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Abstract Nonlinear current transport behavior during low-temperature impact ioniza- 

tion breakdown of extrinsic germanium comprises the self-sustained development of both 

filamentary spatial and oscillatory temporal dissipative structures in the formerly homo- 
geneous semiconductor. We study the cooperative spatio-temporal breakdown phenomena 

via both probabilistic and dynamical characterization methods. Agreement between the 

results obtained from the different numerical concepts gives a self-consistent picture of 

the physical situation investigated. As a consequence, the affirmed chaotic hierarchy of 

generalized horseshoe-type strange attractors may be ascribed to weak nonlinear coupling 
between competing localized oscillation centers intrinsic to the present semiconductor sys- 

tem. 

I. Introduction 

Certain systems, with dynamics governed by partia1 differential equations, 

exhibit complexity that is no worse than that of a few coupled nonlinear ordi- 

nary differential equations. These systems have been studied extensively as part 
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functions. Verification of the Kaplan-Yorke conjecture and the Newhouse-Ruelle- 

Takens theorem fits well into the model of spatially localized and weakly coupled 

oscillatory subsystems inherent to the global multicomponent semiconductor sys- 

tem considered. 

2. Experimental 

Our experiments were performed on single-crystalline ptype germanium ma- 

terial, having the dimensions of about 0.25 x 2 x 5 mm3 and an impurity doping 

concentration of about 3 x 1014 cm-3 of indium, aluminum, and gallium acceptors 

(corresponding to shallow acceptor levels in the range of 10 meV above the valence 

band edge). The compensation ratio was definitely smaller than 5 x 10-2. The 

specific resistivity at room temperature amounted to about 10 V c m .  During sam- 

ple preparation, the extrinsic germanium crystal was successively polished (with 

diamond paste) and etched (with CP4), in order to obtain an ideal surface struc- 

ture. Then properly arranged ohmic aluminum contacts were evaporated upon 

one of the two largest crystal surfaces. For alloying the contact with the bulk 

material, the sample was heated above the eutectic point of the system. 

To provide the outer ohmic contacts with an electric field, a d.c. bias voltage 

(V,) was applied to the series combination of the sample and the load resistor 

(RL). A d.c. magnetic field (B) perpendicular to the broad sample surfaces 

could also be applied by a superconducting solenoid surrounding the semiconductor 

sample. The resulting electric current I was found from the voltage drop at the 

load resistor. The voltage V was measured between the two outer contacts of the 

sample. Two additional inner probe contacts (of about 0.2 mm diameter) that are 

placed equidistantly in between served for monitoring independently the lateral 

partia1 voltages (i = 1,2,3) along the sample. During the experiments, the 

semiconductor sample was always kept at liquid-heliurn temperature (T = 4.2K) 

and carefully protected against externa1 electromagnetic irradiation (visible, far 

infrared). Further details on the experimental techniques can be found elsewhere3. 
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3. Physics 

Analogous to the corresponding processes of structure formation in gaseous 

plasma discharges, impact ioni:zation of the shallow impurity acceptors can be 

achieved in the bulk of the homogeneously doped semiconductor at low tempera- 

tures. In the temperature range of liquid helium, most of the charge carriers are 

frozen out at the impurities. Since the ionization energy is only about 10 meV 

and electron-phonon scattering is strongly reduced, avalanche breakdown already 

takes place at electric fields of a few V/cm and persists until nearly all impurities 

are ionized. The transport mechanism involved in the nondestructive breakdown 

phenomenon can be attributed to impact ionization of the impurities by mobile 

charge carriers heated via the a.pplied electric field4. 

The underlying nonequilibrium phase transition from a low conducting state 

to a high conducting state is directly reflected in strongly nonlinear regions of 

negative differential resistivity in the microscopic current-density versus electric- 

field characteristic5. Accordingly, the autocatalytic process of impurity impact 

ionization also leads to a strongly nonlinear curvature of the macroscopic (mea- 

sured) current-voltage characteristic (with sometimes S-shaped negative differen- 

tia1 resistance6), the nonlinearity occurring just beyond the voltage corresponding 

to the critical electric field where the current increases by many orders of mag- 

nitude (typically, from a few nA in the pre-breakdown up to a few mA in the 

post-breakdown region4). 

