. With the choice of 2, in fig. 2 

the protons with clockwise angular momenta will contribute more to the process 

than the counterclockwise ones. If the protons is in a p3,, state its spin will be 

predominantly down; for a pIl2 state proton, its spin will be mostly up. As a result, 

the knocked-out proton will have an effective polarization that is opposite for the 

j = 112 and the j = 312 states. This is a very simple sheli model prediction; from 

expression (3) it is clear that for a given geometry, the effective polarization (see 

expressions (4) and (5)) depends on subtle details of the structure of the nucleus. 

In general, we may test any model for the initial and final nuclear states by 

calculating the expected quasi-free cross sections for polarized protons and by com- 

paring them with experiment. Though the normalizations of these cross sections 

are rather uncertain, their shapes and, in particular, the measured asyrnmetries 

can be quite reliable and characteristic. 
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Fig.2 - The qualitative explanation of the effective polarization. 

3. Quasi-free reactions and the single-particle shell model 

In this section we basically follow ref. 21 .  We shall first consider the simplest 

case of a knock-out from a closed shell, such as in the reaction lGO(j?, 2 p )  15N. In 

this case the extreme single particle shell model should be a good starting point 

and we choose a suitable shell model potential to expand a" (i) in terms of its 

eigenfunctions in the following form 

Each operator'antim now annihilates a proton in the shell model state character- 

ized by the quantum numbers, n,l, j and m. 
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In the following we assume that.for an optimal choice of the shell model po- 

tential and for a certain jJ-value of the final nucleus, only one value n in expression 

(10) contributes to the'overlap integral 

in expression (4). We then can show that expression (2) reduces to 

Of course, nuclear correlation will lead to multiple particle excitations and depth 

the pure one-hole states. We represent this efect by the real factor (7:(/(2j + 
1)1/2 5 1, which we suppose tjo be state independent for each shell. In case the 

initial nucleus is not closed but has a vanishing spin the reduction factor 7; is to 

be replaced by yj , which in addition contains the fractional parentage coefficient 

for the probability of finding the residual nucleus in the ground state of the initial 

one. 

For an initial nucleus with a non-vanishing spin we obtain for the effective 

polarization 

with 

and I r j  1 = 17j 1/(2j + 1)'f2. In expression (13)' P, (i), which can be calculated 

from eqs. (5) and (6), is the effective polarization caused by a,,; furthermore, 

Ig:. ($) 1' is the distorted momentum distribution of the j-subshell normalized to the 

occupation number 2(2j + I). From this expression it follows that measurements 

of P,, (and of pj(@ and I$ (k) 1') in nearby zero-spin nuclei will give information 

on the I.yj 1 2 .  
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From the geometrical picture of fig. (2), it is expected that nucleons ejected 

from two one-particle states differing only by their spin-orbit couplings (for exam- 

ple, the p,~, and pIl, states in 160) should have opposite effective polarizations. 

We may derive a quantitative relationship hetween these effetive polarizations by 

the following simple argument. We assume, as in the preceding, that the distor- 

tion has no spin-orbit components and, furthermore, that the effects of the nuclear 

binding energy on the effective polarization may be disregarded in a first approx- 

imation. In this case, for a spherical initial nucleus with vanishing spin we have, 

using a single particle basis with j = + 1/2 and j = - 112 and taking into 

account the occupation number of the (completely filled) j-subshells, N,, with 

fixed, 

and, since in this case P(;) = O, we obtain 

a result which is independent of any kinematics and distortion. If we now turn to 

the more realistic case of a non-spherical nucleus with a small spin-orbit splitting, 

the effective polarizations change only by modifications in the wave functions due 

to the difference in binding energies of the two subshelis. Calculations have shown* 

that the effective polarizations ale quite insensitive to such changes, and, therefore 

eq. (16) is still expected to be valid to a good approximation. 

