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Abstract We consider electrons confined to the surface of a sphere, and calculate the 
classical electrostatic energies for up to 32 electrons. Next, we introduce a magnetic field 

perpendicular to the surface of the sphere, by placing a magnetic monopole at the origin. 

The classical analysis can be extended by replacing the pair-potential by an effective po- 

tential, defined as the quantum mechanical energy of a pair of electrons at  the appropriate 

distance. For the worsf case of a filled Landau level, which can be calculated exactly, the 

approximated energies are correct within a few percent, and are considerably improved 

when the filling factor decreases. Further, we use the semiclassical energies to construct 

a simply parametrized function for extrapolating the ground state energy as a function of 
the filling factor, from finite particle numbers to an infinite number of particles. 

1. Introduction 

The fractional quantum Hall effect (FQHE)' is a remarkable many-body 

phenomenon that has attracted much attention2b3 since its discovery. In 

A&-,Ga,As - GaAs heterojunctions the electrons are confined to move in a 

two-dimensional plane. Geometrically, the electron gas is not two-dimensional, 

since the wavefunction has an extension of 10-50 A in the third dimension. How- 

ever, the gap up to the first excited state is of order 50 meV, much greater than 

the typical energies at  the experimental temperatures of about 1 K = 0.1 meV 

or less. AI1 degrees of freedom in the third direction are thus frozen, and the 
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system is dynamically two-dimensional. In the two-dimensional plane, the motion 

remains nearly free, with extremely high mobilities. This very good realization of 

an idealized two-dimensional electron gas is achieved mainly due to the technique 

of modulated doping, which is available by molecular beam epitaxy. Hereby, one 

is able to remove the donor atoms from the carriers in the plane. Thus, scattering 

is highly reduced. Also the structural change by adding A! is small, giving rise to 

a very smooth interface. 

In the presence of a strong magnetic field perpendicular to the plane, these 

high mobility samples show a quantization of the Hall conductivity a,, = v e2 /h ,  

where v is a simple rational fraction, which equals the filling factor around which 

the quantization occurs (the first discovered and most pronounced case is the 

v = 1/3 state). At these values of v the magnetotransport is dissipationless. The 

stability of a,, suggests cusps in the ground state energy as a functions of v, and 

corresponding gaps in the excitation spectrum. Experimentally one finds that the 

FQHE is more easily seen when the mobility of the sample is high, as opposed 

to the integer QHE' which can be stronger in samples with more disorder and 

lower mobility (above a certain limit below which the effect disappears). This 

supports the idea that the electron-electron interaction is the dominant cause 

of the effect. From studying a small number of particles, Laughlin5 proposed a 

variational wavefunction of the Jastrow form which describes the situations very 

well when v = l l m ,  m being a small, odd integer. Accordingly the electron gas 

condenses into a new state, which is a strongly correlated quantum fluid. This state 

is incompressible and is separated by a gap from its excitations. The excitations 

can be viewed as quasiparticles which are believed to carry a fractional charge 

e* = ve, and may be considered to obey fractional statistics6~'. Extension to 

other filling factors of a more general form is due to Haldanes. According to his 

scheme, the quasiparticles condense into a new Laughlin state with its own set of 

new quasiparticle excitations. Repetition of this argument leads to a hierarchy of 

filling factors 
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where ai is O or f 1, and pi = 2,4 ,  .... 
To check the validity of Laughlin's theory, and to look for cusps in the ground 

state energy, finite-size calculations have been performed. Important contributions 

were made by Haldane and Rezayi

Q

. They modelled the system by mapping the 

two-dimensional planar electron gas onto a sphere, and diagonalized the Hamilto- 

nian for small particle numbers. The calculations were done for particle numbers 

up to N = 7. Later, Fano et al.1° did similar calculations for up to N = 10 parti- 

cles in the v = 113 state. These calculations show that Laughlin's wavefunction is 

certainly very good for small particle numbers N. It is even exact for some model 

interactions of vanishingly short range, for arbitrary N. Whether this superior- 

ity still holds for higher particle numbers, and with more realistic interactions 

of longer range, is yet an open question. Thus, it is still of interest to push the 

study of the ground state towards higher particle numbers. And, even if exact 

calculations become inaccessible due to the matrix dimension of the Hamiltonian 

involved" , one may search for approximative schemes12. 