Under slight variation of distinct control parameters (electric field, magnetic 

field, and temperature in the range of some 1V6 V/cm,lO-' G, and 10-3 K, 

respectively) the resulting electric current flow displays a wide variety of spatio- 

temporal nonlinear transport behavior. As described previously, low-temperature 

avalanche breakdown develops the self-sustained formation of filamentary current 

flow patterns associated with the appearance of spontaneous current and volt- 

age oscillations2. Note that these state variables show - superimposed upon the 

d.c. current and voltage signals of typically a few mA and some hundred mV, 
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respectively - temporal oscillations with a relative amplitude of about 10-3 in the 

frequency range 0.1 - 10 kHz. 

4. Results and Discussion 

The complex spatial behavior of our semiconductor system can be globally vi- 

sualized by means of low-temperature scanning electron microscopy7. Fig. l shows 

a two-dimensional image of a typical current filament pattern developing in the 

nonlinear post-breakdown regime of the current-voltage characteristic (parameters 

V. = 2.OV, RL = lv ,  B = 1 G). AS reported elsewheres in detail, nucleation of ad- 

ditional filaments is often accompanied by abrupt changes between different stable 

filament configurations via noisy curre- instabilities. Moreover, the simultaneous 

spatial identification of oscillatory current flow dynamics

Q 

provides a powerful to01 

for gaining deeper insight into the mutual interplay between spatial and temporal 

current structures. In the spirit of chaotic hierarchy', turbulent dynamics may 

thus be ascribed to nonlinear coupling between competing localized oscillation 

centers intrinsic to our semiconductor system. So far, we have demonstrated ex- 

perimentally the existence of spatially separated oscillatory subsystems1° as well 

as their long-range interaction" . 
In this experiment, we concentrate on the quantitative characterization of the 

cooperative temporal behavior induced by the avalanche breakdown kinetics of our 

multicomponent semiconductor system. For evaluating the hierarchical tree of the 

chaotic order proposed, we apply distinct numerical analysis procedures embrac- 

ing both probabilistic and dynamical concepts. As a first step, we examine two 

characteristic data files of spontaneous voltage oscillations V, (t,; n = 1...80000), 

obtained for the different working conditions B = 31.5 G (file A) and B = 46.5 G 

(file B) at constant parameters V. = 2.145 V, RL = 100 V, and T = 4.2K. These 

cases were selected taking into account the different structural shape of the phase 

portraits shown in fig. 2. The two-dimensional representation V2 (t,) vs V2 ( t ,  + r )  

of the trajectories in phase space is constructed by using an appropriate sampling 

rate of 100 kHz and a delay time of 50 ps (embedding theorem12). As already 

pointed out in an earlier conjecture13, the phase portrait of fig. 2(a) is suggestive 



Fig.1 - Brightness-modulated image of the filamentary current 0ow in the 

homogeneous bulk semiconductor during avalanche breakdown obtained by 
low-temperature scanning electron microscopy. The spatially resolved imag- 

ing is accomplished by scanning the specimen surface with an electron beam 
and by recording the beam-induced current change in the voltage-biased 

specimen as a function of the beam coordinate (x,y). The dark regions cor- 

respond to the filament channels extending along the y-direction. For details, 

ref.8. 

of a strange attractor having a dimension larger than two. The attractor can be vi- 

sualized as a curled band partly folded over, embedded in three-dimensional space. 

This impression was especially striking when the bias voltage was slightly varied 

in the 0.1 percent range, resulting in a different projection of the same object. 