In fig. (3) we show some typical measured asymmetries for the knock-out from 

the two pstates of 160 (the curves represent factored DWIA calculations'). Fig. 4 

shows effective polarizations calculated with eq. (9)'. In the figure are plotted the 

values P,,, ( j  = 1/2) and -2P,,, ( j  = 3/2)  which, according to eq.(16), should be 

equal. The agreement is excellent for the symmetrical angles, but only qualitative 

* P.G. Roos, private communication, cited in ref.1. 
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for the asymmetrical ones. The deviation of the calculations from the experimental 

results may have a very simple and interesting interpretation: it seems that the 

nucleon-nucleon cross section in the nuclear medium is modified in such a way 

that P(T, 6) (see expression (7 ) )  is reduced to approximately zero. (See also ref. 

1 for a more complete discussion of these points.) 

4. Angular momentiim quasiparticle approach to cluster 

states in nuclei 

A very important question now arises: how should expression (13) change in 

a cluster model for the nucleus? To answer this question we proceed as follows. 

The annihilation operator for an A nucleons state, defined in terms of a single- 

particle [jm] shell-model basis, is given by 

with q = [jqmq] for q = l...A - 1. 

We assume for simplicity that the motion of the A nucleons is dinamically 

correlated in such a way that their behaviour is described by a two-cluster model 

(the extension of the following discussion to more than two clusters can be done in 

a very easy and direct way). Furthermore, we require that this model be indepen- 

dent of the motion of the total centre-of-mass (this avoids non-physical (spurious) 

collective excitations of our system). To garantee translational invariance, we in- 

troduce a more consistent representation, namely a cluster model basis, defined 

in terms of internal and relative motion coordinates (see, for example, ref. 22 for 

the usual definitions of these n,ew coordinates). In this representation, the internal 

motions of the clusters 1 and 2 are characterized by the quantum numbers j,, and 

m,, (with the k's ranging from 1 to ( (=number of internal coordinates) for the 

cluster 1 and from + 1 to A -- 3 for the cluster 2 (recall that the new coordinates 
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Fig.3 - Typical measured asymmetries for the knock-out from the two p 
states of ' '0. (See references 1,4). 
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Fig.4 - Effective polarirations for the reaction "O($, 2p)I6N at 200 MeV calculated 

with eq.(16)'. (Error bars arise from errors in experimental measurements of asymme- 

try.1 

are not linearly independent)) and the relative motion by the quantum numbers 

jR and m~ .*In this model the wave function of the initial state is then given by 

* As was ~o in t ed  out in ref. 23 the new quantum numbers are not really good ones if the wave 

functions are properly antisymmetrized. We require, however, for the sake of simplicity, that the 

clusters be so well separated that these quantum numbers maintain a literal real meaning in the 

limits of the assumed separation. In this sence, they are asymptotically good quantum numbers. 
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where xjR i , , ,  (R )  describes the relative motion of the two clusters, R denoting 

the relative coordinate between their centres-of-mass. The internal motion of the 

clusters is described by 

in this expression the symbols jpa mpa and j,, m,, characterize, respeciively, the 

total internal angular momenta and their projections for the clusters 1 and 2. The 

final state wave function reads 

in which ) x .  [p(lf)p(2')]  > can be expanded similarly as in eq. (19). In 
h, mp, 

these equations the C's denote Clebsch-Gordm coefficients, couplirig in a first 

step the internal angular momentum and projection quantum numbers of each 

cluster to give j,,m,, and j,, m,, , respectively; in a second step coupling with 

the corresponding relative quantities jR, mRs or jR, mR, , yielding jimi and jf mf , 
respectively. 

Introducting this change of basis the ajm operator (eq.(lO)) may be written 

accordingly as 

In this expression, the sum extends from p, p, ...p, - 3 ,  R to p', ...p> -, , R' and the 

p's and R's represent short notations for the quantum numbers j,, m,, , jR m~ and 

so on; the Mim are the transformation coefficients from the old basis to the new 

one; finally, the primes are remainders of the fact that the internal coordinates are 
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not linearly independent whereas the - indicate the usual time-reversed operators 

defined as a , ~  = (- l )J-Ma, , , -M, with J = jPk,jR and M = mPk,mR.  

