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Abstract The diffusive and collisional contributions to the dc-electric current along a 
quantum wire, of width much smaller than the mean free path, are evaluated at  very low 

temperatures for impurity scattering using a quantum Boltzmann equation. The electrons 

are assumed to be independent or to interact.(binaq collisions) in the presence of impuri- 

ties. The lateral confinement is modelled with a square or a parabolic well and the vertical 

one by a triangular well. Due to the confinement the electronic motion becomes quasi-one- 

dimensional and changing the Fermi energy or the wire width leads to  oscillations in the 

density of states, the scatteriug rate, and the conductivity. Leve1 broadening is taken into 

account self-consistently. 

Over the last years there has been a growing interest in systems of reduaed 

dimensionality such as quantum wires and quantum dots. When the width W 

of a two-dimensional electron gas becomes much smaller than the mean free path 

I ,  (- p m ) ,  the electronic motion becomes quasi-one-dimensional (QlD) .  The quan- 

tum states become localized in the lateral direction and this leads to distinct 

quantized energy levels which .modify the physical properties of the system. New 

quantum size-effects have been reported such as: non-local bend resistancel, the 

quenching of the Hall effect2, the oscillatory behavior of the capacitance3 and of 

the conductivity4, etc. 
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Previous studies of conduction in quantum wires have considered only the 

quantum size limit5.'j or short-range impurity scattering7 treating the lateral con- 

finement with a square well; also, electron-electron interaction effects have been 

neglected, In this paper we present a more complete evaluation of the impurity 

limited conductivity in quantum wires: i) we model the lateral confinement both 

with a square and a parabolic potential well when an arbitrary number of conduc- 

tion channels is occupied, and ii) we take into account, approximately, the effect 

of electron-electron interaction. 

For the evaluation of the electrical conductivity, along the wire, we use general 

Kubo-type expressions derived, e.g. in ref.8, for weak scattering and weak electric 

fields. For one-body collisions the diflusive contribution ap to the dc conductivity 

is given by 

and the collisional contribution by 

where v; =< <(x(< > is the electron velocity in the x-direction associated with the 

state I <  > and X, =< <lxlc > its average position. r(E,)  is the energy dependent 

relaxation time, W,,, ,  is the scattering rate and f, =< n, >,, is the average 

occupancy of the state I <  > in the equilibrium situation. Further, is the volume, 

lei the electron charge and p = l/ks T. For transport through localizes states the 

diffusive contribution vanishes identicall~ and there is only collisional current as 

in the case of hopping conduction and for transport in the quantum Hall regime

Q

. 

For two-body collisions (e.g. electron-electron interaction) the diffusive con- 

tribution is approximately given by eq.(í) and the collisional one by1° 
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where Q(cl, cz, c3, c4) is the scattering rate of the transition [c1, 5, >-+ [c3, c4 > . 
The expressions (1)-(3) will be applied to a quantum wire of dimensions 

L,,L, = W,L,, s u c h t h a t  &,L ,  << I ,  << L, = L; W = O.1pm and 

L, N 50 - 1 0 0 k  The confinement in the z-direction is rnodelled with a triangular 

well and it is assumed that  only the lowest subband with energy E: is occupied. 

We model the lateral confinement with: 1) a square well of infinite depth and, 

2) a parabolic well of frequency w .  The latter has been shown to be appropriate 

for very narrow wires". The electrons are free along the x-direction. The main 

difference between the two models are: i) the harmonic oscillator potential gives 

an equidistant energy spectrum whereas a square well potential does not, ii) the 

wave function for a square well vanishes at  y = O and y = W whereas that  for 

a parabolic well does not, i.e. in the first case the confinement is rigid with a 

well-defined width, in the second case it is not. Both wave functions, however, are 

localized in the y-direction (< clv, >= 0). 

We model the elastic scattering of electrons by the quasi-one-dimensional 

random distribution of impurities with the potential 

with k, the inverse screenning length, é the dielectric constant, and c a constant 

of order 1 in units of inverse length. The Fourier transform U, of U(z) is 

We will limit ourselves to the long-wavelength limit, q, -+ O, U,2 --+ 2Ug2/k,. 

The unperturbed density of states D ( E )  is proportional to 

where E, = n2 E. for the square well and E, = (n + i )hw for the parabolic one; it 

diverges for E + E, +E:. If we assume a Lorentzian broadening of the 6-function 
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with zero shift (equivalent to neglecting the real part of the Green's function ) we 

obtain 

where 

S(s, r) = J(d= + r)/(r + r )  , 

with Do = 2 ~ f i / h a  and E, = hw for the parabolic well and E. = 

n2h2/2rn* W2 for a square well. Further, i, = c /Eo,  Í', = I',/E0, with 

6, = E - E: - E,, and I', is the level width. The divergence is now removed. 

