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Abs t r ac t  The Nonequilibrium Statistical Operator Method and its accompanying non- 

linear quantum transport theory, described in Rev, Brasil. Fi. 15, 106 (1985); ibid 16, 
495 (1986), are used to perform an analytical study of the ultrafast mobility transient of 
central-valley photoinjected carriers in direct-gap polar semiconductors. Expressions for 

the time-resolved mobility of the hot carrien submitted to general conditions of photoex- 
citation and electric field intensity are derived. Numerical results for the case of low to 

moderately high fields are shown, and a qualitative comparison with available experiments 

is done. It is shown that the mobility transient displays a structure composed of a maxi- 
mum and a minimum before attaining the steady state. The characteristics of this structure 

depend on the degree of photoexcitation and electric field intensity. A brief discussion of 

the carriers' diffusion coefficient is done. 

1. Introduction 

Studies of the optical and transport properties of semiconductors under high 

levels of excitation have shown nove1 and quite interesting features, evidenced in 

ultrafast laser spectroscopy experiments. Notable improvements in time resolved 

laser spectroscopy have made it a very useful to01 to be used with confidence 

for the investigation of very rapid microscopic mechanisms in the biological and 

physical realms'. These kind of studies are of great interest because of the vari- 

ety of phenomena observed, most of them of relevante in the functioning of some 
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semiconductor devices, and also because they provide an excellent testing ground 

for theoretical idem in the field of many-body systems far from equilibrium. The 

question of very fast relaxatiori processes in highly photoexcited plasma in semi- 

conductors (HEPS) was recently the object of experimental and theoretical study 

(see list of referentes 1). We analyzed the question of relaxation of photoinjected 

carriers in direct-gap polar seniiconductors resorting to the nonequilibrium statis- 

tical operator method (NSOM)2. The NSOM is a powerful formalism that seems 

to offer an elegant and concise valuable analytical treatment in the theory of irre- 

versible processes, adequate ta  deal with a large class of experimental situations. 

It is considered a far reaching generalization of the Chapman-Enskog approach in 

the kinetic theory of gases3 or of the Mori-Langevin formalism', and we use it to 

calculate the mobility of far-from-equilibirum carriers in HEPS". 

Severa1 approaches to hot-carriers quantum transport are presently available, 

and numerical methods, such as the Monte Carlo computational approach, have 

shown recent remarkable improvements6. However, analytical methods for study- 

ing the nonlinear transport in HEPS under the action of intense electric fields are 

highly desirable in order to obtain a better physical insight and for the interpre- 

tation of new phenomena. In particular, the NSOM allows us to study nonlinear 

ultrafast transient transport in HEPS arbitrarily away from equilibrium and for 

any value of the electric field intensity. The generalized nonlinear quantum trans- 

port theory derived from the NSOM is reviewed in the work of ref.7, where we 

applied it to construct an extensive treatement of mobility in HEPS. As shown 

in that work we can demonstrate the existence of a nove1 feature in the evolution 

curves of the drift velocity which we termed structured ultrafast transport, viz. 

maxima - relative or absolute (overshoot) - and minima that may appear before a 

steady-state is reached. A criterion for the occurrence of this structure, and alço 

overshoot effects, was derived and severa1 general properties stated. 

In this article we presenf, a complete study of the ultrafast mobility transient 

of photoinjected carriers in HEPS in the so-called linear NSOM-linear theory of 

relaxation, and numerical calculations appropriate for the case of GaAs are done. 
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We confirm numerically the general qualitative results reported in ref. 7, in partic- 

ular, the criterion for the existence of structured transient transport is verified, and 

further we show that there exist three different regimes in the transient transport 

depending on the range of values of the electric field intensity. 

2. Nonlinear quantum transport in HEPS 

We consider the case of a polar semiconductor described by a two inverted- 

parabolic bands model, where a concentration n of electron-hole pairs has been 

created by an intense pulse of laser light. These carriers are in a state strongly 

departed from equilibrium but in a condition of interna1 equilibrium (hot carriers) 

as a result of the Coulomb interaction2v8. A constant electric field of intensity 

& in, say, that x-direction is applied, accelerating these carriers, which, at the 

same time, transfer energy and momentum to the phonon field. The sample is in 

contact with a thermal reservoir at temperature To, and the phonons are warmed 

up in scattering events involving Frolich, deformation potential, and piezoelectric 

interactions with the carriers9. 

