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Abstract  The Nonequilibrium Statistical Operator Method and its accompanying non-
linear quantum transport theory, described in Rev, Brasil. Fis. 15, 106(1985); ibid 16,
495 (1986), are used to perform an analytical study of the ultrafast mobility transient of
central-valley photoinjected carriers in direct-gap polar semiconductors. Expressions for
the time-resolved mobility of the hot carriers submitted to genera conditions of photoex-
citation and electric field intensity are derived. Numerical results for the case of low to
moderately high fields are shown, and a qualitative comparisor with available experiments
isdone. It is shown that the mobility transient displays a structure composed of a maxi-
mum and a minimum before attaining the steady state. The characteristics of this structure
depend on the degree of photoexcitation and electric field intensity. A brief discussion of
the carriers' diffusion coefficient is done.

1. Introduction

Studies o the optical and transport properties d semiconductors under high
levelsdf excitation have shown novel and quite interesting features, evidenced in
ultrafast laser spectroscopy experiments. Notable improvements in time resolved
laser spectroscopy have made it a very useful tool to be used with confidence
for the investigation of very rapid microscopic mechanisms in the biological and
physical realms'. These kind df studies are of great interest because of the vari-
ety of phenomena observed, most o them of relevance in the functioning of some
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semiconductor devices, and also because they provide an excellent testing ground
for theoretical ideas in the field of many-body systems far from equilibrium. The
question of very fast relaxatiori processesin highly photoexcited plasma in semi-
conductors (HEPS) was recently the object of experimental and theoretical study
(seelist o references 1). We analyzed the question of relaxation of photoinjected
carriersin direct-gap polar seniiconductors resorting to the nonequilibrium statis-
tical operator method (NSOM)?. The NSOM is a powerful formalism that seems
to offer an elegant and concise valuable analytical treatment in the theory of irre-
versible processes, adequate ta deal with a large class of experimental situations.
It isconsidered a far reaching generalization of the Chapman-Enskog approach in
the kinetic theory of gases® or of the Mori-Langevin formalism’, and we useit to
calculate the mobility of far-from-equilibirum carriers in HEPS".

Several approachesto hot-carriers quantum transport are presently available,
and numerical methods, such as the Monte Carlo computational approach, have
shown recent remarkable improvements®. However, analytical methods for study-
ing the nonlinear transport in HEPS under the action o intense electric fieldsare
highly desirable in order to obtain a better physical insight and for the interpre-
tation of new phenomena. In particular, the NSOM allows us to study nonlinear
ultrafast transient transport in HEPS arbitrarily away from equilibrium and for
any value of the electric field intensity. The generalized nonlinear quantum trans-
port theory derived from the NSOM is reviewed in the work o ref.7, where we
applied it to construct an extensive treatement of mobility in HEPS. As shown
in that work we can demonstrate the existence o a novel feature in the evolution
curves d the drift velocity which we termed structured ultrafast transport, viz.
maxima- relative or absolute (overshoot) - and minima that may appear before a
steady-state is reached. A criterion for the occurrence of this structure, and also
overshoot effects, was derived and several general properties stated.

In this article we present a complete study o the ultrafast mobility transient
o photoinjected carriers in HEPS in the so-called linear NSOM-linear theory of

relaxation, and numerical calculations appropriate for the case d GaAs are done.
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We confirm numerically the general qualitative resultsreported inref. 7, in partic-
ular, thecriterionfor the existence o structured transient transport isverified, and
further we show that there exist three differentregimesin the transient transport
depending on the range of values o the electric field intensity.

2. Nonlinear quantum transport in HEPS

We consider the case of a polar semiconductor described by a two inverted-
parabolic bands model, where a concentration n of electron-hole pairs has been
created by an intense pulse of laser light. These carriers are in a state strongly
departed from equilibrium but in a condition o internal equilibrium (hot carriers)
as a result of the Coulomb interaction®®. A constant electric field of intensity
¢ in, say, that x-direction is applied, accelerating these carriers, which, at the
same time, transfer energy and momentum to the phonon field. The sample is in
contact with a thermal reservoir at temperature T, , and the phonons are warmed
up in scattering events involving Frélich, deformation potential, and piezoelectric
interactions with the carriers®.

To deal with the irreversible thermodynamic evolution and transport prop-
erties of this system we resort, as indicated in the Introduction, to the NSOM.
We recall that the NSOM requires, as a first step, the choice of a basic set of
variables to describe the macrostate of the nonequilibrium system*:°. For the
present case we select the eight dynamical quantities P;, 7 =1,2,...,8, consisting
of: thecarriers, longitudinal optical (L), transverseoptical (TO), and acoustic (A)
phonon Hamiltonians (H,, H. o, Hro , Ha , respectively), the number operators for
electrons ¥,, and for holes, N,, and the linear momenta (its component in the
direction o the electric field) of electrons, P,,. and of holes, P,. The nonequi-
librium macroscopic variables, i.e. the average values of these eight dynamical
quantities over the nonequilibrium ensemble. Q, (t) = Tr(P; p(t)), are - after di-
viding by the volume o the system - the densities of the corresponding energies,
E.(1), ELo (1), Ero(t), E4(t), the density of pairs, n(t) (equal to the density of
electrons and o holes), and the density o linear momenta, =, (t), and =, (t) Fur-

ther, there are eight intensive nonequilibrium variables, F; (t), thermodynamically
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conjugate to the @, (t), that define the four reciprocal quasi-temperatura g. (t) =
1/k T (t), Bro(t) = 1/kT; o (), Bro(t) = 1/k Tz, (t), Ba(t) = 1/k T; (¢), two
are associated to quasi-chemical potentials, —f. (t) u. (t),~8. (1) ps (t), and, finally,
two are associated do drift velocities, - 8. (t) v, (t), —8. (t) v, (1).

