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Abstract We use techniques of Quaiitum Probability to construct the exact ground 
states for a class of Quantum Spin Systems in one dimension. This ciass in particular 

contains the antiferromagnetic models introduced by various authors under the name of 

VBS-models. The construction permits a detailed study of these ground states; as an 

example we compute expliciily the two-point correlation function for a family of one- 

dimensional models and we answer the question of Néel order for a set of models on a 

Cayley-tree. 

1. Introduction 

In this paper we study the ground states of a class of rotation-invariant nea.r- 

est neighbour Hamiltonians for a quantum spin system on the one-dirnensional 

lattice or on a Cayley-tree. For this purpose we first explain a simplified ver- 

sion of a technique, borrowed from Quantum P r ~ b a b i l i t y ' ~ ~ ,  for constructing a 

class of 'tria1'-states for Quantum Chains. We investigate in detail what kind of 

Hamiltonians have exact ground states in this ciass. These Hamiltonians are not 
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necessarily isotropic, nor nearest neighbour, but we will restrict our attention here 

to models which do have these properties. 

Consider a one-dimensional spin system of spin S. This means that the algebra 

of observables consists of linear combinations of tensor products of (2s+l) x (2s+l) 

complex matrices; it is sufficient to consider simple tensors A of the type: 

where X,,.  . . , X ,  are observables at sites i,. . . ,n of the lattice Z. The most 

important one-site observables certainly are the spin matrices S" , Sv , Sz which 

are the generators of the (2s + 1)-dimensional irreducible representation D, of 

SU(2). 

An isotropic and translation invariant Hamiltonian for such a spin chain is 

necessarily of the form 
2 a  

where P:,::, denotes the orthogonal projection onto the subspace of C2"+' @C2'+' 

that carries the spin-k sector in the irreducible decomposition of the representation 

D, @ Da of SU(2) on this space: 

So, clearly 
2 8 

The coupling constants Jk are real and without loss of generality they can be 

taken to be non-negative. The one-dimensional models considered in this paper 

are for integer values of the spin s, and the Hamiltonians are of the form (2) with 

Jo = J1 = - .  = Jko = O and Jk,+, > O,. . . , JZs > O. The ground state depends 

only on the value of ko (and of course on the value of the spin itself), and we 

require 
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So for s = 1 there is essentially one model in our class of interest: 

which can be rewritten in terms of the spin-matrices a s  follows 

In fact a11 interactions of the type (2) can be rewritten in terms of a polynomial 
.+ -, 

in the Heisenberg-interaction Si Si+ 

The model (4) was first studied in3 and more Hamiltonians of the type (2) 

are treated in4, but with different and less general techniques than we will use 

here. Of course there exist generalizations of this type of Hamiltonians in higher 

dimensions (see e.g. refs. 3 and 5). The techniques we present below are in 

principle, also applicable to this higher dimensional models, though we will only 

discuss one dimension and Cayley-trees here. 

2. Construction of the Ground States 

A more general discussion of the mathematical techniques explained here can 

be found in refs.6 and,7 and there are also interesting applications to classical spin 

chains8. In this paper we restrict our attention to a particular case which will, 

however, be general enough to obtain the ground states for the model presented 

'above. 

Suppose we are considering a model of integer spin S. Then the Hilbert space 

for one site is C2"+' on which the irreducible representation D, of SU(2) is acting. 

Furthermore we take an auxiliary representation Dj with j a half-integer ( 112, 1, 

3/2, 2, ...) such that 2 j  > s > j. The tensor product representation D, 44 Dj can 

be decomposed in its Clebsch-Gordan series 
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As we supposed that O < s - j 5 j ,  the representation Dj appears exactly once 

in this direct sum. Define now a (2s + 1)(2j  + 1) x ( 2 j  + i)-matrix V using the 

CG-coefficients of SU(2) (for explicit expressions of -CG-coefficients see e.g ref.12): 

This matrix has the following properties: 

(D, (g) 8 Dj (g))V = V D ,  (g) for all g E SU(2) (8) 

Because of (7) V is called an isometry and (8) is the intertwining property. In fact 

(7) and (8) define V uniquely up to a phase. 