To deal with the irreversible thermodynamic evolution and transport prop- 

erties of this system we resort, as indicated in the Introduction, to the NSOM. 

We recall that the NSOM requires, as a first step, the choice of a basic set of 

variables to describe the macrostate of the nonequilibrium ~ y s t e m ~ ' ~ .  For the 

present case we select the eight dynamical quantities Pj , j = 1,2, ..., 8, consisting 

of: the carriers, longitudinal optical (L), transverse optical (TO), and acoustic (A) 

phonon Hamiltonians (H,, HLO , HTO , HA , respectively), the number operators for 

electrons N,,  and for holes, Nh, and the linear momenta (its component in the 

direction of the electric field ) of electrons, P, ,. and of holes, Ph. The nonequi- 

librium macroscopic variables, i.e. the average values of these eight dynamical 

quantities over the nonequilibrium ensemble. Q,(t) = Tr(P, p(t)), are - after di- 

viding by the volume of the system - the densities of the corresponding energies, 

E, (t), ELO (t), ETo ( t ) ,  EA (t), the density of pairs, n(t) (equal to  the density of 

electrons and of holes), and the density of linear momenta, % (t), and ?rh (t).  Fur- 

ther, there are eight intensive nonequilibrium variables, 4 (t), thermodynamically 
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conjugate to the Qj (t), that define the four reciproca1 quasi-temperatura P. (t) = 

l / k  TC (t), PLO (t) = l / k T i o  ( t ) ,  PTO (t) = l / k  TTO (t), PA (t) = l / k  Ti (t), ~ W O  

are associated to quasi-chemical potentials, -P, (t) p, (t), -Pc (t) ph (t), and, finally, 

two are associated do drift velocities, - /3, (t) v, (t), -,B, (t) vh (t). 

Among the different approaches in the NSOM-theory4g7 we resort here to the 

use of Zubarev's methodlO. Zubarev's NSO for the isolated system composed of the 

sample, the thermal reservoir, and the source of the electric field is approximated 

by 

where p, is the statistical operator of the reservoir and source, which is assumed to 

remain in a stationary state, i.e. practically unchanged by the interaction with the 

open system defined by the nanequilibrium semiconductor sample, whose NSO is 

p. (t) exp { - r / O  dt'rCtr [ ~ ( t  + t') + 2 (t + t f ) l j  (t')] ) 
m j=  1 

with E going to zero after the trace operation in the calculation of averages has 

been performed. It can be r e ~ r i t t e n * . ~  

where 

is an auxiliary statistical operator that defines the instantaneous average values 

and pl(t) contains the information on the dynamics relevant to the description 

of the irreversible evolution of the system. Eq.(5) determines the nonequilibrium 

thermodynamic parameters 4 ( t ) ,  making them conjugate to macrovariables Qj (t) 

in the sense of generalized irreversible thermodynami~s~. '~. 
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Eq. (2) defines the operation of selecting the subgroup of retarded solu- 

tions of the Liouville equation corresponding to the initial value problem p, (to) = 

p,, (to) (to -i -m). This is guaranteed by the presence of an infinitesimal source 

in the equation for p, (t) 

where H is the total Hamiltonian of the ~ystem'- '~. Hence, irreversibility is as- 

sociated to this symmetry breaking and the average of any physical quantity A is 

defined by a quasi-average in Bogoliubov's sense" 

< Alt >= lim Tr{Ap,(t)) 
r- O 

(7) 

Invariance under time-reversal transformations is not satisfied for these quasi- 

averages because of the removal of the corresponding degeneracy in eq. (6); this 

is equivalent to introducing Prigogine's dynamic condition for dissipativity12. 

Further, the total Hamiltonian H is separated in the form H = H + O + 
H' + Ht , where H. contains the energy operators of each individual subsystem, 

i.e. H. = H, + HLO + HTO + HA. The interaction between them and with the 

externa1 reservoirs are included in H', i.e. it is composed of the interaction energies 

of carriers with the phonon field, anharmonic interaction between phonons, and 

the interactiori with the thermal reservoir (responsible for heat diffusion out of the 

sample). Finally, the interaction of the carriers with the electric field is 

where z,(,,, , is the coordinate of the j-th electron (hole). 