Among the different approaches in the NSOM-theory*” we resort here to the
useof Zubarev's method'®. Zubarev's NSO for the isolated system composed of the
sample, the thermal reservoir, and the source o the electric field is approximated
by

Pror.(t) =p, ® p.(t) , (1)

where p. isthe statistical operator o the reservoir and source, which is assumed to
remain in astationary state, i.e. practically unchanged by the interaction with the
open system defined by the nanequilibrium semiconductor sample, whose NSO is

Pe (t)exp{ - / Y dpre [¢(t +¢y+ ij Fi(t+t') P (1)] } (2)

j=1
with € going to zero after the trace operation in the calculation of averages has

been performed. It can be rewritten*’

p(t) = p(t,0) +4'(2) (3)
where
pltr,ta) = exp { — 8(t:) = Y. F(t)Pi(ta) } (4)

isan auxiliary statistical operator that definesthe instantaneous average values

Q;()Tr{P; p.(t)} = Te{P; £, (t,0)} (8)

and p'(t) contains the information on the dynamics relevant to the description
o the irreversible evolution of the system. Eq.(5) determines the nonequilibrium
thermodynamic parameters #; (t), making them conjugate to macrovariables @, (t)

in the sense of generalized irreversible thermodynamics®!¢.
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Eq. (2) defines the operation of selecting the subgroup o retarded solu-
tions of the Liouvilleequation corresponding to the initial value problem p. (to) =
Peg(to) (fo = —o0). Thisis guaranteed by the presence of an infinitesimal source

in the equation for p, (t)

1
ih

where H is the total Hamiltonian of the system*!®. Hence, irreversibility is as-

%lnpe(t) + = [Inp.(t), H] = —€[lnp.(t) — Inp.4(2,0)] (6)

sociated to this symmetry breaking and the average of any physical quantity A is
defined by a quasi-average in Bogoliubov's sense™*

< At >= rli_moTr{Ape (t)} (7)

Invariance under time-reversal transformations is not satisfied for these quasi-
averages because d the removal o the corresponding degeneracy in eg. (6); this
is equivalent to introducing Prigogine’s dynamic condition for dissipativity!2.
Further, the total Hamiltonian H is separated in the foom H = H + ot
H' + H,, where H, contains the energy operators o each individual subsystem,
ie. Ho=H, + H,o + Hyo T H,. Theinteraction between them and with the
external reservoirsareincluded in H', i.e. it iscomposed of theinteraction energies
o carriers with the phonon field, anharmonic interaction between phonons, and
the interaction with the thermal reservoir (responsiblefor heat diffusionout of the

sample). Finaly, the interaction o the carriers with the electric field is

I{e = —ef Z(Ie]‘ - z;._-,') (8)

where z.)y is the coordinate of the j-th electron (hole).

For the given choice df the basicset of dynamical variables wefind [P;, Hy] =0
and [P,',Pk] = 0, and the Coulomb interaction between carriers, contained in H,,
istreated in the random phase approximation'?, i.e. the carriers areconsidered as
a two-component Landau’s Fermi fluid. Coulomb interaction is only called forth

indirectly to ensure the internal thermalization of carriers at any time®. We recall
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that the conduction and (heavy hol€) valence Bloch bands are taken in the effective
mass approximation.

Using these results, the evolution equations for macrovariables Q;(t), j =
1,2,..,8,ie.,

d
dt
can be written in the NSOM-linear theory of relaxation (LTR)7** in theform

@) = ?lﬁTr{[{’,,Ho tH Tt H (0} (9)

d i 2
F@O=7"0TI70 , (10)

with the collision operator J given for this case by’

IO = T { [P He s (60)} (110)

1= (L) /w dt exp(et)Te{[H'(#), [H', P]]pos (1,00} . (110)

Although the LTR truncates, to second order in H', the seriesd collision operators
containing averages over the coarse-grained ensemble o terms o increasing order
in the interaction strengths, egs. (9) are highly nonlinear differential equations.
The right-hand sides o them are functionals of the intensive variables F;, and
then it is convenient to rewrite the left-hand side in terms o the latter, which can

be accomplished noting that

t
L0, 5’}3—&0——2%(& ZRO (12)

where C;;, (t) are the elements o the correlation matrix,

Cix(t) = Tr{ P;(t) AP (t)p., (1)} = (P;; Fi|t) (13)
with AP(t) = P- < P|t > .
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We are now in a condition to calculate the generalized transport equations
for the basic set of macrovariables, which are

1 d< Hclt > n
v Z C<Pt> - Z E @), (14a)
L % S
1 d<Hpolt>
v LOI ZE; 1o(t) = Eroan(t) , (14b)
1 d< Hrolt>
:. TO| = ZEL ro®) = Eroan(t) , (14¢)

1 d<HAC[t>

v’ ZE‘ acl +ELo an(t)

+ ETO,AN t) - EAC.DIF () (14d)

1 d<P,t> L
7'—dt|—:ne€_Zr"'"(t) . (14e, f)

n.4

where we took the modulus o the linear momentum in the direction of the electric
fidld. The two equations for the average number of electrons and holes are not
considered since, for our purposes here, they are constant because recombination
effects are relevant in a near nonosecond time scale while our interest isin the few
psicoseconds’ time scale.