Extrapolation of finite-size results is a common method to gain insight into 

the thermodynamic limit, and results for a small number of electrons have boldly 

been extrapolated to an infinite number of particles. Strange to say, it seems that 

this extrapolation gives proper results for the Laughlin states, which may be due 

to the incompressibility of the ground state13. The main purpose of this paper is 

to  investigate the extrapolation of the ground state energy, from a finite number of 

particles to an infinite number of particles, in the geometry of a spherical surface. 

This extrapolation is dependent on the filling factor. In section 2 we calculate the 

classical electrostatic energy for up to 32 electrons on a sphere, by placing electrons 

at the corners of the Platonian bodies and some rather natural extensions of these. 

These energies may serve as a lower bound for the quantum mechanical ground 

state energies. In section 3 we introduce a magnetic field by placing a magnetic 
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monopole at the center of the sphere. We use some of the properties of magnetic 

monopoles to show that the natural definition of the filling factor is somewhat 

different from the one used in the early papers investigating the FQHE in a 

spherical geometry. This definition of the filling factor leads to a better scaling 

behaviour for the classical energies, i.e. one where the leading 1/N correction is 

smaller. In section 4 we make a semi-classical extension of the classical analysis, 

in which some effects of the quantum mechanical spread of the wavefunction are 

taken into account, by replacing the true pair interaction potential by an effective 

pair-potential derived from the so!ution of the twc-particle system. This method 

is exact for the three-particle system (in the J = O state), and also in the limit of 

low filling factors. It further gives a very good approximation to the ground state 

energy in the unfavorable case of a completely filled Landau level. We use the 

results of this semi-classical analysis to construct a function which extrapolates a 

(v dependent) finite N energy calculation towards inifinite N .  The idea is that 

even though the semi-classical analysis gives a crude approximation to the ground 

state energies, which moreover smoothens out the cusplike behaviour which is 

believed to exist, the main part of the extrapolation function is a smooth function 

which is sufficiently well approximated by the semi-classical method. 

2. The classical energies 

We consider N electrons constrained to the surface of a sphere of radius R. 

The electrons interact with each other and with a positive neutralizing background 

through the 3 0  Coulomb potential V ( r )  = l / r  (we choose units of energy such 

that e2/4nc = 1). The interparticle distance is taken as the chord distance. This 

may not be the most realistic model for the particle interaction in the heterojunc- 

tions,but it has become fairly standard. 

The self-energy of the background is N2/2R, while the interaction energy 

between the electrons and the background is -N2/R. The effect of the background 

is therefore merely to shift the energy by -N2/2R. 

The interaction energy of the electrons is 
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summing over a11 pairs, with r i ,  being the distance between the particles. Classi- 

cally, for a given configuration of particles, the problem is reduced to a geometrical 

problem of finding a11 the interparticle distances. We shall be interested in the total 

energy per particle EN = E/N, which we measure in units of 1/R. 

For completeness we include the trivial cases N = 2 and N = 3 (where the 

three particles are placed at the corners of an equilateral triangle around a great 

circle), for which 

Furthermore, we shall consider the five Platonian bodies and locate the electrons 

at the corners of these. This will cover particle numbers N = 4,6,8,12 and 20 

(The last case was apparently overlooked by Fano et aI.l4 who stated that there is 

no Platonic polyhedron beyond N = 12). The different electron-electron distance 

and the number of pairs with a given distance are shown in table 1. 

We can extend this classical analysis. The case N = 5 amounts to three 

particles in a triangle around the equator and one particle at each pole. The 

distances are fi, fi and 2 in units of R. 

Further on, one may add particles on the sphere outside the midpoints of 

the faces of the Platonian bodies. This will only give back a new Platonian body 

except for two cases; the hexahedron and the dodecahedron. In these cases one 

achieves particle numbers 14 and 32 respectively. 

The case N = 14 corresponds to'an octahedron and a hexahedron put into 

each other. In addition to the interna1 distances in these bodies already given in 

table 1, one gets new distances r between one electron in the octahedron and one 

in the hexahedron. We find that these distances are given by 
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There are 24 connections for each sign. 

Table 1 - The five Platonian bodies, with a11 interparticle distances and thè number 
of pairs with a given interparticle distance. 