For the given choice of the basic set of dynamical variables we find [Pj, Ho] = O 

and [P, , Pk] = 0, and the Coulomb interaction between carriers, contained in H,, 

is treated in the random phase approximation13, i.e. the carriers are considered as 

a two-component Landau's Fermi fluid. Coulomb interaction is only called forth 

indirectly to ensure the interna] thermalization of carriers at any time8. We recall 
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that the conduction and (heavy hole) valence Bloch bands are taken in the effective 

mass approximation. 

Using these results, the evolution equations for macrovariables Q,(t), j = 

1,2 ,..., 8, i.e., 

d 1 
-Q .(t) = T-T~{[P. H, + H' + HE ]P, (t)) , 
dt ali 8" (9) 

can be written in the NSOM-linear theory of relaxation (LTR)'." in the form 

d 
-Qj (t) = J;" (t) + Jj2' (t) , 
dt (10) 

with the collision operator J given for this case by7 

Although the LTR truncates, to second order in H', the series of collision operators 

containing averages over the coarse-grained ensemble of terms of increasing order 

in the interaction strengths, eqs. (9) are highly nonlinear differential equations. 

The right-hand sides of them are functionals of the intensive variables Fj, and 

then it is convenient to rewrite the left-hand side in terms of the latter, which can 

be accomplished noting that 

d 6Q. (t) d d - Q, (t) = C -L - Fk ( t )  = - C Cj, (t) Fk (t) , dt 6Fk (t) dt 
k 

where Cjk (t) are the elements of the correlation matrix, 



On nonequilibrium many-body systcms V: ultrafast ... 

We are now in a condition to calculate the generalized transport equations 

for the basic set of macrovariables, which are 

where we took the modulus of the linear momentum in the direction of the electric 

field. The two equations for the average number of electrons and holes are not 

considered since, for our purposes here, they are constant because recombination 

effects are relevant in a near nonosecond time scale while our interest is in the few 

psicoseconds' time scale. 

In eq.(l4a) the first term on the right-hand side accounts for the energy trans- 

fer from the electric field, the second is the rate of variation due to the carrier- 

phonon interaction having the contributions 



where the index n is LO, TO, or A, and the upper index i refers to the different 

types of interactions, PD,  P Z  and F R  for deformation potential, piezoelectric, 

and Frõhlich interactions respectively. Further, 

are the distribution functions for n-type phonons, and w,, the corresponding fre- 

quency dispersion relations, and 

f,,, (t) = [4r3 fi9n/(2rrn,)3/2]/3C'2 (2) exp { - ,Oc (t) [hk - m,Ü, (t)12 /2m,) (17) 

are the carriers' distribution functions; at the high excitation levels being consid- 

ered we can use the above in~t~antaneous Maxwell-Boltzmann distribution, which 

contains a shift term in the exponential due to the presence of the electric field. 

In eqs. (14 b,c, and d) the first term on the right-hand side accounts for the 

energy transfer from the carriers to the phonon (it is equal to the corresponding 

term in eq.(l4a) with a change of sign). The second term in eqs.(l4b and c), 

ELO(TO)AN, is the rate of energy transfer to the acoustic phonons via anharmonic 

interactions, and is written in the form 

where 

v a . ~ O i ~ O > ( t , i < ~ ~ )  = l/{eXP [BAC ( t ) h w a , , ~ ~ ~ o ) ]  - 1} (I9) 

and rLO ( T O )  is a phenomenological relaxation time, to be evaluated from Raman 

scattering linewidths. The same term with a change of sign appears in eq. (14d). 

The last term in eq. (14d) is bhe rate of change of the A-phonons' energy due to 

heat diffusion to the thermal reservoir, and we write for it 
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where 

/ IB is the reciprocal temperature of the reservoir, and TAC is a phenomenological 

relaxation time which depends on the diffusion coefficient and the dimensions of 

the surface of the active volume of the crystal15. 

Finally, in eqs. (14e and f) the first term on the right-hand side is a drift force 

due to the action of the electric field. The second term contributes to the rate of 

variation of the momentum as a result of collisions with phonons, and is given by 

where qc is the modulus of the component of f i n  the direction of the electric field. 