Inserting in this expression the unit operator defined in terms of the new 

coordinates and assuming that the A nucleon Hamiltonian is separable in these 

coordinates, we have, in a short notation, 

where 

In this latter expression, a j p m p  represents an effective annihilation operator an- 

nihilating a single p-quasiparticle with quantum numbers jpmp. This operator is 

defined in terms of an expansion of a single pquasiparticle annihilation operator 

coupled with a pairwise combination of the annihilation and creation operators for 

the 2 ( A - 3 )  remaining p-quasiparticles of the initial and final states. The operator 

WjBmR on the other hand is defined by the angular momentum expansion of the 

annihilation and creation operators W j R i m  ,, and W !  
I R  m R ,  

. Frorn these equations 

we see that we have expanded the one-particle annihilation operator aj, as a set of 

new operaton, i.e., a jPm W j R ,  , and R which in this model act 

on the interna1 and relative rnotion vectorial states, respectively, annihilating or 

creating states with definite angular momenta and projections. The new creation 

and annihilation operators are defined as linear combinations of the old creation 

and annihilation operators and the number of particles is not conserved. However, 

due to the structure of the initial and final states in our model (see expressions 

(18) and (20))) the resulting second quantization Hamiltonian, expressed in terms 

of this set, 
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describes in the initial and final states the dynamical behaviour of one R- and, 

respectively, A - 2 and A - 3 p-quasiparticles. We could associate the so called 

R-quasiparticles with collective excitations in the nucleus. In this picture, the 

destruction of a nucleon in the conventional single- particle description could be 

interpreted, when translated to our cluster model, as the destruction of an interna1 

pquasiparticle acompanied by a change in the collective excitation of the system. 

Since, in tliis picture the spin character is cai-ried over only by the pquasiparticles, 

the poperators are ferrnion-like and the corresponding R-quasiparticles are boson- 

like objects. In eq. (22), the coefficients u,, and ujm are assumed to be real 

and spherically symmetric. The condition uj2, + uj2, = 1 ensures, in particular, 

that the fermion-like quasiparticle annihilation and creation operators, Ljm and 

~ f ~ ,  respectively, satisfy the anticommutation relation [L,, L:], = 6,8 as do the 

original single-particle operators ai, and alm . 
Combining these definitions with expressions (5) and using the orthogonality 

properties for the Clebsch-Gordan coefficients and the Wigner-Eckart theorem we 

obtain an expression of the effective polarization similar to eq.(13) in the form 

In this expressjon the yjp denote reduction parameters (reduced matrix elements) 

obtained from direct application of the Wigner-Eckart theorem to the matrix ele- 
4 

ments for the knocking-out of a pquasiparticle (see eq.(14)); G:.p (k) is the distorted 

momentum amplitude defined in the context of the cluster model. As the angular 

momenta and projections are coupled in the form: 



- - + -  
and since j = ji - jj together with m = mi - mj, we have 

4 - f  .-, f  f 
with jp = jp, - jpl, mp = mP, .- mo,, jR = J R ,  - jR, and mR =. m ~ ,  - r n ~ ,  . 

The comparison of Pej calculations with expcrimrntal results could give in- 

formation on the yjp parametem. From the Wignor -Eckart thcorem (see expression 

(14)) we see that these coefficients are sensitive to the coupling of the wave func- 

tions and could give when compared to experiment, rather direct informations on 

cluster correlations in nuclei. 

0.5 1 
(JJ) shell model 

Fig.5 - Effective polarization calculated for the nuclear reaction 

Li($, 2pI5 He (a) and l 4  C($, 2p)13 C (b) at  a Iâb energy of 320 MeV. 

In the figure, the full lines correspond to the shell model, the dotted lines to 
4 

the two-body cluster model; k is the linear momentum of the knocked-out 

proton and @ is the scattering angle. 
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At this point it would be interesting to compare the results of calculations 

of the effective polarizations for the reactions l 4  N(g, Zp)13 C and 'Li@ 2p)5 He 

(see fig. 5). Recent predictions from a two-body cluster model are compared with 

previous findings obtained for the single-particle shell model with jj coupling. 