In eq.(14a) thefirst term on the right-hand side accounts for the energy trans-
fer from the electric field, the second is the rate of variation due to the carrier-
phonon interaction having the contributions

X
B

Efx,n (t) = "{ ' Zhwﬁ,n ' IM:m (é)lz : {Vf.n (t) : E,a(t) : [1 - f;_w-ya(t)]'—

— 14 @] feyra @ - [1=Fe . )]} - 8(egy 50 — €0 — Py (15)
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wheretheindex nisLO, TO, or A, and the upper index i refersto the different
types o interactions, PD,PZ and FR for deformation potential, piezoelectric,
and Fréhlich interactions respectively. Further,

Ve (t) = 1/ {exp [B, (t)hws, ] — 1} (16)

are the distribution functions for n-type phonons, and w,,, the corresponding fre-

quency dispersion relations, and

() = [4n* 1/ (2mm, )2/2) 8272 (t) exp { - B (V[hE — ma . (2))* /2ma} (17)

are the carriers' distribution functions; at the high excitation levels being consid-
ered we can use the above instantaneous Maxwell-Boltzmann distribution, which
contains a shift term in the exponential due to the presence of the electric field.

In egs. (14 b,c, and d) the first term on the right-hand side accounts for the
energy transfer from the carriers to the phonon (it is equal to the corresponding
term in eq.(14a) with a change o sign). The second term in egs.{14b and c),
E;o(r0)an' is therate of energy transfer to the acoustic phonons viaanharmonic
interactions, and is written in the form

(18)

; v, LO(TO) (t) —vs §,LO(TO) (t,Bac)
Ero(roy.an (t) = E :f“’-’q- LO(TO) ;
LO(T0)

where
Vgro(ro)(tBac) = l/{exp [Bac ®)hwsporo)] — 13 (19)

and 7,0 (r o) is a phenomenological relaxation time, to be evaluated from Raman
scattering linewidths. The same term with a change of sign appears in eq. (14d).
The last term in eg. {14d) is the rate d change o the A-phonons energy due to

heat diffuson to the thermal reservoir, and we write for it

EAG.D!F }_4 hw- Va'Ac(t) — Vg, ac (ﬂB )] (20)
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where

Vgac(Bs) =1/{exp [Bp - hwgac] — 1} (21)

Bs isthe reciprocal temperature o the reservoir, and 74¢ is a phenomenological
relaxation time which depends on the diffusion coefficient and the dimensions o
the surface of the active volume of the crystal®s.

Finaly, inegs. (14eand f) thefirst term on theright-hand side isa drift force
due to the action of the electric field. The second term contributes to the rate of

variation d the momentum as a result o collisionswith phonons, and is given by

o 0) = 2 3 e M2 @F - (v () fan ) [1 = Jiy 1 0)] -

3

- [1 + u,,-_,,(t)] Sirgalt): [1 - f;va(t)] } 6(€ssga — €Ga — MWgq)t

+ 2 b ML @ {[ren @ +1] 1.0 [1- g 0]

%3

Vi@ i ga® [1= fea®]} - 0(6 g0 — g0 H o) (22)

Eatl

kot

where ¢. isthe modulus o the component o ¢'in the direction of the electric field.

Next we take Einstein's model for the optical phonons (with dispersionless
frequencies w0 and wr,) and a Debye model for acoustic phonons (w4 ¢ (q) =
sq, with triple degeneracy; s is the velocity of sound). Next, performing the

integrations in reciprocal space, i.e. the summation over K and g, we obtain

E:,ic (t) = AZ5c (t) exp [ - Z, (t)] {M(3,3/2, Ty (t))+

+ {3y., (t) - Eﬂ%] - M(2,3/2,z,(t))—

3m yi/? (t)M(5/2,3/2,z, (t)) —tl? 32 (t).exp (xa (t))—

- 3¥e O -3V ()] - M(L3/2,2. )} (23)
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BP2 o (6) = AL o () exp [ - 2 (0] { M (2,3/2,2. () +

+ [ya (t) - —ﬂ%cc—%] - M(1,3/2,2,(t)-
— 7202 (1) exp 2. (t)]} (24)

where

5/2
97/2 ma/ Efa)ﬁ—:i/Z

AR ) = Oaon( T e )05 ) (25)

3/2
mS/ eH},

_ 21/2 —1/2
A75c(t) =04 cn( g ) B (t) (26)
2at) = e () mas2(0) (270
Ya (t) = Bo(t) %ma st (270)