Next we take Einstein's model for the optical phonons (with dispersionless 

frequencies wt o and w, ) and a Debye model for acoustic phonons (w, c (q) = 

sq, with triple degeneracy; s is the velocity of sound). Next, performing the 
-3 

integrations in reciproca1 space, i.e. the summation over k and q', we obtain 
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where 

E:,: c (t) = A:: C (t) exp [ - xa (t)] { ~ ( 2 , 3 / 2 ,  xa (t)) + 

(27b) 

E,, is the deformation potential coupling constant, H,, the piezo-electric potential 

coupling constant, c, the static dielectric constant, p the density of the material, 

BAc = 3 is the degeneracy of the acoustic modes, and M(a,  b,x) are Kummer 

functions16 ; also 

"XP [ - ZL o (t )] r (1 + 1/2), 

u(L + 1/2,t1 + 2;2zLO (t)) - vLo (t) exp [zLo (t)]r(ll  + L + 1/2). 

. U(tl + .t + 1/2, E + 2; 2zL0 (t)) ) (28) 
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[23 , 9 0 ( t ) x a ( t ) J e  - { ( i  + vLo( t ) i  exp [ -  zLo ( t ) l  . r ( 3 / 2 ) -  -2 L= o ( P L + l ) !  

where 

L O ( t )  = PC ( t )  ~LwL 0 12 , (33)  

Eoa is Frôhlich field, DLO a is LO-phonon deformation potential interaction, @L o  = 

1  is the degeneracy of L 0  phonons, r ( a )  are gamma functions, and U ( a ?  b, z )  are 

confluent hypergeometric functions16, and 

and BT O = 2.  

Further, 

where V,,,, is the unit cell volume. 

The different contributions to the equations of evolution for the linear mo- 

mentum are 

377 
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where 

512 2 
P D z3I2 m. E,. ) 0; 'I2 ( t )  

B , , A C ( f )  = e*@(-- -- , 
~ ~ / ~ l i ~ ~ 2 ~  P A c  ( t )  
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~ ( t )  = l/{exp [h (t) f i ~ ~ ]  - 1) 

and finally, 

?ia,$, = same as 7rf,?, with the exchange L0 ++ TO , (47) 

The lef-hand sides of eqs.(l4) are expressed in terms of the intensive variables, 

i.e. quasi-temperatures and drift velocities, using the relations 
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1 - < P, lt >= n ma v,  (t) . v ( 4 9 ~ )  

So far we have obtained a complete derivation of the equations that govern 

the evolution of the basic set of'variables that describe the macrostate of the pho- 

toinjected HEPS in a constant electric field. They are valid for any intensity of 

the electric field strength but relaxation effects due to collision with phonons have 

been treated in the NSOM-line(ar theory of relaxation. The collision operators are 

expressed in terms of series of Kummer and confluent hypergeometric functions, 

and thus are of a rather difficult numerical manipulation. To simplify these ex- 

pressions we restrict the calcula,tions to the case of low to moderately high electric 

fields assuming that the carrier drift energy is smaller or at most comparable with 

the thermal energy, i.e. 

In these conditions the series in eqs.(21, 23,28, 29, and 34) can be rearranged 

in the form of a dominant term plus corrections. We retain only the main terrns 

to obtain 
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E:,:, (t) = same as E:,:, (t) exchanging L 0  tt TO , (55) 

for the terms associated with energy relaxation (we used also that 0, c hsq << I), 

and for the terms associated with momentum relaxation we find. 

4 t )  4 t )  {[(i + -iii) + exp(-~zLO (t)) (1 - =)]L (i))- 
"L o 

P D  (t) = same as %:,:o (t)exchanging L 0  ++ TO , (60) 

where 

"(t) 4 t )  {[(i + -) + exp(-izL0 (t)) (1 - -)]K, (zro (t))- 
"L o (t) "L0 (t) 

4) 0) - exp(-2zLo (t)) (I - -)]~o(zLo (t))} 9 (61) K1 - v,, (t) "L0 (t) 

with 

"(t) = l/[exp(Pc ( t ) f i~L0  - 11 (62) 
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and K, ( z )  are Bessel functions of the second kind". 

Simple mathematical manipulations allow us to put eq. (61) in the form given 

by Conwell
g 

but with the instantaneous values of T, (t) and T L O  (t). 