In the shell model calculations we have used harmonic oscillator wave functions 

with a width parameter fitted to reproduce the rms radius of the initial nucleus 

measured by electron ~ c a t t e r i n ~ ~ ~ .  The ground states of the initial nuclei, 14N 

and Li, are considered to have (both) one valence neutron and one valence proton 

in the j = 1/2 and j = 3/2 states, respectively. The protons couple their angular 

, momenta with their cores, l 3  C(jJ = 1/2) and He(jJ = 3/2), respectively, to give 

ji = 1. The final states are 13C and 5 H e ,  each one with one neutron outside a 

closed shell or subshell. In the cluster model calculations, we have assumed that 

the target nuclei are constituted by the inert spectator cores 12C and 4 H e  and 

two correlated valence particles which form a deuteron cluster. In this model, the 

wave functions for the initial states may be written as 

where A is the antisymrnetrization operator. The function $(d), which describes 

the interna1 behaviour of the deuteron cluster, is chosen to be of the Gaussian 

tYP% 
1 

2 

4(d) = exp ( - 5d C(< - ~ ( 0 ,  r) ,  (30) 
i =  1 

R denoting the coordinate of the deuteron centre-of-mass. The spherically sym- 

metric function x ( R )  which describes the dynamical behaviour of the relative 

motion we have taken proportional to R2 exp(-P2 R2),  with the factor R2 of the 

cluster model prescription for valence particles in the p ~ h e 1 1 ~ ~ .  ~ ( a ,  T) is the spin- 

one-isospin-zero wave function. The core wave functions of the initial states as 

well as of the corresponding final 13C and 5He ground states are assumed to be 

identical to the ones of our shell model calculation. The size parameter cr of the 

deuteron was varied between 1.9 fm (the free value) and 1.4 fm, as from fits to 

cluster c a l c ~ l a t i o n s ~ ~  there seens to be some evidence for a contraction of the 
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deuteron in the nucleus. For each value of a, the parameter B of the wave func- 

tion of the centre-of-mass of the deuteron was computed to reproduce the same 

density as in the shell model. Because of the values of the parameters and the 

shape of the wave function x(R), there is on the avera.ge only a small core-deuteron 

overlapping, so that exchange effects between these can be neglected. In the com- 

putations we have assumed that the total centre-of-mass of the system coincides 

with the centre-of-mass of the core and is not affected by the knock-out process 

(inert-core approximation). This assumption results in a strong simplification in 

the calculations but causes an error of order A-' in the squared overlap integrals; 

in particular, in the case of the Li this may not seem to be a good approximation. 

However, for calculations of effective polarization this error is considerably reduced 

as only ratios between momentum distributions enter. For our present purposes, 

this approximation is sufficient because the qualitative behaviour of the effective 

polarization is certainly not changed. The distorted wave calculations were per- 

formed in the WKB approximation with a square-well spin-independent nuclear 

optical potential with real and imaginary parts calculated as in ref. 20; experiment 

has shown that for the present energies and geometries (taken also as in ref. 20), 

the effective polarizations are only slightly affected by such approximations. (See 

references 1 ,2 l ,  27 and also 2,8.) 

Typical results of our calculations are shown in fig. 5. Evidently, the effective 

polarization for the two models show striking differences: they differ both in sign 
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and size*; both effects are fairly stable against reasonable parameter variations. 

In the j j  coupled shell model the effective polarization is caused by the cor- 

relations, in the initial nucleus, of the spin and angular momentum of the proton 

which is knocked-out from it. This is a result2 of the nuclear spin-orbit coupling 

combined with distortion effects in the selected asymmetric geometry of the ex- 

periment. For the cluster model, one could expect, 'a priori*, that the effective 

polarization should be equal to zero since it seems, at a first glance, that there are 

no correlations of this type in. the initial nuclei because the interna1 and relative 

motion wave functions of the deuteron surrounding the core both represent, in this 

very simple example, L = O states. In fact this is not so, as shown in fig. 5. The 

effective polarizations in the Li case are about - 1/2 times the corresponding ones 

for the I 4 N .  This result is in agreement, in the case of the single-particle shell 

model with jj coupling, with the anticipated trend (see eq.(16)) for the effective 

polarization of the lp312 and 1pll, single-particle states. 