To define a state of our spin-s chain we essentially have two equivalent pos- 

sibilities: either we define a density matrix for any finite nurnber of sites, i.e. we 

give a positive matrix p, for a11 n = 1 ,2 , .  . . such that  the expectation value of an 

observable of the form (1): A = X, 8 . .  . @  X,, is given by 

or we use the second possibility which is giving a formula for the computation of 

the expectation values (A) directly. Because we want to study the ground state 

in the thermodynamic limit (infinite volume) we cannot simply work with vectors 

in the Hilbert space. In our case the second possibility will turn out to be the 

most convenient way to present the construction, but we will also give a formula 

for the density matrix. In both cases the expectation values are defined for finite 

intervals only, so there will be a compatibility condition in order to assure that  

we are really defining expectation values for the infinite system. The observable 
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Xa @ X a + ,  @ . - . @ X , + ,  living on the volume {a, a+  1,. . . , a + n )  is identified with 

X a @ X a + l  @ - . . @ X a + n @ l a + n + l  on thevolume { a , a + l ,  ..., a + n , a + n + l ) .  So 

the compatibility condition simply is that computing expectation values on {a, a +  

1, ..., a + n ) a n d o n  { a , a + l ,  ..., a+n , a+n+ l ) shou ld  yield thesameresult for 

observables identified in this way. This requirement (and the analogous condition 

for adding sites on the left) will automatically be satisfied by our construction (e.g. 

see ref.6 for a proof of this). 

So we have chosen an aiixiliary representation Dj and defined the matrix V 

as in (6). For any X  E M 2 , + ,  (the (2s  + 1) x (2s + 1) complex matrices) we now 

define a linear transformatioii Ex of M2,+,  by putting for a11 m E M23+ ,: 

Ex (m) = V* ( X  @ m)V (I0) 

and then define the expectation values in our state ( - ) I  by 

Of course, if necessary, we could consider the Xi as vectors (dimension (2s + 1)') 

and the tranformations Ex as matrices. (11) then becomes a matrix element of a 

product of n matrices. 

We now derive the density matrix p,  which corresponds to (11) such that (9) 

holds: 
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(X,  @X2 @ . . . @ X ,  @ 1 ) ( 1 @ . . . @ 1 @ V ) . . . ( l @ V ) V  

(X, @ x2 @ . . . @ X , ,  @ 1 ) ( 1 @  ... @ 1 @ V )  . e . (  1 @ V )  

( l @ V ) V V * ( 1 @ V * ) ~ ~ ~ ( 1 @ ~ ~ ~ @ 1 @ V * )  

Therefore 

From formula (12) it is immediately clear that p, is a positive matrix and the 

property (7) of V  implies that its trace is 1. So it is indeed a density matrix. It 

can also be sem that the states ( . )J defined above are SU(2)-rotation invariant. 

It is quite evident that for doing explicit calculations formula (11) is going to be 

a lot more convenient than using (12). 
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Next we want to show that the states constructed above are orthogonal to 

the vectors belonging to high-spin representations. To be more precise, for a11 n, 

a11 vectors 11, in the n-site Hilbert space and cr = x, y, z one has 

where j is the half-integer parameter appearing in the construction of V in (6) 

above. We give the argument for n = 2; the general proof is a straightforward 

extension of this and can be found in ref.7. Denote by Sz, SY, Sz the generators 

of D, and by J z ,  JY, JZ the generators of Dj. They are normalized in such a way 

that 

The intertwining property (8) in terms of the generators reads, for a: = x, y, z: 

(Se @ l + l @ J " ) V = V J a  

So, one also has 

(Sa @ l @ l + l @ S a  @ l + l @ l @ J a ) ( l @ V ) V  = ( l @ V ) V J a  

Using (14) and JJVJJ = 1 (which follows from (7)) one gets the estimate 

IJ(Sa @ 18 1 + 1 @ Sa @ 1 ) ( 1 @  V)VJJ I 2 j  

from which the desired result easily follows. Combining (16) with (12) (for n = 2) 

one concludes that p z P ( k )  =: O for a11 k > 2j. In particular 

whenever H is of the form 
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If a11 Jk 2 0, then H > O and so ( . ) j  is a ground state for H. One can also prove 

that if Jk > O for k = s + 1,.  . . ,2s, the state ( -)"I2 is the unique ground state in 

the infinite volume limit which has the property that the energy is zero for every 

finite volume; in particular it is the unique ground state if one restricts oneself to 

translation invariant or periodic ground states. For a more complete discussion 

see ref. 8. 