PLATONIAN BODIES 

N Name r / R  Number 

4  Tetrahedron 2&/3 6  

6 Octahedron fi 12 
2  

8 Hexahedron 2 4 1 3  12 
2&/3 12 

2  4 

12 Icosahedron 30 of each 
6  

20 Dodecahedron (& * I)/& 30 of each 
2 4 1 3  60 
2 d q 3  60 

2  10 

In a similar way will the N = 32 body consist of an icosahedron and a 

dodecahedron placed inside each other. The new interbody distances are given 

by 

where each of the four possible distances appears 60 times. 

The total energy can now easily be calculated using eq.(2.1). The result is 

plotted in fig. 1. Notice that we have plotted the energies in units of e, where p 

is the areal density p = N / 4 r R 2 .  Thus, we have a constant density, while the radius 

R  of the sphere is fixed by the number of particles to give this density. We have 

also marked the result given by Bonsall and Maradudin15 for an infinite triangular 



lattice in the plane. This seems to fit well to the extrapolation of our data. We see 

that the classical electron system prefers to arrange itself in equilateral triangles, 

which it achieves for particle numbers 4, 6 and 12. These have substantially lower 

energy than the others. For N = 32 the arrangement of the electrons is very close 

to this situation, being triangles with two equal sides, slightly different from the 

third. The ratio between the sides is 0.89799 ..., explaining the low energy. The 

variations when changing N can be explained by the ability to form triangular 

configurations. 

Fig.1 - The energy per particle as a function of 1 / N  in units 

We have fitted a straight line through the points N = 4,6 and 12. The total 

energy per particle is thereby approximated as EN = -aO (1 +<Y~/N)JN/R, where 

the best fit i s  ao = 0.5537 and al = 0.09316. 
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3. Magnetic monopole field and the filling factor 

To introduce a magnetic field perpendicular to the surface, we place a mag- 

netic monopole of charge g at the center of the sphere. A magnetic monopole is 

the magnetic analog to an electric point charge, creating the magnetic field 

A free electron moving in the field from the monopole will be described by 

the Hamiltonian H,, = ($+ eÂ12/2m. The vector field A needed to produce the 

magnetic field in eq.(3.1) will have singularities, but these are not physical when 

the quantization rulelG 

is fulfilled. The .orbital angular momentum of the electron i = T X  ($+ eÃ)/h does 

not commute with the Hamiltonian, due to the non-vanishing momentum density 

which integrates up to qi. Thus, the proper angular momentum, measured in 
+ -4 

units of h, is J = 7 x (p+  eA)/h + qf .  The square of the angular momentum is 

then y2 = 3 + q2, and the Hamiltonian for one electron confined to the sphere 

of radius R is 

with eigenvalues 

There is no loss of generality in considering only q positive, since the energies 

are independent of the direction of the magnetic field. To keep the magnetic 

field constant on the surface of the sphere, the size of the sphere must scale as 

R = &eB, where CB = (h/eB)'I2 is the magnetic length. 

The n'th Landau level corresponds to j = q + n, where we start counting so 

that n = O is the lowest level. The energy is then 
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fi2 9 n(n + I) 1 E, = - ((n + i) + -) = hwc(n + s) + O ( K 2 )  , (3.4) 
m R2 29 

where w, = eB/m is the cyclotron frequency. 

Since the energy is independent of J, ,  a11 the possible values - j ,  ..., j  will have 

the same energy. The degeneracy of the n'the Landau Ievel, will be finite on the 

sphere and equal to 2 j  + 1 = 2q + 2n + i. We will confine our analysis to the lowest 

Landau level. Then there are 2q + 1 one-particle states available. When we have 

N electrons on the sphere, the filling factor will therefore be 

This is different from the definition of the filling factor used previously by other 

authors8. They observe that the Laughlin states on a sphere exist when 29 = 

m(N - 1). In the planar geometry, the filling factor is l l m ,  and generalising to 

the sphere one has uH = ( N  - I)/'&. This filling factor is found to break the 

particle-hole symmetry at  finite N 17. 

The difference vanishes in the limit N -+ oo, but this is not enough, since one 

wants to extrapolate results from finite (and quite low) N. Thus, one should use 

the correct filling factor to have better control of the extrapolation process. 

