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Abstract  The domain growth after a quench to very low and to finite temperatures T
is analysed by scaling theory and Monte Carlo simulation. The growth exponent for the
excess energy AE(t) ~ ¢~ is found to approach N ~ 1/4 for T — 0. The scaling
theory gives exactly N = 1/4 for cases of hierarchical movement of domain walls. This
explains the existence of a newly discovered, sow growth universality class. It is shown to
be asingular Allen-Cahn class, to which belong systems with domain walls o both exactly
zero and finite curvature. The model studied has continuous variables, non-conserved order
parameter and has two kinds of domain walls: sharp, straight stacking faults and broad,
curved soliton-like walls. For quenches to higher temperatures the growth exponent is
found to approach the classical Allen-Cahn exponent N = 1/2.

1. Introduction

The kinetics o domain growth is of relevance for the formation of polycrys-
talline microstructures. This is of considerable importance in surface science',
metallurgy? and earth science®. It is in fact the complexity of the domain struc-
tures which is decisive for the physical properties.

Toillustratethislet usfirst consider a perfect structure, asingle crystal. This
is not a complex system and its properties are completely predictable. It is pre-
cisely this predictability and lack of complexity which makes perfect structures “
weak" in most applications, although the specific" strength" may be very high. For
example a single crystal can be cleaved by a small force, just as ripping a piece o

cloth, in a certain direction. Ripping a piece of patch-work is much more difficult,
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asthe seamsand pattern modify or absorb the applied force. The domain walls or
grain boundaries have a similar effect in polystructures where several equivalent,
perfect structures form a random patch-wotk. An example isdemonstrated on fig.
1. To theleft is shown a high temperature, disordered cubic structure. This can
easily be cleaved along the indicated line. To the right is shown the correspond-
ing low temperature hexagonal structure, where there are four equivalent domains
formed by displacing the atoms regularly in the £z or xy directions. A fracture
may now follow the indicated “unpredictable” line, which is no longer optimal
for the exerted force. The complex structure is therefore stronger. Such a phase
transformation between cubic and hexagonal structures after a quench from high
to low temperatures is caled a martensitic transformations. It is widely used in
practical applications both in metallurgy and in ceramics, just for improving or
tailoring the materials' strength. Of great interest is, of course, whether the ob-
tained micro-structures are stable or metastableat low or moderate temperatures.
The problem of domain growth kinetics is therefore of particular interest. A sys-
tem after a rapid quench is far from equilibrium and has a complex, unpredictable
arrangement o domains walls, which may change nonlinearly and irreversibly with
time. Hence a theoretical analysis is exceedingly difficult, and it is a great advan-
tage to make use o computer simulations, partly because one can perform ideal,
pure experiments and partly because one can monitor much more detailed infor-
mation than available in real experiments. This offers important checking points
for atheoretical approach. Sincethe systems are complex, the only symmetry |eft
during the domain growth is a possible selfsimilarity or another form of scaling
property. The kinetics may therefore be independent of the specific forcesin the
system and it might to possible to classify the behavior into a few characteristic

classes, in analogy with the critical behavior at a continuous phase transition.
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Fig. 1- To the left is shown a high temperature, disordered, cubic phase.
It will cleave easily along the indicated line. To the right is shown the four-
domain, low temperature, hexagonal phase obtained after a rapid quench. It
cleaves less easily, following the indicated line in the complex polystructure.
The circles indicate atom positions and the small lines the displacement from
an ideal cubic structure. The figureis calculated using the full dipolar model

eg. (D) with P = 2. The figure exemplifiesa martensitic transformation or
a surface reconstruction.

A possible universal classification o the kinetics of domain growth after a
guench from high temperatures to a low temperature ordered phase has been un-
der vivid discussion in recent years*. For the case o non-conserved order parame-
ter, the excessenergy AE o the domain wall network is usually expected to decay
agebraically as AE = ¢~ with n = 1/2 according to the Allen-Cahn theory® for

curvature driven growth. A possible deviation from this behavior yielding n ~ 1/4
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was first found by Mouritsen® by computer simulation on an anisotropic system
with continuous variables and order parameter degeneracy p = 2. It was subse-
guently found by Grest et al.” that a number of generalized p-state “Potts” models
with wide low-angle domain walls for sufficiently high p also gave n = 1/4, and
the possibility of a new universality class was proposed. The finding® of the small
exponent n = 1/4 was disputed as being an artifact of inadequate data analysis®
or a specia effect o the applied zero temperature Monte Carlo method’. How-
ever, further extensive numerical simulations have been performed!® on different
anisotropic models with continuous variables and p = 2. These corroborate con-
clusively the existence of a new, dow growth class with n = 1/4 for quenches
to very low, finite temperatures. It was first suggested by Mouritsen® that the
deviation from n = 1/2 in the investigated systems indicated a breakdown o the
basic assumptions in the Allen-Cahn theory® in the presence of broad, “soft” walls,
which might screen the interaction between domains'®. This argument was dis-
puted in ref. 8 and by van Saarllosand Grant’ who firstly showed that even if the
walls were broad, the growth should follow n = 1/2. They pointed out that this
was indeed observed experimentally®™ . Secondly they showed that in the model
studied by Mouritsen the walls were in fact only partly broad, since they were
sharp in some spatial directions. We agree with this observation.