E,, isthedeformation potential coupling constant, &, the piezo-electricpotential
coupling constant, €, the static dielectric constant, p the density of the material,
6, = 3 is the degeneracy o the acoustic modes, and M(a,b,z) are Kummer

functions'®; also

ELR (1) = ALE  (t)exp [ — 20 (t) — za(t)]:

221 2 . 210 (t) - 2a ()]
'ZE(MH)!'[ -1 ]{[””Lo(t)]'

ex; [ ——21,0 @]+ 1/2)-
U(et1/2,0 F 222,56 (1) — vio(t)exp [0 (8)]T(€ T LT 1/2)-

e tety2E+22:,0)) (28)
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E:,io (t) = A:Iz),o (t) exp [ —~20(t) ~ Za (t)]

;:: [23 'z[‘o(t)z" (t)] . {[1 + VLo(t)] exp [‘— ZLO(t)] : I‘(3/2)'

(2¢+1)!

U(3/2,8+ 3;22.0(t)) — Vo (t) exp |20 ®)]T (e +3/2)-

-U(£+3/2,£+3;2zL0(t))} (29)
where
vio(t) =1/ exp [Bro ()hwro] — 1}, (30)
ATt = 0wn(72r—j%’;) (hwzo )82 (1) (31)
3/2 1

Aap,lz),o = 01,0’1(1;%:;—01) (hwz,o)2 Z/z (t) » (32)
Lo(t) =B (t)hwro /2 | (33)

E,, isFrohlich fidd, D, o, is LO-phonon deformation potential interaction,f,0 =
1 isthe degeneracy of LO phonons, T'(a) are gamma functions, and Ufe, b, 2} are

confluent hyper geometric functions'®, and

EPD, = sameas -EL2, with exchange LO — TO (34)
and 0y, = 2.
Further,
. 1 -~
Ero@royan(t) = Vv hwroTis [Veoro) (t) = Vio(ro) (tBac)] » (35)
cell
, 1 1 1
B RO S [ - _] (36)
ac,an () Voo A€ Bac(t) Bs ?

whereV,,, isthe unit cell volume.
The different contributionsto the equationsdof evolution for the linear mo-
mentum are
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e, AC (t) = Bpgc (t)v (t) exp { T, (t)] { [1 —6Y4c.a (t)]M(3:5/2, Ta (t))+

+2m Y2 (0)[Bec (/B (0] M(1)2,5/2,2.(0) +..}  (37)

Taac(t) = Bl 4 ()va(t) exp [ — 2c ()] {[1 - 2ua0.4 (£)] M(2,5/2, 7. (£)) +

Va6, (1) [Bac (8)/Be (1)) exp [zo (2)] } (38)

where

23/2m5/2 l_2 )ﬁcl/z(t)

B:D )y =46
o= taon (e ) 2

21/2m2/262H,2,z ) 8- 1/2 (t)

BZZ,(t)=0,cn
ac(t) Ac( 3rh’s2e?p Bac(t) ’

Yac,a (t) = fac (t)%mu - 8% (41)

Also,

faio(t) = BILo ()22 (t) exp [~ 2200 (¢) - 2a (1)]

- 23¢ 98¢ )
S { [y~ gl 0o 0
{I‘(Z +1/2) [(1 + Lo @)U(3/2,€ + 2322, 5 (t))+

N (e+ 1/2), £+ %220 (1)) +

+Z 22,_ i (1 V20 (T +1/2)U(E +1/2,8+ 12220 (1)~

~ Vo (P + /UL + € ~1/2,0+ 522, 1)] | (42)
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Ta, T 2o(t) = B:lZo( )z /* (t) exp [" "ca(t)]

[{ [1 + ;L—i(it)] + exp [ — 220 (t)) [1 _ u:it()t)] }
{i[ 2e2j:1)' 22; ][ (t)zw(t)]‘s—-'z-:LTolg—)U(s/z,e+4;2zw(t))}+
+ {{1 VLOt()t ] + exp { ZZLo(t)] [1 ~ :Vi%j]}

(

{ i [ (2¢ +t1 Z;; ] [2a (t)220 (t)]° [U(s/z,e +2;22,0 () +

=0

43
+(1- 2e+1) (3/2,6+3; 2zLo()]}] (43)

where _
BI2,(t) =bi0n ( 22 Vhwsso Bo(t) (44)

m?2 E?
B 2o(t)=00n (%z‘;‘f‘p)(h%o)sn vio(t) Be () (45)
_ 1/{exp [Bo0)-huol =1} . (46)
and finally,

#F %, = sameas 7. %, with theexchange LO < TO , (47)
7P 2, = sameas .5, with the exchange LO & TO , (48)

The lef-hand sides of egs.(14) areexpressed in termsof the intensive variables,
i.e. quasi-temperaturesand drift velocities, using the relations

= Z f,;',,,f,;‘¢z {t), (49q)
Za Az Ve (t) 5 (490)
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% <Bt>=nm,y, (t). (49¢)

So far we have obtained a complete derivation o the equations that govern
the evolution of the basic set of'variables that describe the macrostate of the pho-
toinjected HEPS in a constant electric field. They are valid for any intensity of
the electric field strength but relaxation effects due to collision with phonons have
been treated in the NSOM-linear theory o relaxation. The collision operators are
expressed in terms of series o Kummer and confluent hypergeometric functions,
and thus are of a rather difficult numerical manipulation. To simplify these ex-
pressionswe restrict the calculations to the case of low to moderately high electric
fields assuming that the carrier drift energy is smaller or at most comparable with

the thermal energy, i.e.