Next, we assume that Frolich interaction predominantes o7er a11 other carrier- 

phonon interactions, and, since in the very early stages of relaxation after finaliza- 

tion of the laser pulse there is practically no heating of A phonons, we take TAC 

equal to the reservoir temperature. Hence, the original set of six generalized trans- 

port equations reduceto four equations once those for the A- and TO-phonons' rate 

of energy variation are dropped. Using eqs. (49) they take the form 

T v , . F R  - (t) = -C 3 ) L 7, ,LO (t) - h:,: C (t) - (t) , (64a) dt 
0: 

dva 
- =- (e/m, ) E - 7, (t)v, (t) . 
dt ( 6 4 ~ )  

Eq. (64c) is a Newton-Lãngevin-type equation with 7, (t) playing the role 

of the reciproca1 of an instantaneous momentum relaxation time. Formally, eqs. 

(64c,d) are of the same form of eqs.(42) in ref. 7, but 7, in the latter depends on 

a supercorrelation function (eq.(43) in 7), a functional, with a highly complicated 

dependence, on a11 the nonequilibrium variables, including the drift velocities. 

Differently, 7, (t) of eqs.(64c,d), calculated in the NSOM-linear theory of relax- 

ation, depends only on T, (t) and TLO (t), but it is independent of v, (t). Thus, eqs. 

(64c,d) are first order linear differential equations for each drift velocity, possessing 

the solutions 
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where 

and we have taken the initial condition v,  (O) = 0. 

Defining the currents Ia (t) = n&va (t) and using eq. (65) we obtain a Drude- 

type conductivity 

with an instantaneous transport relaxation time depending on time through the 

quasi-temperatures T,  (t) and TLO (t), and then varying in time with the irreversible 

evolution of the macrostate of the system. 

The results obtained in the work of ref. 7 are easily reversed: at extremal 

points of v,  (t), at, say, t = t,, we obtain from eqs.(65) and (66) that 

1 = ( e / m a ) ~ [ i - ~ ( t Z ) r ( t ) l = o  , 
dt t ,  

(69) 

and so extremal values of the drift velocities should appear whenever, during 

their transient, there occurs a crossover of the evolution curves for the momentum 

relaxation time and transport relaxation time. Such extremum is a maximum or 

a minimum if the second time derivative at t,, 

is negative or positive respectively. Further, 

and, since the last term is expected to be much smaller than the first2 neglecting 

it we find that on cooling (dT,/dt < O) a maximum occurs if d7-' / d T ,  > 0, 

and a minimum for d y - ' / ü T ,  < O. Once r(t) begins at zero and increases, the 
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first extremum, if it occurs, is a maximum, and thus a transient with structure 

(a maximum and a minimuin) should follow if on cooling 7-' passes through 

a minimum. It ought to be emphasized that this characteristic of the mobility 

transient remains valid for the quite general case of any intensity of the electric 

field strength and large relaxation effects, as shown in ref. 7. We recall that the 

expression for 7(t) given by eq. (61) is valid for low to moderately high fields 

and the NSOM-linear theory of relaxation. Other properties of this structured 

mobility are given in ref. 7; we cal1 the reader's attention to the fact that the 

maximum is an overshoot if the momentum relaxation time at t,  is larger than 

7-' in the steady state. 

We have drawn in fig. 1 the curves for the reciproca1 of the momentum 

relaxation time dependent on the carriers' quasi-temperature for severa1 values of 

the LO-phonon quasi temperature. There, 6, = hwo /k  is Einstein's temperature, 

and 7a is normalized in ternis of the yaO of eq. (63). The existence can be seen 

of a maximum of 7 (minimum of the momentum relaxation time 7-l) for a quasi- 

temperature T:" cz 200, with a negative slope (or alternatively dy-'/dT, > 0) for 

T, .> T:" and a positive slope (or dy-'/dT, < 0) for Xc < TT,'"; also d7/dTLo is 

smooth. 

Next, we apply these results to a specific case to obtain numerical solutions. 

3. Structured mobility in GaAs 

Consider a sample of GaAs illuminated by an intense pulse of laser light. 

To fix initial conditions we take as an example the case of the experiment of 

Shank et al." which are already used to study relaxation phenomena in HEPS2. 

A very short laser pulse of 0.25 psec produces a density of photoinjected carries 

n = 2 x 1018cm-3, having an excess kinetic energy of roughly 2.4 eV, and in contact 

with a thermal reservoir at 300 K. Immediately after the pulse the initial quasi- 

temperature-of carriers is, roughly, 6700 K, and TLO - 303 K, TA - To = 300K2. 