The states we constructed above have the property of being Finitely Corre- 

lated (they are FCS, Finitely Correlated States). For more details of this mathe- 

matical notion we refer the reader to a future publication8. The most important 

consequence of this property is the simple behaviour of the correlation functions. 

The two point correlation functions are given as a finite Iinear combination of pure 

exponentials. A particular example of this is given in the following theorem. 

THEOREM 1. 

Consider a spin s chain with Hamiltonian 

where a11 coupling constants Jk > O, k = s + 1 , s  + 2,. . . ,2s. 

Then there is only one periodic ground state in the infinite volume limit, and 

it is given by: 

where the Ex are defined in (10). 

If Jk = 0, for k = 0,1, .  . . ,2jo, with s/2 < jo < s, in the Hamiltonian (17) 

then also the states (.)i, defined in (111, with j < jo are ground states of (17). 

The spin-spin correlation function of the states ( . ) i  is given by the following 

formula: 
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PROOF: 

The fact that the states are ground states has been shown above. The unique- 

ness involves a quite elaborated argument that will be given in ref. 8. We are going 

to compute now the spin-spin correlation function of the states (.)i. 

Denote by Sz , SY, SZ the generators of D, and by Jz, JY, JZ the generators 

of Dj, normalized such that 

One first checks that 

E,  (4 = X f ,  E,- (1) = ( 1  - A )  i (21) 

for some real A. Using (20) and the intertwining property (15) it then follows that 

and so, using (19-20) 

1 ~ ~ ( 4  = - -s(s  + 1 )  
2 

Combining (22) and (23) X follows: 

As 2 j  2 s > j this is a real number of modulus strictly smaller than one, and 

X  completely determines the exponential decay of the correlation function: 

468 
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The factor ~ 5 , ~ ~  follows from rotation invariance and the same equations (19)-(23) 

can be used to derive that 

This completes the verification of (18). 

In the case where j = s/2 obviously X < O and so the correlation function 

(18) exhibits antiferromagnetic behaviour. 

3. Models on Cayley-trees 

As we will only consider translation invariant or periodic states on Cayley-tree 

it is sufficient to consider one branch of such a tree; this means that one chooses 

an origin in the tree and then considers only these sites which are connected with 

this special site via z - 1 of its z nearest neighbours, where z is the coordination 

number of the tree. We label the sites of such a branch in the followhg way: 

The origin has label (O), the z - 1 nearest neighbours of the origin that we are 

including in our branch have labels (I) ,  (2), . . . , (z - I), any of these sites (p) 

(p = i,. . . , z - 1) has z nearest neighbours: of the origin (0) and z - 1 new sites 

with labels (p, I), (p, 2), . . . , (p, z- 1) and so on. So we divide the branch into levels: 

level O contains one site: (o), level 1 contains z - 1 sites, labeled (i), . . . , ( z  - l), 

level 2 contains the (z - 1)2 next nearest neighbours of the origin, labeled by 

(1, l ) ,  (1,2), . . . , (z - l,l), . . . , (z - 1,z - I), the nth level contains the (z - 1)n 

nth-neighbours of the origin, labeled by (p, , p2, . . . ,p,), 1 5 pi < z - 1. 

The fundamental objects in the construction of Finitely Correlated States for 

chains (which is the case z = 2) are the transformations Ex which in that case 
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map an auxiliary algebra MZj+, into itself. For z > 2 these will be replaced by 

linear transformations of a slightly more complicated type, one for any one-site 

observable X E M,, + : 

This is the fundamental idea; the formula defining the local expectation values 

in the state has the same striicture as before (cf. (II)), although it might look 

slightly more complicated. We give the formula for observables liying on the first 

two levels: 

The general formula involving n levels is a straightforward generalization of (25): 

the level n, containing (z - 1)" sites is mapped into the level n - 1 (with (z - I)"-' 

sites) by application of a (z - 1)"-I-fold tensor product of mappings Ex,l~~~,,,z-, . 
We now consider the following model on the Cayley-tree with coordination 

number z (z 2 2). It is a spin s = z/2 model and the interaction is nearest 

neighbour: 

where as before P:", denotes the orthogonal projection onto the spin= z subspace 

of the tensor product of two copies of the irreducible representation DZl2 of SU(2), 

located on two nearest neighbour sites. 

