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Abstraet The recently discovered magnetoresistance oscilations of a two-dimensional 

electron gas, modulated periodically and weakly in one direction, are fully accounted for 
with the help of a quantum Boltzmann equation. The bandwidth of the modulation- 

broadened Eandau levels, at  the Fermy energy, oscillates with magnetic field giving rise to 
the observed oscillations. The magnetoresistance perpendicular to the modulation (p,,) is 

dominated by diffusive current contributions, which increase with increasing bandwidth, 

while the magnetoresistance parallel to  the modulation (Pyy) is dominated by collisional 

contributions which decrease with increasing bandwidth. The resistivity temor is asym- 

metric and the components p,, and p,, are out of phase as observed. New oscillations are 

predicted for the Hall resistance, the cyclotron resonance position, and the linewidth. 

Recently' a weak 1D modulation (taken along the x-direction) of a high mo- 

bility two-dimensional electron gas (2DEG) has been realized which leads to nove1 

oscillations in the magnetoresistance. These oscillations are connected to the com- 

mensurability between the modulation period (a) and the diameter of the cyclotron 

orbit 2R, = 2 d m ~  at the Fermi energy with 1 = JkIeB the magnetic length 

and n, the electron density. These oscillationsl-=: 1) are periodic in 1/B like the 

Shulnikov-de Haas (SdH) osc.illations; 2) the periodicity depends on the electron 

density as Jne while the SdH have a n,-dependence; 3) the amplitude of these 

oscillations has almost no temperature dependence in contrast with that of the 

SdH oscillations; 4) they show up most clearly at small magnetic fields, because 
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at higher fields they are obscured by the SdH oscillations; 5) Weiss et a1.l-* also 

found oscillations in p,, which are much weaker in amplitude and are out of phase 

with the oscillations in p,, . 
Different theoretical models have been given which are able to explain the 

oscillations in p,, . Gerhardts et a1.' presented a quantum mechanical calculation 

based on a Kubo-type formula. Theoretically no noticeable oscillations in p,, and 

RH were obtained. Winkler et aL3 calculated the diffusive contribution to p,, 

in the high temperature and classical (large Landau leve1 index) limit. This ap- 

proach led to a simple expression for the oscillations which agreed very well with 

the experimental results in the very small magnetic field limit but for higher mag- 

netic fields the theoretical result did not recover the SdH oscillations. Beenakker5 

presented an alternative explanation for the oscillations in p,, on the basis of a 

classical picture, in which a resonance between the periodic cyclotron orbit motion 

and the induced (by the periodic potential) oscillatory motion of the center of the 

orbit leads to oscillations in p,,. Because the theory is classical the transition to 

SdH oscillations in p,, for larger magnetic field is not obtained. No oscillations are 

found in the other components of the resistivity tensor indicating that the weak 

oscillations in p,, have a pure quantum mechanical origin. 

At present no explanation is available for the anti-phase oscillations in p,, . 
This has motivated us to investigate this problem in more detail and to calculate 

the complete resistivity tensor. The anti-phase oscillations in p,, are explained 

and new oscillations in the Hall resistance and ihe cyclotron resonance position and 

linewidth are predicted. In this paper we demonstrate that a quantum Boltzmann 

equation6 derived in the framework of Kubo's linear response formalism, accounts 

well for a11 the observations mentioned above. 

Consider a two-dimensional electron gas, in the ( x ,  Y) plane, in the pres- 

ente of a magnetic field B along the z-axis, and periodically modulated in the 

z-direction by the potential U(x) = V. cos(Kx) with K = 2.rr/a, a being the 

modulation period. To evaluate the resistivity tensor p,, ( p ,  v = x ,  y) we will 

use the components a,, of the conductivity tensor in the standard expression: 
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pZz = a,,/S, p,, = a,,/S, and p,, = -ayz/S where S = az,ay, - o,,a,, with 

S N ai, = nCe2/B2 in the experiments under consideration. 

From the outset we remark that there are two different contributions to the 

current. First there is the usual'diffusive current which leads to the conductivity6" 

and which is valid for elastic or quasi-elastic scattering. Here, f, is the Fermi-Dirac 

function, = l / k , T  and 7 ( E r )  is the relaxation time for an electron in state )< > 
which has an energy E,. Second, there is the collisional current which leads to 

the dc-conductivity (we consider only p = 

where W,,! is the transition rate between the states / <  > and \c' >. This is 

the well-known hopping-type formula for transport in the presence of a magnetic 

field8v9. Conduction occurs by transitions through spatially separated states from 

a: =< <Ir, (c > to 0: =< c'l~,Jf > . 
For the Hall resistance t,he nondiagonal part of the current density is the 

relevant quantity and leadsG to the dc-conductivity 

The total conductivity is then given by the sum a,, = a$, + a;:. The above 

formulas have been successfully applied to many situations6-' : hopping conduction 

and magnetophonon resonances, quantum Hall effect, Aharonov-Bohm effect etc. 