Upon increasing the magnetic field, the curled band structure (fig. 2(a)) gradually 

changed into a spherical tangla (fig.2(b)) with increasing attractor dimensionality, 

apparently representing a hig'ber state of chaos. The trajectories occupy the in- 

terior of a nearly spherical po.rtion of the projected phase space. This picture dit 

not change under small variations of the control parameters (cf. fig. 3 of ref.13). 
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Fig.2 - Phase plots of different chaotic attractors generated from parts of 
the data files A (a) and B (b). Note that 1000 arbitrary units correspond 
to about 5 mV signal amplitude. The characteristic frequencies are below 

5 kHz. 

In the following, we briefly report the quantification of the present experimen- 

tal situation with the help of generalized fractal dimensions, entropies, Lyapunov 

exponents, and the corresponding scaling functions. The fundamentals of the 

characterization methods applied are described elsewhereI4 in detail. First, the 

generalized fractal dimensions D(q) and the generalized entropies K(q) were calcu- 

lated with the nearest-neighbor algorithm proposed by Badii and Politi''. Taking 

into account the scaling behavior of the next-neighbor distance at a generic point 

with the number of trial points, the dimensions and entropies could be extracted 

directly from the slope and the shift of the successive log-log plots, respectively, 

obtained with increasing dimension of the embedding phase space16. The results 

computed for the two characteristic data files are listed in table 1. Here we have 

used embeddings of dimension from 20 to 26 (cf. fig. 5 of ref. 14). We conclude 

that the states A and B manifest different strange attractors, the chaotic behavior 

of the second one reflecting a considerably higher degree of freedom. The closeness 

of D(0) and D(1) as well as K(0)  and K(1)  indicates an almost self-similar struc- 

ture for both chaotic attractors, not yeat being adequate to confirm multifractal 

behavior of the system. In order to yield a more complete characterization, we 
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looked at the spectra of invariant static scaling indices f (a), describing the global 

distribution of singularities on a fractal measure". Their graphs are given in 

fig. 3 for the two data files corisidered. It is now clearly seen that both chaotic 

attractors display multifractal structures, the extension and the form of which are 

changed drastically between the two working conditions. Moreover, the numeri- 

cal values of the generalized fractal dimensions are fairly well reproduced by the 

corresponding scaling functions. 

Fig.3 - Static scaling functions of 

different chaotic attractors calcu- 

lated from the data files A (solid 

curve) and B (dotted curve). 

Note that the values of D(O) and 

D(1) indicated by arrows on the 

ordinate and the abscissa corre- 

spond to the maximum and the 

tangential point with the diag- 

onal of the spectrum of dirnen- 

sions, respectivdy. 

Finally, we have evaluate(d the generalized Lyapunov exponents Ai together 

with the corresponding spectra of invariant dynamical scaling indices @(A)  using 

the algorithm developed by Stoop and Meier18. The Lyapunov characteristic expo- 

nents were estimated from the linearized dynamics constructed by a least-squares 

fit, based on a modified and improved version of the proposals put forward by 

Eckmann et all%nd Sano et a11G-20. As summarized in table 1, we detected three 

(four) relevant exponents from data file A (B) for embeddings of dimension from 

7 to 10 (8 to 11). In accordance with the gradually increasing dimensionality, 

the two chaotic states are further discriminated by a different number of positive 

Lyapunov exponents, determining mutually independent directions of stretching 

and folding-over of nearby trajectories in phase space and, thus, reflecting the 

order of c h a ~ s ' ~ - ~ ~ .  Adopting the terminology introduced by R 6 s ~ l e r ' , ~ ~ ,  the 
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first state is called "ordinary chaotic" (three-variable chaos defined by one posi- 

tive exponent), the higher-order analogue of the second state "hyperchaoticn (four 

-variable chaos defined by two positive exponents). The global spectral character- 

ization of these chaotic dynamics can be deduced from the scaling functions for 

the generalized Lyapunov e ~ p o n e n t s ~ ~ .  Their graphs in fig. 4 show the different 

dynamical complexity of the attractors. The spreading and the shifted position of 

the @(A) spectra are qualitatively seen in f (a). Again, the numerical values of the 

generalized entropies can be reproduced by the corresponding dynamical scaling 

functions14 . 