We have also used relaxation times for anharmonic processes of 10 psec and a heat 

diffusion relaxation time of 1 nsec. 
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r 

~? / f3 ,  - 
CARRIER QUASI - TEMPERATURE 

Fig.1 - Dependence of the reciproca1 of the momentum relaxation time with the car- 

rier quasi-temperature for severa1 values of the LO-~honons quasi-temperature. The 

normalization factors are indicated in the main text. 

The coupled set of integro-differential equations, eqs. (64), is solved using stan- 

dard computational techniques. Our results are displayed in the accompanying 

figures. Fig. 2 shows the time evolution of the carriers' quasi-temperature for sev- 

era1 values of the electric field. It can be noted that for & N 4 kV/cm the carriers 

c001 down to a steady state in times shorter than 5 psec. For 4 N E N 9.4 kV/cm 

the carriers c001 down at a slower pace, and the steady state follows in times from 

5 psec to more than 30 psec. For & 29.4  kV/cm the steady state follows after 

times of more than 30 psec, and.the steady-state quasi-temperature is larger than 

the initial one. This is a result of the fact that Joule heating effects overcome the 

energy relaxation ot the phonon field. It is expected to occur starting at a value 

of the field intensity such that (cf. eq. (142)), 
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TIME í p s )  

Fig.2 - Evolution of the carriers quasi-temperature for severa1 values of the 

electric field intensity. 

Fig. 3 shows the evolution of the LO-phonons quasi-temperature. One can 

note an increase in TLO of less than 10% of the reservoir temperature (300 K), and 

the fact that for fields larger than, roughly, 9.4 kV/cm, one finds smaller values of 

TLO with increasing fields. 

Fig. 4 shows the evolution of the electron-drift velocity (almost identical 

curves are obtained for holes except that the ordinate scale must be reduced by a 

factor of, roughly, 15). Fig. 5 provides the evolution of the momentum relaxation 

time and transport relaxation time, and in fig. 6 we find the dependence of the 

stationary drift velocity with the electric field intensity. 
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TIME (psec) 

Fig.3 - Evolution of the LO-phonon quasi-temperature for severa1 values of the electric 

field intensity. 

Inspection of these curves tells us that the ultrafast mobility of hot carriers in 

the central valley of GaAs (and expected to be valid for HEPS in general) shows 

three well defined regimes. 

i) A structured mobility with a relative maximum (no overshoot) and a min- 

imum at low electric field intensities (in our case E N 4 kV/cm), with the 

mobility in the steady state following a near Ohmic law, 

ii) A structured mobility with an absolute maximum (overshoot) and a minirnum, 

at low to intermediate electric field (4 2, & 2, 9.4 kV/cm), and non-Ohmic 

behavior in the stationary state, 
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LI- 
5 I o i 5 20 

T I M E  (QS) 

Fig.4 - Evolution of the electron drift velocity for for severa1 values of the electric field 

intensity. 

iii) Normal behavior, i.e. a monotonic increase of the mobility towards its sta- 

tionary value, and a near Ohmic dependence of the latter. 

Fig. 5 confirmes the stated criterion that maxima (minima) appears when 

there occurs a crossover of the evolution curves of r(t) and 7- ' ( t ) ,  and the latter 

is decreasing (increasing) at that point. 

Fig. 7 shows the dependence with the electric field of the carriers' quasi- 

temperature in the steady state, and fig. 8 that of the electron transport relaxation 

time (observe that it coincides with the momentum relaxation time in the steady- 

state). 

The differential stationary conductivity is, 

d  
adir ( E )  = n e 2  - E - + - = " )I d t  [ mh 
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Fig.5 - Evolution of the momentum and transport relaxation times for for severa1 values 

of the electric field intensity. 

