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Abstract The domain growth after a quench to  very low and to  finite temperatures T 
is analysed by scaling theory and Monte Carlo simulation. The growth exponent for the 
excess energy A E ( t )  - %"" is found to approach n - 114 for T + O. The scaling 

theory gives exactly n = 114 for cases of hierarchical movement of domain waiis. This 

explains the existence of a newly discovered, slow growth universality class. It is shown to 

be a singular Allen-Cahn class, to which belong systems with domain waiis of both exactly 

zero and finite curvature. The model studied has continuous variables, non-conserved order 

parameter and has two kinds of domain walls: sharp, straight stacking faults and broad, 
curved soliton-like waiis. For quenches to higher temperatures the growth exponent is 

found to approach the classical Allen-Cahn exponent n = f 12, 

1. Introduction 

The kinetics of domain growth is of relevante for the formation of polycrys- 

t a l h e  microstructures. This is of considerable irnportance in surface sciencel, 

metallurgy2 and earth sciences. It is in fact the complexity of the domain struc- 

tures which is decisive for the physical properties. 

To illustrate this let us first consider a perfect structure, a single crystal. This 

is not a complex system and its properties are completely predictable. It is pre- 

cisely this predictability and lack of complexity which makes perfect structures " 
weakn in most applications, although the specific "strength" rnay be very high. For 

example a single crystal can be cleaved by a small force, just as ripping a piece of 

cloth, in a certain direction. Ripping a piece of patch-work is much more difficult, 
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as the seams and pattern modify or absorb the applied force. The domain waIls or 

grain boundaries have a similar effect in polystructures where severa1 equivalent, 

perfect structures form a random patch-wotk. An example is demonstrated on fig. 

1. To the left is shown a high temperature, disordered cubic structure. This can 

easily be cleaved along the indicated line. To the right is shown the correspond- 

ing low temperature hexagonal structure, where there are four equivalent domains 

formed by displacing the atoms regularly in the f z or f y directions. A fracture 

may now follow the indicated "unpredictable" line, which is no longer optimal 

for the exerted force. The complex structure is therefore stronger. Such a phase 

transformation between cubic and hexagonal structures after a quench from high 

to low temperatures is called a martensitic transformations. It is widely used in 

practical applications both in metallurgy and in ceramics, just for improving or 

tailoring the materials' strength. Of great interest is, of course, whether the ob- 

tained micro-structures are stable or metastable at low or moderate temperatures. 

The problem of domain growth kinetics is therefore of particular interest. A sys- 

tem after a rapid quench is far from equilibrium and has a complex, unpredictable 

arrangement of domains walls, which may change nonlinearly and irreversibly with 

time. Hence a theoretical analysis is exceedingly difficult, and it is a great advan- 

tage to make use of computer simulations, partly because one can perform ideal, 

pure experiments and partly because one can monitor much more detailed infor- 

mation than available in real experiments. This offers important checking points 

for a theoretical approach. Since the systems are complex, the only symmetry left 

during the domain growth is a possible selfsimilarity or another form of scaling 

property. The kinetics may therefore be independent of the specific forces in the 

system and it might to possible to classify the behavior into a few characteristic 

cIasses, in analogy with the critical behavior at a continuous phase transition. 



Per-Anker LindgBrd and Teresa Custán 

B 
Cubic ( 2 )  Hexagonal 2 x 1 Hexagonal ( yl 

Fig. 1 - To the left is shown a high temperature, disordered, cubic phase. 

It will cleave easily along the indicated line. To the right is shown the four- 

domain, low temperature, hexagonal phase obtained after a rapid quench. It 

cleaves less easily, following the indicated line in the complex polystructure. 

The circles indicate atom positions and the small lines the displacement from 

an ideal cubic structure. The figure is calculated using the full dipolar model 

eq. (1) with P = 2. The figure exemplifies a martensitic transformation or 

a surface reconstruction. 

A possible universal classification of the kinetics of domain growth after a 

quench from high temperatures to a low temperature ordered phase has been un- 

der vivid discussion in recent years4. For the case of non-conserved order parame- 

ter, the excess energy AE of the domain wall network is usually expected to  decay 

algebraically as AE - t-" with n = 1/2 according to the Allen-Cahn theory5 for 

curvature driven growth. A possible deviation from this behavior yielding n - 1/4 
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was first found by Mouritsen6 by computer simulation on an anisotropic system 

with continuous variables and order parameter degeneracy p = 2. It was subse- 

quently found by Grest et al.7 that a number of generalized pstate  "Pottsn models 

with wide low-angle domain walls for sufficiently high p also gave n - 114, and 

the possibility of a new universality class was proposed. The finding6 of the small 