Fig.4 - Dynamical scaling func- 
tions of different chaotic attrac- 

tors calculated from the data files 
A (solid curve) and B (dotted 
curve). 

o A 1 

One conjecture that unifies probabilistic and dynamical properties of an at- 

tracting set is the Kaplan-Yorke relationshipZ4. 

Lyapunov spectrum the corresponding dimension 

Therefore, we derived from the 

I 7  

where j is defined by the condition that 

The results obtained for the two chaotic attractors are given in table 1. Compari- 

son between the Lyapunov dimension D and the information dimension D(l) cal- 

culated independently shows satisfactory agreement within experimental accuracy 
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of one standard deviation. A further conjecture predicts that the Kolmogorov- 

Sinai entropy K(1) corresponds to the lower bound of the sum of a11 positive 

Lyapunov e x p ~ n e n t s ' ~ ~ ~ ~ .  The apparent closeness of these quantities in our ex- 

periment (in contrast to other dynamical systems2') may indicate the manifesta- 

tion of near-quasiperiodic strange attractors that are governed by horseshoe-like 

diffeomorphisms (Newhouse-Ruelle-Takens t h e ~ r e m l - ~ ~ - ~ ' ) .  We suspect that the 

chaotic hierarchy inherent to the present semiconductor system is generated by 

weak nonlinear coupling of spatially localized oscillatory subsystems. Indeed, we 

have found that the evaluation of dimensions, entropies, Lyapunov exponents, 

and corresponding scaling functions for different local voltage drops V ,  along the 

sample yields nearly identical results - in accordance to earlier con j e~ tu re s '~~ '~ .  

Table 1 - Comparison of characteristic quantities for different chaotic states. The 

values of the entropies and the Lyapunov exponents are in units of the sampling 

rate. 

File A File B 

Fractal Dimensions D(0)  = 2.6 f 0.1 

D(l) = 2.5 f 0.1 

Entropies K(0) = 0.09 f 0.01 

K( l )  = 0.09 f 0.01 

Lyapunov Exponents X, = 0.095 f 0.005 

#Az = 0.003 f 0.005 

X3 = -0.72 f 0.02 

Lyapunov Dimensions D = 2.1 f 0.2 

5.  Conclusions 

An exemplary semiconductor system is shown to undergo different degrees 

of chaotic behavior. With the help of distinct numerical analysis procedures, 
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a self-consistent picture of the physical situation investigated is obtained. This 

picture fits well into the model of a multicomponent reaction-diffusion system, 

capable of generating a weak chaotic hierarchy of near-quasiperiodic strange at- 

tractors. From preliminary studies of coupled map lattices, one might speculate 

that a universal scaling law should be observed on the ladder towards higher chaos, 

analogous to that discovered by Feigenbaum and Grossmann for the successive, 

ever closer-spaced appearance of higher and higher periodic solutions ending in 

chaos. Moreover, it appears possible that some of the phase transitions in physics 

known to obey a scaling law in space have properties in common with the present 

deterministic spatio-temporal phenomenon. A first hint is probably given by a 

phase-transition-like behavior drawn from the probabilistic and dynamical scaling 

functions of the hyperchaotic stateZ8. 
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Resumo 

O comportamento não-linear do transporte de corrente durante o colapso de germanio 

intrínseco por ionização de impacto a baixas temperaturas engloba o desenvolvimento auto- 

sustentado de estruturas dissipativas tanto espacialmente filamentares quanto temporalmente os- 

cilatoriais ao semicondutor inicialmente homógêneo. Estudamos os fenômenos de colapso espaço- 

temporais cooperativos por métodos de caracterização tanto probabilisticos como dinâmicos. O 
acordo entre os resultados obtidos a partir dos diferentes conceitos numéricos dá  um quadro auto- 
consistente da situasão fisica investigada. Em consequência, a hierarquia caótica obtida, de atra- 

tores estranhos generalbados do tipo ferradura, pode ser atribuída ao acoplamento não-linear fraco 
entre centros localizados de oscilação , intrínsecos do semi-condutor, e mutuamente competitivos. 