When we now let the electrons interact, we have a true many body problem 

which is not so easy tractable. Eut the static energies already calculated in chapter 

2 will still hold as a lower bound for the interaction energy. They were a11 measured 

in units of 6. It is common now to calculate the energies for a fixed value of 

the filling fraction. We then have that 

The energy is now measured in units of li ' and is shown in fig. 2 for the particular 

case v = 1/3. 



Scmi-claasical estimation of ground state ... 

Fig.2 - The classical energy per particle (in units e2 /4ndB)  ay a function of 1 / N  
when the filling is fixed (to 113). The filled circles use V = N / ( 2 q  + 1) and the 

crossed circles use VH = ( N  - 1) /2q .  

This should be compared with the ones given in ref. 9. We see that the correct 

definition of the filling factor eq. (3.5) significantly improves the scaling behavior. 

Let us demonstrate this. The radius of the sphere scales like R = JqeB to keep 

the magnetic constant on the surface. We can express the classical extrapolated 

energies with the two types of filling factors involved 

t~ = - < r o 6 ( l  + (al + 1 / 2 ) / N ) J N / g  

E = - a o 6 ( 1  + ( a ,  + u / 2 ) / N ) m  . (3.7) 

Since al > 0, the 1 / N  correction is always smaller for the correct filling factor. 
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4. Semi-classical effective pair-interaction 

We have seen in the previous section that electrons in the lowest Landau leve1 

have angular momentum $ The interaction energy between two electrons coupled 

to a total angular momentum e = g+ can be written17 

where the object in curly braces is a Wigner 6j-symbol. In the claçsical limit 

q -+ oo, one can use the asymptotic expressions for the 6j-symbols and find that 

the energy corresponds to a pair of electrons located with a relative angle dL,  

for the Coulomb interaction eq.(2.1). The angle 8, is 

COS dL = 
L(L -i- 1) - 2q(q + I) 

249.  + 1) 

Calculating the energies for a rotational symmetric state of three particles, 

one finds that 

(3) - E ( 2 )  E,, - 3 L = ,  , (4.4) 

which is precisely the classical result, but with the classical pair-interaction 

V(cosb) replaced by an effective interaction E:). Note that the Lvalue via 

eq. (4.3) gives the spherical angle 29, = 2 ~ 1 3 ,  precisely corresponding to the three 

particles being evenly distributed on a great circle, as far apart as possible. 

We want to elaborate o11 this obser~ation. By applying the geometrical results 

of the first section, we can calculate energies for higher particle numbers. To each 

interparticle distance there corresponds an angle O, related to the pair-distance r,, 

by r,, = 2sin(29/2). The energy between two eIectrons separated by this distance 

can be approximated by E;' where we now choose the value of L which gives the 

value of OL closest to O. In fact, we will improve a little by interpolatirig linearly 

between the two closest values. 
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Numerically, we have done the calculation for q ranging from 3 to 85, thereby 

covering a quite large area in the parameter space (N, v). In fig. 2 we compare the 

energies fore N = 4 with the exact ones as calculated by Sollie and Olaussen (ref. 

17). As expected the deviations vanish for low filling factors, since the particles 

do not overlap much at these low densities. The Eaughlin states are realized 

on a sphere for 2q = m(N - I),  and we observe that at the corresponding fillings 

(marked with arrows) there is a particularly good agreement between the energies. 

We have also compared our results with the energies found by Fano et al.1° for 

the ' í /3  Laughin state up to 10 particles, and we see a remarkable agreement (cf. 

table 2). 

Table 2 - Comparison of the semi-classical energy E., with the exact energies E,, 
as calculated from eq. (4.5) for v = 1 and by ref. 10 for v* = 113. 

v N E, , E AE(%) 

1 4 -.74651 -.73256 1.8 
5 -.71833 -.71833 O 
6 -.70090 -.67764 3.3 
8 -.68047 -.68131 0.1 

12 -.66137 -.62651 5.3 
14 -.65614 -.62660 4.5 
20 -.64697 -.62406 3.5 
32 -.63918 -.61294 4.1 

"113" 4 -.475024 -.473815 0.25 
5 -.459510 -.458928 0.13 
6 -.450173 -.450568 -0.09 
8 -.439096 -.437449 0.38 

We may also test our approximation in a case Ghere a11 the energies can be 

calculated exactly. We know that for a filled Landau level, the energy per particle 

is 

The classical energies are again converted into units of li1 by using that R = 

,@,. We compare these energies with the ones calculated from eq. (4.1) in table 
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Fig.3 - The exact (dashed lhe) and approximated (solid line) energy for N = 4 

particles. The Laughlin states m = 3,5, and 7, are marked with arrows. 