Following ref.12 we find that we can neglect the real part of the Green's function 

and in this case I', (E)  s I?, is determined self-cnsistently by 

where 

C' = ( 2 ~ ~ 1 , ~ ~ / h k . ) ~ ~  

and Cnf = E - E,! - E! NI is the impurity density 105cm-' and B,,# is a 

numerical factor resulting from < c ' (e iq . ' I c  > entering the evaluation of W,,,t .  

The DOS is evaluated by means of eqs.(5) and (4) for the square (fig.la) and 

parabolic (fig.lb) wells for different values of the impurity scattering strength c = 

h ~ ' . \ / 2 / 4 ~ : ' ~ .  The DOS oscillates as a function of the energy: Also I', (E) exhbits 

oscillations which die out with increasing energy. It is apparent that increasing 

broadens the peaks in the DOS. A noticeable difference,however, occurs for high 

energies: for a square well the DOS oscillates around a constant value and looks 

more like the DOS of two-dimensional electron gas whereas for a parabolic well 

D(E)  - as in the case of a 3D system. In the former case the number of levels 

stays almost constant with increasing E (the level separation varies as .N2). In the 

latter case the behavior of the DOS is a consequence of the softness of the potential: 

with increasing energy the potential becomes broadened and the electrons will be 

able to fill a larger area in space. Another noticeable feature of the DOS, common 
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to both confining potentials, is that there appears almost no difference for the 

result with I' = const. or with I', (E) as determined self-consistently except a t  the 

onset of the DOS. Therefore, ir1 the following we take the leve1 width constant and 

we have verified that this does not change our numerical results appreciably. 

EIE, (a) 

Fig.1 - Density of states (DOS) as function of the energy for different values of the 

electron-impurity interaction strength c = 0.2,0.5 and 1. The confinement potentiai 

is a square well (fig. la)  or a parabolic well (fig. lb). 

A. One-body collisions 

The diffusive contribution is evaluated from eq.(l) with r, (E) x h / r n  ( E ) .  

The result is 

where a, = (8e2/fih)(h2 kb/2m.*)/NIU,2F, C,,,, = s2 + E n  - Enl, x = f i k / @ ,  

and F = 9/16. 

The collisional contribution is evaluated with the approximation X, - X,, x 

1,; we obtain 



where 

ao - (e2/h)(2rn*1S/fL2)(NrUiF/k,). 
The diffusive contribution a,, relevant for low impurity densities, as evaluated 

from eq.(6) shows the same dependence on the density (or Fermi energy) as that 

of ref. 7. 

The collisional contribution a,, expressing hopping at high impurity densities, 

as evaluated numerically from eq. (i'), is shown in fig. 2 for different temperatures 

( j  = PEo) and fixed level width (Í' = r /E , )  for a square well (fig. 2a) and a 

parabolic well (fig. 2b). Each time the Fermi energy passes through an energy 

level E,, the conductivity increases because a new coriduction channel opens up. 

The difference the DOS of a square well and of a parabolic well also show up in the 

conductivity since the latter is just a convolution of the DOS with a combination of 

Fermi-Dirac functions expressing the occupancy of the states under consideration. 

Notice that the behavior of the conductivity is different from that in the ballistic 

regime. In this case the conductivity is quantized

Q

, a n(2eZ/h), where n is 

the number of conducting channels. In the case under study the electron motion 

is considered over a distance L >> I ,  such that many collisions have occrirred 

between the two measuring probes. Because of the peak structure of the DOS the 

scattering rate will also be influenced and will reflect the structure in the DOS 

which will modulate the conductivity. This is clearly apparent in figs. 2a and 2b. 

This oscillatory structure has recently been observed4 in a GaAs/AlGaAs quasi- 

one-dimensional FET. The dependence of the conductivity a, on the width of the 

wire is shown in fig. 3 for the square well potential. The solid curve is obtained 

upon keeping the 2D electron density nrD = niD /W constant (reminiscent of an 

isolated system) and the dashed curve is for a constant Fermi energy. The latter 

case corresponds physically to varying the width of the wire while keeping the 

system in electro-chemical contact with a bath of 2D or 3D electrons. In either 
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case: 1 )  the conductivity increases with wire width W, and 2) the conductivity 

oscillates with W in agreement with observations4. 