B.(t)ymvi(t)/2 51 . (50)

In these conditionsthe series in egs.(21, 23, 28, 29, and 34) can be rearranged

in the form of a dominant term plus corrections. We retain only the main terms

to obtain
BIZo () = T30 01~ 220 (51)
BLGo() = AT%o01- 720 (52

s R _ 4hwro \1/2 _ ULo(t) 1/2
Ea,LO(t) =nfLo eEOa( - ) [1 —V(t) }zLO (t)

exp [ —ZLo (t)] Ko (210(t)) , (53)

ax

; 2m; hw vpo(t)
Ef,fo(t)=n0LoDi'Lo(7%_*};_o)[l“ gl EAe0

exp [ — 210 (8)] K1 (20 (t)) (54)

380



On nonequilibrium many-body systems V: ultrafast...

EFD, (t)=sameas EF2 (t) exchanging LO < TO , (55)

for the terms associated with energy relaxation (we used also that 8, ¢ hsg << 1),

and for the terms associated with momentum relaxation we find.

irf,ﬁc (t) = B:.ﬁc (t)va (t) s (56)
i ho(t) = Blhic(va(t) (57)
".r:.i c (t) =0L0nMaa (t) Va (t) s (58)
D 22 m* B2, 3 3/2
#2 () = 0Lon(w>(hwbo) vio ()83 () explzz o (t)va (2)-

crat (()t))+exp( 22,0 (8) (1 - 70 )| Ko (20 (1)~

[(1- 25 - exp(zeo () (1= 20 | Ko )} o (69)

Lot vio(t)

b 2o (1) = sameas 752 , (t)exchanging LO & TO (60)

where

Ve (t) 'YanLo eXP[ZLO(t)]VLO(t)

{[(|+_L>' +exp ~22.0(t )(l—y:;t()t))]Kx(zLo(t))“
(1 20— exp(~2200 () (1 - (zt))]Ko(zLo(t))}, (61)

— Vro (’t) VLo

with
v(t) = 1/ [exp(Bc () hwo — 1] (62)
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oo = (2B [3) (1 20me B ) T (53

and K, (z) are Bessdl functions of the second kind*®.

Simple mathematical manipulations alow usto put eq. (61) in theform given
by Conwell’ but with the instantaneous values o T.(t) and T, (1).

Next, we assume that Frélich interaction predominantes over all other carrier-
phonon interactions, and, since in the very early stages of relaxation after finaliza-
tion o the laser pulse there is practicaly no heating of A phonons, we take T4 ¢
equal to thereservoir temperature. Hence, the original set o six generalized trans-
port equations reduceto four equations once thosefor the A- and TO-phonons' rate

of energy variation are dropped. Using egs. (49) they take the form

dfc B (t o« -FR *PD F R
-er - _v_céQ v zn—yr;,m () - EES, (1) - EaZo(t)y ,  (64a)

o

dfLo (2) _ 2V.en
dt (tho)2

[1 —cosh (ﬂLo (t)tho )] { Z E.:,Izz,o (t) _ELO,AN (t)} (64b)

dv,
5t = (6/ma)E =7, () (0) . (64¢)

Eq. (64c) is a Newton-Langevin-type equation with 7, (t) playing the role
of the reciprocal o an instantaneous momentum relaxation time. Formally, egs.
(64c,d) are o the sameform o egs.(42) inref. 7, but 7, in the latter depends on
a supercorrelation function (eq.(43) in 7), afunctional, with a highly complicated
dependence, on all the nonequilibrium variables, including the drift velocities.
Differently, 7, (t) o egs.(64¢,d), calculated in the NSOM-linear theory of relax-
ation, dependsonly on T (t) and Ty o (), but it isindependent o v, (t). Thus, egs.
{64c,d) arefirst order linear differential equationsfor each drift velocity, possessing

the solutions

va (t) = (¢/ma)Eralt) (65)
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where

ro(t) = exp(-9(0) [ ot eplv(t) (66)

balt) = /o Cdt () (67)

and we have taken the initial condition v, (0) = 0.
Defining the currents I, (t) = név, (t) and using eg. (65) we obtain a Drude-
type conductivity

0o (t) = (n€? /my)7a(t) (68)

with an instantaneous transport relaxation time depending on time through the
quasi-temperatures T, (t) and T}, (t), and then varying in timewith the irreversible
evolution of the macrostate o the system.