2. We see that the error is limited within a few per cent and that there is little 

systematics, but the error tencls do be larger for higher particle numbers. Note 

that this is a worst-case test, aince the overlap of the wavefunctions vanishes in 

the limit of small v, but is considerable for v = 1. We have also compared with 

the energies found by Fano et al. (ref. 10) for the Laughlin state up to N = 8 

pa.rticles, and we see a remarkably good agreement, not only for the four-particle 

state. 

What one really would like to find, is a better way to correct for the finite 

size of the sphere. Morf et al." introduced their correction factor due to the N 

dependence of the areal density, by redefining the length unit such that the areal 

density is independent of N (for a fixed v ) .  We shall see what our semiclassical 

analysis gives. Let us write the energy as 

E, (V) = EN (V) + A ~ ( v ) / N  + ... , (4 4 
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where we shall not be interested in the higher order terms. We have our semiclas- 

sical data, and if we fix v and fit a straight line as a function of 1/N, we are able 

to find the t ~ o ' ~ u a n t i t i e s  involved. We do this for filling factors v = 2/m1 with 

m' = 2,3, ..., 10. The result for the correction factor A E  is given in fig. 4. The solid 

line is the best fit of a power law, and the result is Ac = avr ,  with r = 1.9939 and 

a = 0.61874. This strongly suggests that the exact extrapolation function behaves 

quadratically as v -i 0. 

Fig.4 - The first 1/N correction AE as a function of v. 

5. Conclusion 

We have studied the two-dimensional electron system on a sphere, and cal- 

culated the classical energies for electrons at the corners of the Platonian bodies 

and some simple extensions of them. Furthermore, we have introduced a magnetic 

field normal to the 2 0  surface created by a magnetic monopole, and found approx- 

imate energies by using the two-particle energies of a11 pairs. Thus, we model the 
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system by a classical system with an effective interaction between the particles. 

The effective interaction is to take into account the spread of the wavefunctiun. 

In the limit of a vanishing filling of the Landau level, the electrons are well 

separated, with little overlap of the wavefunctions, and we recover the classical 

energies. We also use the data to find a parametrization of the extrapolation of 

energies from a finite number to the thermodynamic limit. 

Naturally, these energies are merely approximations. Errors are introduced 

at severa1 stages. First by the fact that the two-particle energies only exist for 

some discrete pair-distances, making an approximation to these discrete values 

necessary. (Of course, this enforcement of discretization in the pair distances may 

be the main cause of the FQHE).  Next there is no reason for the axact quantum 

mechanical energies merely to be a sum over pair energies. 

Despite these crudities, ,the results are quite good, and particularly for low 

filling factors. We are able to calculate the energies to within some percent, and 

even less than one percent for the 113 Laughlin states. 

We would like to thank professor K%re Olaussen, NTH, for suggestions and 

discussions. 
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Resumo 

Consideramos elétrons confinados à superfície de uma esfera e calculamos as energias elet- 

rostáticas clássicas para até 32 elétrons. A seguir, introduzimos um campo magnético perpendicular 

à superfície da esfera, ao colocar um monopolo magnético na origem. A análise clássica pode ser 
estendida, substituindo o potencial de pares por um potencial efetivo, definido como a energia 

quântica de um par de elétrons à distância apropriada. Para o caso mais desfavordvel, de um nível 
de Landau completamente ocupado, o qual pode ser calculado exatamente, as energias aproximadas 

são corretas a menos de alguns poucos pontos percentuais, e são consideravelmente melhoradas 

quando o fator de enchimento diminui. Utilizamos ainda as energias semiclássicas para construir 
uma função simplesmente parametrizada para extrapolar a energia do estado fundamental como 

função do fator de enchimento, de números finitos de partículas até um número infinito. 