Fig.2 - The collisional contribution to the conductivity as a function of the Fermi energy 

( E F )  for different values of the inverse temperature = DEo and fixed value of the 
e 

leve1 width r. The confining potential is a square well (fig.2a) or a parabolic well 

(fig.2b). 

B. Two-body collisions 

When the electrons interact, in the presence of impurities, the diffusion con- 

tribution is approximately given by eq.(i) and the collisional one by eq.(3), which 

is much more complicated than eq. ( 2 ) .  To avoid excessive numerical work we 

limit ourselves to the square well in narrow wires where interlevel transitiuns are 

absent. We use the same model potential as before and make the approximation 

X,, - X,, N X;, - X;, N 1,. The 6  function involved in the definition of Q ( . . . ) 8  

becomes 6(kS + ka - k,2 - k : ) .  It is well-known that in the presence of impurities 

momentum conservation is violated. The transitions k ,  , k2 + k , ,  k ,  which involve 

the largest momentum transfer (c 2k , )  are those which satisfy k ,  -k2 = ~ ( k ,  - k , )  

and correspond to backscattering of both electrons k ,  and k ,  to k4 = -k, and 
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wire width: w(A)  

Fig.3 - The collisionai contribution to the conductivity as a function of the width of the 

wire at  fixed temperatu're and fixed leve1 width. Two cases are considered: 1) the solid 

curve represents the situation for a conatant 2D electron density (nCD = nZD/W = 

10"cm-~), and 2) the dashed curve is for the case in which the chemical potential is 

kept constant EF - 40meV. 

k~ = -kz(+sign) or k3 = -kl and k4 = -kz (-sign). Considering only those 

transitions which are expected to dominate the resistance, we obtain from eq.(3), 

near zero temperature 

where oz = ( t ? / h ) ( ~ ~ ~ t  ~'1:)(\/1/4rk,I')\/2rn* /h2 , F1 = .26. We see that eq.(9) 

has the same structure as eq.(7) and therefore shows the same oscillatory behavior 

as eq.(7). The amplitude, however, of the oscillations as estimated from the peak 

values of a:, i.e. when EF + E, + E:, is about 10 to 15 times smaller than the 
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corresponding amplitude of a, for T < 5K. Thus those collisions which involve 

backscattering of both electrons are very effective in reducing the conductivity. 

An order of magnitude estimate for the oscillation amplitude of the conductivity 

is obtained by adding the T -+ O expressions for a, and cC. Assurning I ,  N 

.5pm, m* = .07mo, k, N 2 - 3/A, and c N .005/A we obtain a, x 4 - 5 x 10-6 

and a, R 8 x 10-6 in units of (e2/h)L[m]. The precise values for al and ao 

depend on the parameters NI, k, and c; both, however, decrease with NI. This 

is apparent for o,, of eq.(6); for ao it follows from the fact that increasing NI 

leads to a decrease in 1, which makes the factor NI1:, in eq.(7), decrease for 

I, N;',  s > .5. With L lpm; these estimates lead to conductances of the 

observed order of magnitudeI3. 

In conclusion, we have present a calculation of the electrical conduction in 

quantum wires which: 1) is not limited to the size-quantum limit (n = O); ii) ap- 

plies to 6 function potentials as well as to the model potential U, exp(-k, 1xI)/&q; 

iii) takes partially the electron-electron interaction into account, and iv) is valid 

both for square well and parabolic well confinement. Surface roughness scattering, 

boundary scattering, and a similar study in the presence of a magnetic field are 

left for future work. A study of magnetophonon resonances in quantum wires has 

already been completed14. 
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Resumo 

Utiliza-se uma equação de Boltzmann quântico para calcular, a muito baixas temperaturas no 

regime de espalhamento por umpurezas, as contribuições difusiva e colisional à corrente elétrica dc 

ao longo de um fio quântico, de largura muito menor do que o livre caminho médio. Admite-se que 

os elétrons sejam independentes ou interajam (por colisóes binárias) na presença de impurezas. O 
confinamento lateral é modelado por um poço quadrado ou parabólico, e aquele na vertical por um 

poço triangular. Devido ao confinamento o movimento eletrônico torna-se quase-unidimensional 

e mudança na energia de Fermi ou na largura do fio levam a oscilações na densidade de estados, 

na taxa de espalhament,~ e na condutividade. O alargamcnto de níveis é levado em consideração 
auto-consistentemente. 