The results obtained in the work of ref. 7 are easily reverified: at extremal
points of v, (t), at, say, t =t,, we obtain from egs.(65) and (66) that

dv,
S| = (e/ma)el )@ =0, (69)
and so extremal values of the drift velocities should appear whenever, during
their transient, there occurs a crossover of the evolution curvesfor the momentum
relaxation time and transport relaxation time. Such extremum is a maximum or

aminimum if the second time derivative at ¢,

dv dy 2 d,
= - —= = Vg (2 i) — 3 70
| = em) e ) G| =) | (10
is negative or positive respectively. Further,
-1 -1 -1
d’Ya — a’Ya ] a,y . dTLO , (71)
dt t, 612 T, aTLO dt ty

and, since the last term is expected to be much smaller than the first? neglecting
it we find that on cooling (dT./dt < 0) a maximum occurs if 8y~ */dT, > O,

and a minimum for 8y~ /8T, < 0. Once 7(t) begins at zero and increases, the
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first extremum, if it occurs, is a maximum, and thus a transient with structure
(a maximum and a minimum) should follow if on cooling 4~ passes through
a minimum. It ought to be emphasized that this characteristic of the mobility
transient remains valid for the quite general case o any intensity o the electric
field strength and large relaxation effects, as shown in ref. 7. We recall that the
expression for «(t) given by eq. (61) is valid for low to moderately high fields
and the NSOM-linear theory o relaxation. Other properties of this structured
mobility are given in ref. 7; we call the reader’s attention to the fact that the
maximum is an overshoot if the momentum relaxation time at ¢, is larger than
~4~* in the steady state.

We have drawn in fig. 1 the curves for the reciprocal d the momentum
relaxation time dependent on the carriers' quasi-temperaturefor several values of
the LO-phonon quasi temperature. There, 8, = kw, /k is Einstein’s temperature,
and ~, is normalized in ternis o the v,, o eg. (63). The existence can be seen
o amaximum o 7 (minimumof the momentum relaxation time 4~} for a quasi-
temperature T¢* = 24,, with a negative slope (or alternatively dv~* /dT, > Q) for
T..>T:* and a positive slope (or dy~*/dT, < 0) for T, < T¢*; also dv/dTy, is
smooth.

Next, we apply these results to a specific case to obtain numerical solutions.

3. Structured mobility in GaAs

Consider a sample o GaAs illuminated by an intense pulse of laser light.
To fix initial conditions we take as an example the case of the experiment o
Shank et al.!” which are already used to study relaxation phenomena in HEPS?.
A very short laser pulse of 0.25 psec produces a density o photoinjected carries
n=2X10%cm™3, having an excess kinetic energy of roughly 2.4 eV, and in contact
with a thermal reservoir at 300 K. Immediately after the pulse the initial quasi-
temperature-of carriers is, roughly, 6700 K, and Ty, ~ 303 K, T,y ~ T, = 300K2.
We have also used relaxation timesfor anharmonic processesof 10 psec and a heat

diffusionrelaxation time of 1 nsec.
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RECIPROCAL OF THE MOMENTUM
RELAXATION TIME (Normalized)

Q
s
&
. I ! U o5 Q‘?‘o

T/ ——»

CARRIER QUASI-TEMPERATURE

Fig.1 - Dependence of the reciprocalof the momentum relaxation time with the car-
rier quasi-temperature for several values of the LO-phonons quasi-temperature. The
normalization factors are indicated in the main text.

The coupled set o integro-differential equations, eqs.(64), issolved using stan-
dard computational techniques. Our results are displayed in the accompanying
figures. Fg. 2 showsthe timeevolution o the carriers' quasi-temperature for sev-
eral values of the electric field. It can be noted that for £ £ 4 kV/cm the carriers
cool down to asteady state in times shorter than 5 psec. For 4 < £ £ 94 kV/cm
the carriers cool down at adower pace, and the steady statefollowsin timesfrom
5 psec to more than 30 psec. For £ 2 9.4 kV/cm the steady state follows after
times o more than 30 psec, and the steady-state quasi-temperature is larger than
theinitial one. Thisisa result of the fact that Joule heating effects overcomethe
energy relaxation ot the phonon field. It is expected to occur starting at a value

o thefied intensity such that (cf. eq. (142)),
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CARRIER QUAS! - TEMPERATURE (K)

Th

ne’€? (= + ) ~ BFE, 4 BLE, (72)

m, my

electric field intensity.

T T 1 T T I
— 30Kv/em — 16 KV/em
/________———— 12KV/cm
10KV /em
// 9.5KV/em
= 9KV/cm
B8KV/cm
6 KVv/em
2KV/em
I 1 | 1 | 1
5 10 15 20 25 30

TIME (ps)

Fig.2 - Evolution of the carriers quasi-temperaturefor several values of the

Fig. 3 shows the evolution o the LO-phonons quasi-temperature. One can

notean increasein Ty o of less than 10% of the reservoir temperature (300K), and
the fact that for fields larger than, roughly, 9.4 kV/cm, one finds smaller values of

T. o with increasing fields.
Fig. 4 shows the evolution o the electron-drift velocity (almost identical

curves are obtained for holes except that the ordinate scale must be reduced by a
factor of, roughly, 15). Fig. 5 provides the evolution o the momentum relaxation

time and transport relaxation time, and in fig. 6 we find the dependence of the
stationary drift velocity with the electric fied intensity.
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Fig.3- Evolution of the L O-phonon quasi-temperature for several values of the electric

field intensity.
Inspection of these curvestells usthat the ultrafast mobility of hot carriersin

the central valley o GaAs (and expected to be valid for HEPS in general) shows
three well defined regimes.

i) A structured mobility with a relative maximum (no overshoot) and a min-
imum at low electric field intensities (in our case ¢ £ 4 kV/cm), with the
mobility in the steady state following a near Ohmic law,

ii) A structured mobility with an absolute maximum (overshoot) and a minimum,
at low to intermediate electric field (4 < & £ 94 kV/cm), and non-Ohmic
behavior in the stationary state,
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Fig.4 - Evolution of the electron drift velocity for for several values of the electric field

intensity.

iii) Normal behavior, i.e. a monotonic increase o the mobility towards its sta-

tionary value, and a near Ohmic dependence o the latter.