exponent n - 114 was disputed as being an artifact of inadequate data analysiss 

or a special effect of the applied zero temperature Monte Carlo method
g
. How- 

ever, further extensive numerical simulations have been performed1° on different 

anisotropic models with continuous variables and p = 2. These corroborate con- 

clusively the existence of a new, slow growth class with n = 114 for quenches 

to very low, finite temperatures. It was first suggested by Mouritsen6 that the 

deviation from n = 112 in the investigated systems indicated a breakdown of the 

basic assumptions in the Allen-Cahn theory5 in the presence of broad, "soft" walls, 

which might screen the interaction between domainslO. This argument was dis- 

puted in ref. 8 and by van Saarllos and Grant
g 

who firstly showed that even if the 

walls were broad, the growth should follow n = 112. They pointed out that this 

was indeed observed experimentally" . Secondly they showed that in the model 

studied by Mouritsen the walls were in fact only partly broad, since they were 

sharp in some spatial directions. We agree with this observation. 

It is the aim of this work, which is described in more detail elsewhere12, to 

discuss the raison d'être for the unexpected slow growth class for low temperature 

quenches, and further to demonstrate that the classical growth with n = 112 is 

recovered at higher temperatures. This insight was obtained by analysing a model 

which is quite different from the ones studied by Mouritsen et a1.6r10. But the 

domain walls have the same feature, consisting of a mixture of interconnected 

broad and sharp walls. We shall now demonstrate that it is this mizture which 

is the cause. A scaling theory shows that the exponent is exactly n = 114. As 

was also found in the previous studies6~10 the softness of the walls is not crucial as 

such, except for making the walls able to curve easily. The reason is the following. 

A soft wall is well modelled by a soliton-like shape with a width w and a phase 

describing the soliton maximum relative to the lattice positions. The energy and 
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width of the soliton depend only weaky on the phase 0. Therefore a wall consisting 

of neighboring solitons can curve continuously with relatively little energy cost. 

In contrast a sharp straight inrall can only %urven by the introduction of a kink. 

This costs considerable energy. However, once formed the kink can move freely 

and fast, whereas the soliton wall moves slower since it involves severa1 particles. 

At sufficiently low temperatures no kinks can be created by thermal fluctuations 

and the existing kinks will be trapped by the soliton walls. The system then 

consists of curved walls connected by straight walls. This situation is a singular 

case for the Allen-Cahn theory. Whereas the basic assumptions still hold, the 

exponent is nonetheless n = 114. The slowing down is due to a temporal pinning 

of the straight (zero curvature) walls, which cannot move untill their extent is 

sufficiently small. This pinning effect is already present for an order parameter 

degeneracy p = 2, corresponding to only two types of equivalent domains. Let 

us consider a magnetic model with continuous spin variables restricted to the 

x - z plane on a two dimensional z - y lattice (d = 2). We use the Hamiltonian 

introduced recentlyl3 for simulating a Martensitic transformation 

We have made extensive Monte Carlo computer simulations on this simple, re- 

stricted model (with P = 3) studying the domain growth after rapid temperature 

quenches from the ferromagnetic phase to the p = 2 phase with f z domains only at 

low, finite temperature (0.01 of TN 2J/kg), see snapshots on fig. 2. The details 

are reported elsewhere14. We choose to follow the behavior of the self-averaging4 

excess energy. The principal result is, as show in fig. 3, that the time evolution 

at late times is algebraic with a small exponent n - 114. This is the same result 

as found by Mouritsen et a1.6q10. The simple model can be analyzed and we have 

shown that a11 assumptions made in the Allen-Cahn theory are fulfilled, yet giving 

a smaller exponent. The slow time evolution with an exponent exactly equal to 

n = 114 is explained by a scallng theory12, not as a consequence of the softness of 
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the walls, but as a consequence of a hierarchy of walls, where the decrease of one 

kind depends on the other. The straight walls cannot move and constitute tem- 

poral pinning centers. However, they can disappear by the motion of the curved 

walls. This slows down the domain growth, but does not stop it completely. A 

related problem was studied previously by dynamical scaling theory16. Such a 

hierarchy is in fact present in the m ~ d e l s ~ + ' ~  in which the slow growth was first 

discovered. We believe these models systems and our model indeed form a new 

universality class with n = 114, independent of details in the models. The growth 

is in many respects in agreement with the Allen-Cahn theory, but we are dealing 

with a special case of mixed zero and finite curvature. Important examples of such 

straight walls are stacking faults and twin boundaries in crystals or on surfaces. 

We expect this class to have many members. 

Finally, we wish to demonstrate that there is a cross-over to the Cahn-Allen 

exponent n = 112 for quenches to higher temperatures. This was also found in 

the models studied by Mouritsen and Przstg%rdl0. Using standard Monte Carlo 

simulations techniques", we have calculated the domain growth kinetics after 

quenches from T = oo to different finite temperatures. The results have been 

obtained on a N = 100 x 100 lattice subject to periodic boundary conditions. 