* In the cluster model calculations, the numerator of expression ( 5 ) ,  for the particular case of 

a proton knock-out from l4 N, is given by 

where 

In this expression d denotes the width parameter for the cluster model potential and a and b are 

two constants defined to fit the r y s  radius for the initial nucleus. Assuming for simphcity 

in which p is the shell model width parameter and R is a cut-off radius, A,, can be expressed 

in the approximate form A,, E (a - bR2)2A!m where represents the corresponding 

numerator of expression (5) in the shell model calculations for the knock-out of a proton from the 

first excitated state of "N ". A!: has, according to expression (16), the opposite sign of the 

corresponding expression for the ground state of the l4 N nucleus. A similar relations is obtained 

for the knock-out of a proton from the 'Li nucleus. 
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The differences between the results of the shell and cluster models are not dif- 

ficult to understand (see references 20 and 27). Because of the spin wave function 

of the deuteron with S = 1, the spin of the knocked-out proton is paralell to the 

spin of the remaining valence neutron. The momentum of this neutron has, how- 

ever, a tendency to be opposite to that of the knocked-out proton, because both 

momenta are anticorrelated in the deuteron. Using the distortion arguments of 

section 1 but now applied to the final nucleus, one finds again that the remaining 

neutron is effectively polarized but oppositely to the knocked-out proton in the 

shell model, because of its opposite internal momentum*.This polarization carri- 

ers over to the knocked-out proton throughout the mentioned S = 1 correlation, 

which explains the difference in sign of the effective polarization in the two mod- 

els. The quantitative difference of the polarization is caused by the fact that in 

the cluster model the momentum of the remaining valence neutron is not exactly 

opposite to the one of the knocked-out proton but is smeared out by the centre of 

mass motion of the deuteron. We show in the following that these results could 

be obtained, in the case of the cluster model, directly from eq.(26). 
-+ 

We construct an "effective internal spin-orbit couplingn of the type a& s', ... 
for the p-quasiparticles with a=constant and where e, and s', characterize, respec- 

tively, their (conserved, in our model) internal angular momentum and spin and 
4 -4 

define the quantum numbers jp = l, +s', and m, = mLp + m e p .  In the case in which 
4 

we could associate to a given nucleus only one value of j, this would correspond, 

in our model, to a "pure configuration" with j, = l, + 112 or with j, = l, - 112 

for that nucleus. For a nucleus characterized by configuration mixing with a fixed 

value c?f l,, from eq. (26) we have 

* Crudely speaking, due to the peculiar structure of the wave functions of the initial state and 

assuming sheil model wave functions for the final state, we obtain overlaps approximately of the 
form x;, ( 2 ) ~ ~ ~  ( 2 ) ~ ~  r (1) = X, r (1) for l 4  N or of the form xir ( 2 ) ~ ~  7 ( 2 ) ~ ~  1 (1) = 
xTl (1) for GLi in the momentum distributions; the arrows denote the relative directions of 

angular momenta and spins which are different from the corresponding ones in the single-particle 
shell model with j j  coupling. 
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where 

In the simplest case of spherical initial nucleus with vanishing spin (j; = 0) from 

the definitions of the p-quasiparticle operators, of the p-vacuum, and of the rjp 

coefficients, 

we have, taking fixed values of j,, = j, = L, f 1/2, and m,, = -m,, and from 

eq.(32), with j, = L, f 1/2 and m, = mtp f 112, 

In this case ~ ( k )  = 0, and from eq.(31) and eq.(35) we obtain a relation between 

the effective polarizations PCp+ ( k )  and Ptp+ (k) associated to the "interna1 

configurationsn with j, = L, + 1/2 and j, = L, - 1/2 similar to expression (16) 