Fig. 5 confirmes the stated criterion that maxima (minima) appears when
there occurs a crossover of the evolution curves of 7(t) and v~ (¢}, and the latter
is decreasing (increasing) at that point.

Fig. 7 shows the dependence with the electric fidld of the carriers’ quasi-
temperature in the steady state, and fig. 8 that of theelectron transport relaxation
time (observe that it coincideswith the momentum relaxation time in the steady-
state).

The differential stationary conductivity is,

04t (E) =neZi {E (T_e + T_’*H _

d& m, my,

388



On nonequiltbrium many-body systems V: ultrafast...

RELAXATION TIMES ( picoseconds)

1.5 —
1.0
10 KV/em
1.5
LI I R
2 4
9KV/em
| !
4 6 8
6Kv/em
1.5 -
| | | | J
03 2 4 6 8 10
N //
1.0 - /
N\ 2 Kv/cm
/
/
/
0.5 | ] | | |
2 4 6 8 10
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of the electric field intensity.

T Th
=ne* (—e— + —
m, m,

2 Opryde T (nezg) : (

) + (nezf)%(

1 o~

m, 0T,

Te Th

m. mh> -
1 afy;l)ch
m, 90T, / d&

(73)

Hence, eq. (73) together with fig. 8 indicates that at fields & < 9kV/cm, 04;¢

is smaller than Drude conductivity, a very steep increase follows in the interval

9% E £9.4%kV/em, and 045 becomes larger than Drude’s value.
Fig. 9 shows the dependence of the height of the maximum and the depth of

389



Valder N Freire et al

20

- REGIME (SEE TEXT)

(i) tie) (i)

P

| !
(R WU N DUV S (S WO HE TS TR M
2 4 6 8 10 12 14
FIELD INTENSITY ({(KV/cm)

ELECTRON DRIFT VELOCITY (x10Tcm/s)

Fig.6 - Dependence of the drift velocity in the steady state with the the electric fidd

intensity.

the minimum, relative to the stationary value (positive values of the first corre-
spond to overshoot). Fig. 10 shows the temporal length of both kind of extrema,
at half height, and fig. 11 shows the temporal localization of both maximum and
minimum. One observes an (almost linear) increase of the overshoot with elec-
tric field intensity for 4 £ ¢ < 9.4 kV/em, and the disappearance of it at this last
value when the system is entering regime (iii). For E ~ 8 kV/cm the overshoot
is, roughly, 25% of the velocity in the stationary state. The temporal length of

the overshoot also increase with the electric field intensity, but its peak value is
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Fig.7 - Dependence of the carrier quasi-temperaturein the steady state with the electric

fidd intensity.

present with almost the same delay time of, roughly, 1 psec (cf. fig. 11).

We haveanalyzed theeffectof theinitial conditionson thestructured mobility
transient. Fig. 12 shows the evolution of the electron drift velocity for & = 6
kV/cm, and different valuesd theinitia carrier quasi-temperature (i.e. increasing
values of the laser frequency). At low energy transfer it follows normal behavior;
with increasing energy transfer a structured mobility begins to appear, becoming
more and more evident leading, at high energy transfer, to the appearance o an
increasingly more pronounced overshoot. This is the result of the fact that the
minimum of 4~ ! is at near 28,, i.e. ~ 920 K in GaAs; then, for 7.(0) = 700

K the carrier system evolveswithout v~* passing through such minimum and no
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Fig.8 - Dependence of the electron drift velocity in the steady state with the electric

field intensity.
structure can be produced. The subsequent values o T (0) correspond to initial
values d 4~ ! that allow it to pass through its minimum while the carriers cool
down and structure appears. With increasing values of T (0), the initial value of
4~ is up and up on the positive-slope side of the curve v~* vs T,. Since the
stationary value of the drift velocity is the same in all cases (independs o the
initial conditions and being fixed only by the value o £, for a certain vaue o
T.(0) the maximum becomes an overshoot, with increasing heigth with increasing
T.(0).

Finaly, we note that the existence of an instantaneous transport relaxation
time allows to write an instantaneous Einstein relation linking it to an instanta-

neous diffusion coefficient,
D, (t) = (KT (t) /ma)7a (t) - (74)
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Because d the rapid decay o the carrier quasi-temperature in the early stages o
relaxation, the structure in the transient of D(t) is washed out, as shown in fig

13, but a very pronounced diffusion overshoot is present.