Hence, eq. (73) together with fig. 8 indicates that a t  fields & N 9 kV/cm, u d i f  

is smaller than Drude conductivity, a very steep increase follows in the interval 

9 N E 29 .4  kV/cm, and adif becomes larger than Drude's value. 

Fig. 9 shows the dependence of the height of the maximum and the depth of 
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20 1 

2 4 6 8 10 12 14 
FIELD INTENSITY í K V /  c m ) 

Fig.6 - Depndence of the drift velocity in the steady state with the the electric field 

intensity. 

the minimum, relative to the stationary value (positive values of the first corre- 

spond to overshoot). Fig. 10 shows the temporal length of both kind of extrema, 

at  half height, and fig. 11 shows the temporal localization of both maximum and 

minimum. One observes an (almost linear) increase of the overshoot with elec- 

tric field intensity for 4 2. E C, 9.4 kV/cm, and the disappearance of it at  this last 

value when the system is entering regime (iii). For E ct 8 kV/cm the overshoot 

is, roughly, 25% of the velocity in the stationary state. The temporal length of 

the overshoot also increase with the electric field intensity, but its peak value is 
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5 1 o 
FIELD INTENSITY (KV/cm) 

Fig.7 - Dependence of the carrier quasi-temperature in the steady state with the electric 

field intensity. 

present with almost the same delay time of, roughly, 1 psec (cf. fig. 11). 

We have analyzed the effect of the initial conditions on the structured mobility 

transient. Fig. 12 shows the evolution of the electron drift velocity for & = 6 

kV/cm, and different values of the initial carrier quasi-temperature (i.e. increasing 

values of the laser frequency). At low energy transfer it follows normal behavior; 

with increasing energy transfer a structured mobility begins to appear, becoming 

more and more evident leading, at high energy transfer, to the appearance of an 

increasingly more pronounced overshoot. This is the result of the fact that the 

minimum of 7- ' 'is at  near 20,, i.e. - 920 K in GaAs; then, for T, (O) = 700 

K the carrier system evolves without 7-' passing through such minimum and no 
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Fig.8 - Dependence of the electron drift velocity in the steady state with the electric 

field intensity. 

structure can be produced. The subsequent values of T,(O) correspond to initial 

values of r-' that allow it to pass through its minimum while the carriers c001 

down and structure appears. With increasing values of Tc ( O) ,  the initial value of 

r-' is up and up on the positive-slope side of the curve r-' vs Tc. Since the 

stationary value of the drift velocity is the same in a11 cases (independs of the 

initial conditions and being fixed only by the value of E ,  for a certain value of 

T,(O) the maximum becomes an overshoot, with increasing heigth with increasing 

Tc ( O )  

Finally, we note that the existence of an instantaneous transport relaxation 

time allows to write an instantaneous Einstein relation linking it to an instanta- 

neous diflusion coefficient , 
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2 4 6 8 1 0  
ELECTRIC FIELD (KVícm) 

Fig. 9 - Height of extrema relative to the velocity in the steady for severa1 values of the 

electric field intensity. The dip of the minisnum (dot) is given in absolute value. 

Because of the rapid decay of the carrier quasi-temperature in the early stages of 

relaxation, the structure in the transient of D(t)  is washed out, as shown in fig. 

13, but a very pronounced diffusion overshoot is present. 

4. Conclusions 

We have presented a detailed analytical study of the ultrafast mobility tran- 

sient of initially far-from-equilibriurn carriers in highly photoexcited plasma in 

polar semiconductors (HEPS). For that purpose we resorted to the powerful non- 

linear quantum transport theory derived from the nonequilibrium statistical oper- 

ator method (NSOM) in Zubarev's approach. A coupIed set of nonlinear integro- 
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Fig. 10 - Width of the extrema (dots for the minimum, triangles for the maximum) 

taken at the value of the drift velocity in the steady state. 

differential generalized transport equations for a basic set of nonequilibrium ther- 

modynamic variables, deemed appropriate for the description of the macroscopic 

state of the HEPS, was derivecl. Two of these equations are those for the carriers' 

drift velocity (or mobility). The generalized collision operators were calculated in 

the NSOM-linear theory of relaxation. 

We recover in this approximation the prediction that7, depending on how it 

proceeds the irreversible evolution of the nonequilibrium macrostate of the system, 

maxima and minima may be observed Cluring the ultrafast mobility transient of 

the photoinjected carriers in the central valley of polar semiconductors. We called 

this previously unreported effect structured mobility of hot carriers. A criterion 

for this effect to be found is given in Section 2 which, as shown, basically depends 
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c 
2 4 6 8 1 0  

ELECTRIC FIELD í K V k m )  

Fig. 11 - Delay time for occurrence of the minimum (dots) or maximum (tnangles) 

after application of the electric field. 

on the fact that the momentum relaxation time passes through a minimum value 

while the HEPS evolves from its initial nonequilibrium state to a stationary state 

for fixed electric field intensity. 