We consider now the most general case of non-spherical initial nucleus with 

a non-vanishing spin. For simplicity, in order to compare our results with the 

corresponding ones for the single particle shell model with jj coupling, we nor- 

malize the cluster model momentum distributions with respect to the "occupation 

nurnber" 2(2jp + 1) so we have 2(2Lp)IG;p+112 (i)]' = 2(21, + 2)IG;- ,/,(k) 1'. In 

this case, eq. (31) should be replaced by 
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Combining these definitions with expression (36) we obtain for the effective polar- 

ization, in the general case of a state with "configuration mixingn, 

A change of basis from the jPmp basis to the LpSp one with i, = and 

gp = xs', gives for the knock-out of a pquasiparticle from the deuteron cluster 

in the model [core + deuteron] for a fixed value of L, and S, 

in which the {) represent Wigner 9j-coefficients and j is the total angular momen- 

tum of the remaining nucleon. For the state with L, = O and S, = 1 and from 

the definition of the 7,  parameters, expression (39) gives 7,  > 1 for j = 312 and 

qP < 1 for j = 112. When combined with eq. (38) these results show that the 

sign of the effective polarizations in the [core + d e u t e r ~ n ] , ~ = , , ~ ~ , ,  cluster model 

for the reactions Li@ 2 ~ ) ~  H c  and l4 N ( 6 ,  2p)13 C should indeed be different from 

the corresponding ones in the single-particle [jj] shell model. 

In fact the initial state is not a pure L, = O, S, = 1 one because, as was 

pointed out earlier due to the smearing out of the centre of m a s  motion, the 

momentum of the remaining valence neutron is not exactly opposite to the mo- 

mentum of the knocked-out proton. Taking into account the contribution of the 

L, = 2, S, = 1 components to the effective polarization gives, for 1' 

where ailpsp denotes the admixture coefficient for the L, = 0,2; S, = 1 compo- 

nents. Estimates range from 4% to 8% probability that L, = 2 2 8 .  This gives, 

respectively, a2,,  = &i66 (or 20%) and a,,, = Jg/lõõ (or 28%). With these 
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values we have obtained, as in the preceding case, r], > 1 for j = 312 and r ] ,  < 1 

for j = 112. When combined with expression (38)  these results show that, even 

taking the L, = 2  contribution into account, the sign of the effective polariza- 

tion in the [core + d e u t e r ~ n ] ~ ~ , ~  cluster model for the reactions ' Li($, 2p) 'He 

and l4 N($, 2 p ) 1 3 C  should be different from the corresponding one in the single- 

particle [jj] shell model. 

Concluding remarks 

We have shown that the effective polarization can give information on cluster 

correlations in nuclei. In the particular case of an initial nuclei modeled as con- 

sisting of an inert core surrounded by a deuteron cluster, we have shown that the 

triplet spin correlation in the deuteron results in an eiective polarization that has 

the opposite sign from the one expected from the single-particle [jj] shell model 

for the same nucleus. In this case, the observation of the asymmetq might shed 

light on the two models. In general, we may test any model for the initial and final 

nuclear states by calculating the expected quasi-free cross sections for polarized 

protons and by comparing them with experiment. As we have remarked earlier (see 

also ref. I ) ,  the normalization of these cross sections can be rather uncertain, but 

their shapes and, in particular, their measured asymmetries, can be quite reliable 

and characteristic. Finally, we would like to point out that, for nucleon-nucleus 

quasi-free reactions, the impulse approximation is on a much stronger footing than 

for cluster knock-out reactions. Cluster deformations inside the nucleus, the pos- 

sibilities of pick-up and stripping processes before, during, or after the knock-out 

process, as well as the large size of the clusters, complicate the reaction mechanism 

and cast doubt on the use of the DWIA and on the interpretation of the results. 

The author is grateful to Prof. Dr. M. Dillig (Erlangen) and to Prof. Dr. F. 

Fernandez (Salamanca) for comments, sugestions and also for their kind hospital- 

ity. 
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Resumo 

Um método simples e direto para a obtenção de informações sobre agregados nucleares, 
atrav6s de reações quase-livres à energias médias, é apresentado. No caso em que o núcleo-alvo 
tem spin diferente de zero, a polarização efetiva quase-livre pode ser expressa em termos de uma 

combinação linear de polarizações efetivas definidas no espaço de momentum angular em um modelo 
de quase-partículas. 