4. Conclusions

We have presented a detailed analytical study of the ultrafast mobility tran-
sient of initially far-from-equilibriurn carriers in highly photoexcited plasma in
polar semiconductors (HEPS). For that purpose we resorted to the powerful non-
linear quantum transport theory derived from the nonequilibrium statistical oper-

ator method (NSOM) in Zubarev’s approach. A coupled set of nonlinear integro-
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taken at the value of the drift velocity in the steady state.

differential generalized transport equationsfor a basic set o nonequilibrium ther-
modynamic variables, deemed appropriate for the description d the macroscopic
state o the HEPS, was derivecl. Two o these equations are thosefor the carriers
drift velocity (or mobility). The generalized collision operators were calculated in
the NSOM-linear theory o relaxation.

We recover in this approximation the prediction that”, depending on how it
proceedstheirreversible evolution o the nonequilibrium macrostate o the system,
maxima and minima may be observed during the ultrafast mobility transient o
the photoinjected carriers in the central valley d polar semiconductors. We called
this previously unreported effect structured mobility of hot carriers. A criterion

for this effectto be found is given in Section 2 which, as shown, basically depends
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after application of the electric field.

on the fact that the momentum relaxation time passes through a minimum value
while the HEPS evolvesfrom its initial nonequilibrium state to a stationary state
for fixed electric field intensity.

The expressionsfor the collision operators we obtained, however valid for any
intensity of theelectric field, are quite complicated and difficult to handle. To make
possiblerather accessiblemathematical manipulations, werestricted the numerical
analysis to the case of up to moderately high field intensities, when the kinetic
energy of drift of the carriers is smaller than their thermal energy. The coupled

set of basic nonlinear generalized transport equations was solved for a given initial
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Fig. 12 - Evolution o the electron drift velocity (normalized to its value in the steady
state) for an electric field of 6 kV/cm, and differentvalues of the level of photoexcitation,
characterized by the initial carrier quasi-temperatures.

condition, and the results presented in Section 2. We showed that there exist
three differentiated regimes in the ultrafast mobility transient dependent on the
field strength.

For a sufficiently intense electric fidd the carriers’ system keeps heating up
(or starts to cool down and next heats uvp)} so that the momentum relaxation
time does not attain its minimum and a structured mobility is excluded. Hence,
there exist a maximum value o the field above which the mobility only presents

normal evolution. This regime follows, on increasing field strength, from another
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one where structured mobility is present and the maximum is an overshoot. The
height of the overshoot diminishes With decreasing field intensity and there is a
tower Limit of this intensity below which this maximum s NO longer an overshoot.
{Cf. fig. 3). The regimewith overshoot s strongly correlated with the region
of values of electric field {ntensity for which the stationzry mobility is non-Ohmic
(€t fig. &)

Further, as shown by g. 12, and the ensuing dlscussion in Section 2, there

is a Jower level of photon laser energy for the phenomenon tO oceur, viz., the
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one that alows excess kinetic energy o the carriers to be high enough for the
macroscopic state of the system to allow, at the start, the momentum relaxation
time to decrease with decreasing temperature.

Experimental observation of ultrafast mobility in HEPS is scarce, and the
existing few reports are not detailed enough!®*°. |t may be mentioned that
there is a certain qualitative and semi-quantitative agreement with Hammond’s
measurements®? in that he reports a lower and upper limit for the field intensity
for overshoot to be observed. Also, it must be stressed that we have studied the
dependence o the mobility o nonequilibrium carriers in HEPS in a single valey.
However, the band structure of direct-gap polar semiconductors displays multi-
ple valeys, and therefore intervalley scattering o carriers needs be considered. It
could lead to additional structui-e at sufficiently high levelsdf excitation as a result
o thetransfer o carriersto higher energy valleys where they have larger effective
masses, but this effect seems to be smoothed out by carrier collision?®. Quite re-
cently, Liu et al.2* have applied Zubarev’s NSOM to the study o the steady state
o high-field electron transport in multi-valley semiconductors. The present paper

provides an extended discussion o the results reported in ref. 22.

This article is based on the Ph.D. Thesis of V.N. Freire, who at the time
was a Fundagdo de Amparo & Pesquisa do Estado de S&o Paulo (FAPESP) pre-
doctoral fellow. The other two authors (ARV and RL) are Conselho Nacional de

Desenvolvimento Cientifico e Tecnolégico (CNPq) research follows.
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Resumo

S&o usados 0 Método do Operador Estatistico de N&o Equilibrioe a teoriando-linear quintica

de transporte que tem associado, como descrito em Rev. Bras. Fis. 15, 106 (1985); ibid 18, 495
(1986), para realizar um estudo analitico da mobilidade transiente ultra-répida de portadores
fotoinjetados no vale central de um semicondutor polar de gap direto. Obtemos expressdes para
a mobilidade resolvida temporalmente destes portadores quentes quando submetidos a condicoes
gerais de fotoexcity&o eintensidade de campo elétrico. Resultados numéricos sao apresentados no
caso de campos fracos até moderadamente fortes, e umacomparagao qualitativa com experimentos
disponiveis é feita E mostrado que a mobilidade transiente apresenta uma estrutura composta
de um méximo e um mfnimo antes de ser atingido o estado estaciondrio. As caracteristicas desta
estrutura dependem do nivel de fotoexcity3o ¢ daintensidade do campo elétrico. £ apresentada
uma breve discussdo sobre o coeficiente de difusdo dos portadores.
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