A ground state for this class of models is now obtained by choosing the fol- 

lowing üefinition for the Ex (depending on z of course): 
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where V is the unique intertwining isometry between 

and Dl12 .  This means that for a11 g E SU(2) 

and 

v*v = 1 

krguments the same kind of as we used to derive (16) for chains, permit one to 

derive a similar estimate in the case of trees, implying that the density matrix 

of this state, reduced to two nearest neighbour sites is formed by vectors in spin 

spaces of spin s <_ z - 1 only. So the energy of the state is again zero and as H > 0, 

the state is a ground state. 

The interesting question now is whether this is the unique ground state or not. 

More specifically whether'there is Néel order or not. Néel order means that this 

translation and rotation invariant ground state can be decomposed into states with 

periodicity 2 and with broken rotation symmetry such that one has the following 

situation: there is a non-zero Néel-order parameter no such that for a11 cr = x, y, z 

one has a decomposition 

and 

( ~ p ) ~ * *  = (- i )r*lno 

Sp denotes a spin operator on a (arbitrary) site of leve1 r .  The answer to the 

question of occurence of Néel order in ihe ground states constructed above, is 

stated in the following theorem. 
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For the spin s = z/2 model on the Cayley-tree with coordination nurnber z, 

z 2 2, with the translation invadant nearest neighbour interaction given by (26), 

the state constructed with the Ex defined in (27) and (25) is a ground state and 

i) if z = 2,3,4 there is no Néel order. 

ii) if z 2 5 there is Néel order. 

We will not give the full proof of this theorem here. Let us only mention that 

using general arguments together with some properties of SU(2), one can show 

that the question of Néel order is equivalent to the study of the invariant sets of 

a very simple one-dimensional 'dynamical system'. 

Let us just give a sketch of this equivalent dynamical system. For a11 z 2 2 

we define a function t (")  : [O, 21 --+ [O, 21 by 

2 C ~ I ; ( Z  - k)zk(2 - x)"-'-" 
t (z) (5) = -- 

z + 2  C::; zk(2-zp-1-k 

Néel order then correspon.ds to solutions x, # 1 of the equation 

If the only solution of (29) is xo = 1 then there is no Néel order. The asymp- 

totic behaviour of the dynamics ( o t l Z ) ) "  can be completely studied and the main 

implication of it is stated in Theorem 2. We still remark that except for the ab- 

sence of Néel order in the case z = 4, this theorem was already derived with other 

techniques in ref. 3. The case z = 4 is marginal and the techniques used in ref. 

3 could not determine whetber there was Néel order or not, although absence of 

Néel order was conjectured on the basis of a numerical computation. Physically 

the question of Néel order is most relevant in models on the two-dimensiona! reg- 

ular square lattice, where also z = 4 (related to a possible explanation of high 

T, superconductivity in La,CuO,-type materials, see e.g. refs.10 and 13). One 

expects Néel order at least for some models on this lattice, but the problem is still 

open. 
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4. Conclusion and further prospects 

We reported on a new technique to describe a class of exactly solvable finite 

range Hamiltonians (ground states) of Quantum Spin Systems. The technique 

could easily be extended to models on Cayley-trees and a generalization to  real 

higher dimensional systems is in progress. It certainly applies to the study of strips 

and cylinders and can be used to  extend the results in ref.11. 

It is also clear that this techniques can be extended to other types of models, 

e.g. with other than SU(2)-symmetry (such as appear e.g. in ref. 14). 

It is a pleasure to thank J. F. Perez, S. R. Salinas and W, F. Wreszinski for 

offering us such a nice and stimulating 'Workshop on Phase Transitions' in São 

Paulo, 25-28 july 1989. One of us (B.N.) also acknowledge valuable help by R. 

Benguria and C. Yarur. 
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Resumo 

Utilizamos tkcnicas de probabilidade quântica para construir os estados fundamentais exatos 
para uma classe de sistemas de spin quâaticos em uma dimensão. Esta classe cont6m em particular 

os modelos antiferromagndticos introduzidos por vários autores sob o nome de modelos VBS. A 
construção permite um estudo detalhado destes estados fundamentais; como exemplo, calculamos 
explicitamente a função de correlação de dois pontos para uma família de modelos iini-dimensionais, 

e respondemos a questão sobre a existência de ordem de Nkel para um conjunto de modelos na 

árvore de Cayley. 