To apply eqs,(i-3) to the present problem we need the eigenfunctions and 

eigenvalues of the one-electron Hamiitonian H, = (p - eA)'/Zrn* + U(x) where p 

is the momentum operator, A = (O, Bz,O) the vector potential and U(x) the spa- 

tia1 1D modulation. The exact eigenstates of this Hamiltonian with the modulation 
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are difficult to obtain. In the experimental systems under study the amplitude of 

the modulation is small and we may evaluate the correction to the energy levels 

by first-order perturbation theory2 using the unperturbed wave functions of the 

U ( z )  = O system. This gives 

where ti = K212 /2 and L, (u) is a Laguerre polynomiallO. We see that the modula- 

tion lifts the k, degeneracy of the unperturbed Landau levels which are broadened 

into bands with a bandwidth that oscillates with band index n and magnetic field. 

What will be important is the bandwidth at the Fermi energy which is illustrated 

in fig.1. The calculated results are not a continuous function of the magnetic 

field because we have to assume that the electron is in a definite Landau leve1 

n =  EF/Aw,  -1/2. 

When the modulation is absent the diffusive contribution to the current van- 

ishes identically because v: and v i  are zero. The only current contribution left for 

transport along the electric field ( p  = v) is the "collisional" one, as given by eq. 

(2). However, in the presence of the modulation the carriers acquire a mean veloc- 

ity inthe y-directionv, = -aEnkY/hdk, = -(2VO/hK) s in(2k,u/K)~e-"/~L,(u) ,  

whereas v: is again zero. Thus a,, has only a collisional contribution while a,, 

will have two contributions: one collisional and the other one diffusive. This al- 

ready implies that the resistivity tensor is asymmetric. In the following we will 

concentrate on the dominant correction to the conductivity due to the spatial 

modulation of the 2D electron gas. 

For the evaluation of formulas (1)-(3) we assume that the electrons are scat- 

tered elastically by randomly distributed impurities. This is a very good approx- 

imation for the experimental temperatures T < 10K. To evaluate Ap,, we have 

to calculate the correction to the conductivity Ao,, due to the modulation which 

is dominated by a diffusive component. To leading order in V. we find 
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Fig.1 - The bandwidth at the Fermi energy, the correction to the magneto-resistances p,, and 

pgg and to the Hall resistance, the shift in the cyclotron resonance frequency and the oscillations 

in the iinewidth are shown as function of the magnetic field. The 1D modulation of the 2DEG is 

along the X-direction. 



Nove1 magnetotransport effects in a 1D.. 

with r an energy-independent relaxation time which we have approximated by 

r = pm8/e where p is the mobility of the 2DEG. It is evident from eq.(5) that 

Ao,, and thus Ap,, is proportional to the square of the bandwidth at the Fermi 

energy. This is a generalization of the result of ref. 3 to arbitrary temperature 

which is the reason why eq. (5) also contains the SdH oscillations" . The result of 

eq. (5) leads to Ap,, which is shown in fig. 1; we took p = 1 . 3 ~  lO6cm2/Vs, n. = 

1.5 x 1 0 " ~ r n - ~  and a 1D modulation with period a = 3820Aand amplitude V. = 

5.K. For T = 4.2K and B < .6T the SdH oscilations are not yet visible in Ap,,. 

For T = 4.2K the SdH oscillations appear for B > .6T. When T < 4.2K they are 

also present for B < .6T as seen clearly in fig. 2. With increasing temperature 

the SdH oscillations weaken and disappear whereas the novel ones remain almost 

unaffected. The position of the extrema of the novel oscillations are accurately 

described by the condition 2R,/a = n + 1/4 for the maxima and 2R,/a = n - 1/4 

for the minima as derived3 from the asymptotic expression of L, (u) for large n. 

Fig.2 - The correction hp,,  , due to the modulation Vo, to the magnetoresistance p,, as function 

of the magnetic field B. Two kinds of oscillations are clearly seen for T = 2.2K. Those with the 

short period are the SdH oscillations which weaken with increasing temperature. Those with the 

long period are the novel oscillations. 
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The magneto-resistance alang the modulation p,, m a,, /a:, is proportional 

to the conductivity o,, which has only collisional contributions and can be eval- 

uated from eq. ( 2 )  

where NI is the impurity density with Uo = 2 ã e 2 / t k ,  the impurity potential 

in Fourier space in the limit k, >> q; k, is the screening wavevector and c the 

dielectric constant. In the absence of modulation eq. (6) gives the standard two- 

dimensional result. In the following we will calculate the correction due to the 

modulation: Ap,, = p,, (Vo) -. p,, (V, = 0) which is shown as the second curve 

from the bottom in fig. 1; the SdH oscillations are the short-period oscillations 

evident for B 2. . 2 7 T .  The conduction along the modulation occurs through hop- 

ping between the Landau states. This type of conduction is smallest (and thus also 

p,,) when the bandwidth at the Fermi leve1 is largest, because then the electron 

is able to scatter into a broad band of states. This explains why the modulations 

in p,, are out of phase with those of p,, . The fact that the oscillations in p,, are 

much weaker is also evident because they are only a consequence of small pertur- 

bations on the collisional current which is also present without the modulation. 