At each temperature, the results were averaged on 15 different runs. In fig. 4 

we present the best exponent obtained by fitting the averaged excess energy to 

the expression 6E(t)  = t-". The results clearly show a crossover in the kinetic 

exponent value from n = 114 to n = 112 as function of temperature, in agreement 

with previously resultslO. 

During the cross-over when the exponent is 114 < n < 112 the mixture 

of straight and curved boundary is still present. The curved walls move with a 

constant velocity proportional to the curvature, which is inversely proportional 

to the length of the walls projected onto the y-direction, L,, i.e. the number of 

solitons in the walls. The velocity increases with temperature. By studying barrel- 

like domains with curved walls of various lengths L,, separated by the same length 

straight walls L,, the pinning time t* can be found as a function of temperature. 

The pinning time t* is the time needed for L, to decrease to length of the order of 
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Fig. 2 - Calculations for the restricted model eq.(l) with only two stable 

domains f 3. Snapshots of the evolution of the ordered domains and the 

domains waiis during a quench (we show one quarter of a 200 X 200 system) 

to T = 0.001 TN .The urhite areas are the f x domains, the grey areas the 

.? domains and the darker regions and single dots disordered spins, drawn 

as - o indicating their deviation. At early times t = 100 MCS one sees 

nucleation of &X domains in a disordered z-matrix, at later time t = 3000 

MCS one sees that two kinds of domain waiis have evolved i.e. the straight 

stacking faults and the broad soliton walls. 

an intersite distance. Therefore t: is the time when the decrease of the length of the 

curved walls, L,, can begin. Fig. 5 shows that the pinning time decreases rapidly 

with increasing temperature. For T > 0.15 TN one observes kinks being emitted 

from the corners to the sharp walls. This allows L, to decrease independently of 

the lenth L,, and this start to break the hierarchical pinning mechanism. Therefore 
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Fig. 3 - The average excess energy AE(t )  for T = 0.01 TN relative to the 

stable, single domain ground state energy ET (00) is plotted for two system 

sizes a) 100 X 100 for 14 runs and b) 200 X 200 for 3 runs. Consistently, 

an early regime is found with an exponent n - 112 and a sharp crossover 

to a second regime with a smaller exponent n - 114; c) shows the excess 

energy for 9 different 200 X 200 systems which develop into a metastable 

slab configuration. The signatures indicate the excess energy relative to 

ET (00) as above, yielding too low exponents. The excess energy relative to 

the relevant, higher slab energy ET (OO).~.~ is between the limits indicated 

by -.- and -..-. Both the exponents and the crossover for the corrected 

excess energy agree with the stable cases a) and b). At much later times 

t > 25000 MCS finite sire effects are detected for separate runs (V). 

the pinning becomes irrelevant for the late time behavior, and the system develops 

into a case corresponding to an a11 curved walls system. The scaling theory for 
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Fig. 4 - The exponent n for quenches to  various finite temperatures for 

a N = 100 X 100 system averaged over 15 Monte Csrlo runs. A clear 

cross-over from n = 114 to  n = 112 is seen. 

Fig. 5 - The pinning time t* 

of a barrel shaped domain with 

curved waiis of different length 

L,, but the same length L, 
straight walls. The pinning time 

decreases rapidly with increasing 

quench temperatures. 
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this case gives the Cahn-Allen exponent n = 112. The decrease in the pinning 

time is consistent with the cross-over in the exponent shown in fig. 4. 

To obtain the algebraic growth laws it is imperative that the system has 

a scaling behavior. Therefore, the obtained results from the specific model are 

expected to have more general validity and to shed light upon the general aspects 

of the new, unexpected slow-domain-growth universality class. 
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Resumo 

O crescimento de domínios ap6s um processo de têmpera a temperaturas T muito baixas 
ou finitas 6 analisado atrav6s de teoria de escala e simulações Monte Carlo. Obtém-se que o 

expoente de crescimento para a energia de excesso AE( t )  - t -n  aproxima-se de n - 114 
para T -+ O. A teoria de escala dá exatamente n = 114 para o caso de movimento hierárquico 

de paredes de domínio. Isto explica a existência de uma classe de universalidade de crescimento 

lento, recentemente descoberta. Mostra-se que esta é uma classe de Allen-Cahn singular, à qual 

pertencem sistemas com paredes de domínios de curvaturas tanto finitas quanto exatamente zero. 

O modelo estudado tem variáveis contínuas, parâmetro de ordem não-conservado, e dois tipos de 

parede de domínio: falhas de espalhamento retilineas e bem definidas, e paredes largas e curvadas, 
semelhantes a solitons. Para processos de têmpera a temperaturas mais altas obtém-se que o 

expoente de crescimento aproxima-se do valor clássico de Allen-Cahn, n = 112. 