The expressions for the collision operators we obtained, however valid for any 

intensity of the electric field, are quite complicated and difficult to handle. To make 

possible rather accessible mathematical manipulations, we restricted the numerical 

analysis to  the case of up to moderately high field intensities, when the kinetic 

energy of drift of the carriers is smaller than their thermal energy. The coupled 

set of basic nonlinear generalized transport equations was solved for a given initial 
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TIME ípsec) 

Fig. 12 - Evolution of the electron drift velocity (normaliied to its value in the steady 

state) for an electric Beld of 6 kV/cm, and different values of the leve1 of photoexcitation, 

characterized by the initial carrier quasi-temperatures. 

condition, and the results presented in Section 2. We showed that there exist 

three differentiated regimes in the ultrafast mobility transient dependent on the 

field strength. 

For a sufficiently intense electric field the carriers' system keeps heating up 

(or starts to c001 down and next heats up) so that the momentum relaxation 

time does not attain its minimum and a structured mobility is excluded. Hence, 

there exist a maximum value of the field above which the mobility only presents 

normal evolution. This regime follows, on increasing field strength, from another 



one Mihere structnred rnobility ís presm and the maximrim is an ouershoat. The 

Iieight of the overslnoot diminishes with decreasing fieid íntensity and there is a 

lower limit of tthis intensífy belw whieh this ma.inum ís no longer an osershoot. 

fCf. fig. 3). Ths regime with overshoot is stmngly correiated with the region 

af values of elecLsíc field inbnsity for which the stationary mobílity iis non-Obníc 

{Cf. fig. 6). 

Further, as sfiown by- íIg. 12, anrt the ensuíng dlsc.uasit>n in Section 2, them 

is a Jower leve) of photon laser energy for fixe phencrmenon to accur, viz., the 
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one that allows excess kinetic energy of the carriers to be high enough for the 

macroscopic state of the system to allow, at the start, the momentum relaxation 

time to decrease with decreasing temperature. 

Experimental observation of ultrafast mobility in HEPS is scarce, and the 

existing few reports are not detailed enough18~19. It may be mentioned that 

there is a certain qualitative and semi-quantitative agreement with Hammond's 

rneas~rements'~ in that he reports a lower and upper limit for the field intensity 

for overshoot to be observed. Also, it must be stressed that we have studied the 

dependence of the mobility of nonequilibrium carriers in HEPS in a single valley. 

However, the band structure of direct-gap polar semiconductors displays multi- 

ple valleys, and therefore intervalley scattering of carriers needs be considered. It 

could lead to additional structui-e at sufficiently high levels of excitation as a result 

of the transfer of carriers to higher energy valleys where they have larger effective 

masses, but this effect seems to be smoothed out by carrier c o l l i ~ i o n ~ ~ .  Quite re- 

cently, Liu et al.'l have applied Zubarev's NSOM to the study of the steady state 

of high-field electron transport in multi-valley semiconductors. The present paper 

provides an extended discussion of the results reported in ref. 22. 

This article is based on the Ph.D. Thesis of V.N. Freire, who at the time 

was a Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) pre- 

doctoral fellow. The other two authors (ARV and RL) are Conselho Nacional de 

Desenvolvimento Científico e Tecnológico (CNPq) research follows. 
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Resumo 

São usados o Método do Operador Estatístico de Não Equilíbrio e a teoria não-linear quântica 
de transporte que tem associado, como descrito em Rev. Bras. Fis. 15, 106 (1985); ibid 16, 495 

(19861, para realizar um estudo analítico da mobilidade transiente ultra-rápida de portadores 

fotoinjetados no vale central de um semicondutor polar de gap direto. Obtemos expressões para 

a mobilidade resolvida temporalmente destes portadores quentes quando submetidos a condições 

gerais de fotoexcityão e intensidade de campo elétrico. Resultados numéricos são apresentados no 

caso de campos fracos até moderadamente fortes, e uma comparqáo qualitativa com experimentos 

disponíveis é feita. h mostrado que a mobilidade transiente apresenta uma estrutura composta 

de um máximo e um mínimo antes de ser atingido o estado estacionário. As características desta 

estrutura dependem do nível de fotoexcityão e da intensidade do campo elétrico. fi apresentada 
uma breve discussão sobre o coeficiente de difusão dos portadores. 