This is different from p,, where the modulation opens up an extra conduction 

mechanism. The collisional contribution to the resistance p,, should also exhibit 

these out-of-phase oscillations but because they are at least an order of magnitude 

smaller than the diffusive channel, they will not be observable. 

The Hall conductivity is evaluated from eq. (3) along the lines of ref. 6b. 

The results is 

a / 1 2  

o,, = ---C- C ( n  + I) 
fn.k, - fn+l.ky 

m'w, Ta 2 7 

n = O  

( 7 )  
[I + A. COS ( 2 4 ) ]  

where 
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In the absence of the modulation and for strong magnetic fields eq. (7) leads to 

the integral quantum Hall effectGb. ARH = RH (Vo) - RH (VO = 0)  versus the 

magnetic field is plotted in fig. 1. The oscillations are in phase with those of 

Ap,, . The oscillations in RH can be understood as follows. The quantization of 

the Hall resistance is a consequence of the fact that there is only one extended 

state in the center of the Landau level and that the Fermi level is pinned in the 

region of localised states between successive Landau levels. On the other hand the 

modulation leads to a band of extended states whose width oscillates with magnetic 

field. This leads two oscillations in o,, ,a,, , and a,, . However, since a,, and a,, 

oscillate out of phase we have p,, 2 -l/o,,, i.e. the (small) osci!lations of a,, 

alone give rise to those of the Hall resistance. Consequently the lattei are seen not 

to be connected with the Fermi level being no longer in a gap of extended states, 

as indicated by the finite o,, and a,,. 

Previously Chaplik12 has predicted that the cyclotron resonance of electrons 

in a lateral superlattice in a strong field perpendicular to the growth axis exhibits 

a two-peak structure due to the singular nature of the density of states (DOS) at 

the band edges. Up to now the experiments13 have shown only a broadening of 

the linewidth. The present system under study is the weak modulat 'x limit of 

the system studied in ref. 12. We found the following expression for the cyclotron 

resonance power spectrum 

with A,,kY = Aw,[I + Xn cos(2rkyl2/a)], and E the strength of the oscillating 

electric field with frequency w .  For the broadening a typical value of I? = 2K was 

used, but we have checked that the numerical conclusions do not depend on the 

value of I'. The numerical results for the percentage change in the position of the 

cyclotron resonance frequency and the linewidth are shown in fig. 1. The position 
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of the cyclotron resonance frequency oscillates around the unperturbed value, it 

reaches a maximum at  maximum bandwidth and is minimum at  zero bandwidth 

correction. The width of the cyclotron resonance peak oscillates in phase with 

those of p,, . 
In conclusion we have presented a full quantum mechanical calculation of the 

resistivity tensor for a 2DEG in a weak 1D periodic potential. A11 available exper- 

imental data can be explained by our model. An interpretation of the antiphase 

oscillations in p,, has been given. New oscillations in the Hall resistance, the cy- 

clotron resonance frequency and the cyclotron resonance linewidth are predicted. 

We found numerically that the amplitude of the oscillations increases quadrati- 

cally with the amplitude of the modulation potential V,. Furthermore, lowering 

the electron density also increases the amplitude of the oscillations. 
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Resumo 

O fenômeno recentemente descoberto, de oscilações da magnetoresistência de um gás de 

elétrons bidimensional, com modulação fraca e periódica em uma dimensão, é completamente ex- 

plicado com a ajuda de uma equação de Boltzmann quântica. A largura de banda dos níveis de 

Landau alargados pela modulação, na energia de Fermi, oscila com o campo magnético dando 

origem h oscilações observadas. A magnetoresistência perpendicular à modulação (p,,) é domi- 

nada por contribuições difusivas à corrente, as quais crescem com a largura de banda, enquanto a 
magnetoresistência paralela à modulação (p,,) é dominada por contribuições colisionais, as quais 

decrescem quando a largura de banda aumenta. O tensor de resistividade 6 assim6trico e as com- 

ponentes p,, e p,, estão fora de fase, tal como observado. Novas oscilações são previstas para a 

resistência de Hall, a posição da rekonância de cíclotron, e a largura da linha. 