It is the aim o this work, which is described in more detail elsewhere'?, to
discuss the raison d’étre for the unexpected dow growth classfor low temperature
guenches, and further to demonstrate that the classical growth with n = 1/2 is
recovered at higher temperatures. This insight was obtained by analysing a model
which is quite different from the ones studied by Mouritsen et al.®'°. But the
domain walls have the same feature, consisting of a mixture of interconnected
broad and sharp walls. We shall now demonstrate that it is this mtzture which
is the cause. A scaling theory shows that the exponent is exactly n = 1/4. As
was also found in the previous studies® '® the softness of the wallsis not crucial as
such, except for making the walls able to curve easily. The reason is the following.
A soft wall is well modelled by a soliton-like shape with a widthw and a phase ®

describing the soliton maximum relative to the lattice positions. The energy and
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width of the soliton depend only weaky on the phase O. Therefore awall consisting
d neighboring solitons can curve continuously with relatively little energy cost.
In contrast a sharp straight wall can only “curve” by the introduction of a kink.
This costs considerable energy. However, once formed the kink can move freely
and fast, whereas the soliton wall moves dower since it involvesseveral particles.
At sufficiently low temperatures no kinks can be created by thermal fluctuations
and the existing kinks will be trapped by the soliton walls. The system then
consists of curved walls connected by straight walls. This situation is a singular
case for the Allen-Cahn theory. Whereas the basic assumptions still hold, the
exponent is nonetheless n = 1/4. Thesdowing down is due to a tempora pinning
o the straight (zero curvature) walls, which cannot move untill their extent is
sufficiently small. This pinning effect is already present for an order parameter
degeneracy p = 2, corresponding to only two types of equivalent domains. Let
us consider a magnetic model with continuous spin variables restricted to the
X — z plane on a two dimensional z -y lattice (d = 2). We use the Hamiltonian

introduced recently’® for simulating a Martensitic transformation

H= Y {-KS.8.+J[S-8 —P(f;-S)(7:; - 8;)]} — DY _(S4 +54)
<ij>
We have made extensive Monte Carlo computer simulations on this simple, re-
stricted model (with P = 3) studying the domain growth after rapid temperature
quenchesfrom the ferromagnetic phase to the p = 2 phase with £z domainsonly at
low, finite temperature (0.01 of Ty ~ 2J/kz), see snapshotson fig. 2. The details
are reported elsewhere'*. We choose to follow the behavior of the self-averaging®
excess energy. The principal result is, asshow infig 3, that the time evolution
at late times is algebraic with a small exponent n ~ 1/4. This s the same result
asfound by Mouritsen et al.®*°. The simple model can be analyzed and we have
shown that all assumptions made in the Allen-Cahntheory arefulfilled, yet giving
a smaller exponent. The dow time evolution with an exponent exactly equal to

n = 1/4 is explained by a scaling theory'?, not as a consequenced the softness of
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the walls, but as a consequence d a hierarchy o walls, where the decrease d one
kind depends on the other. The straight walls cannot move and constitute tem-
poral pinning centers. However, they can disappear by the motion o the curved
walls. This dows down the domain growth, but does not stop it completely. A
related problem was studied previously by dynamical scaling theory'¢. Such a
hierarchy is in fact present in the models®:*° in which the dow growth was first
discovered. We believe these models systems and our model indeed form a new
universality classwith n = 1/4, independent of details in the models. The growth
isin many respects in agreement with the Allen-Cahn theory, but we are dealing
with a special case of mixed zero and finite curvature. Important examples o such
straight walls are stacking faults and twin boundaries in crystals or on surfaces.
We expect this class to have many members.

Finally, we wish to demonstrate that there is a cross-over to the Cahn-Allen
exponent n = 1/2 for quenches to higher temperatures. This was aso found in
the models studied by Mouritsen and Prastgdrd'®. Using standard Monte Carlo
simulations techniques'”, we have calculated the domain growth kinetics after
quenches from T = oo to different finite temperatures. The results have been
obtained on a N = 100 X 100 lattice subject to periodic boundary conditions.
At each temperature, the results were averaged on 15 different runs. In fig. 4
we present the best exponent obtained by fitting the averaged excess energy to
the expression §E(t) = t~". The results clearly show a crossover in the kinetic
exponent valuefromn =1/4 ton = 1/2 asfunction d temperature, in agreement
with previously results*®.

During the cross-over when the exponent is 1/4 < n < 1/2 the mixture
of straight and curved boundary is still present. The curved walls move with a
constant velocity proportional to the curvature, which is inversely proportional
to the length of the walls projected onto the y-direction, L,, i.e. the number of
solitonsin the walls. Thevelocity increaseswith temperature. By studying barrel-
like domainswith curved walls o various lengths L,, separated by the same length
straight walls L,, the pinning time t* can be found as a function of temperature.
The pinning timet* isthe time needed for L, to decrease to length of the order of
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Fig. 2 - Calculations for the restricted model eq.(1) with only two stable
domains . Snapshots of the evolution of the ordered domains and the
domains walls during aquench (weshow one quarter of a 200x 200 system)
to T = 0.001 T .The white areas are the =X domains, the grey areas the
2 domains and the darker regions and single dots disordered spins, drawn
as - o indicating their deviation. At early times¢ = 100 MCS one sees
nucleation of £z domains in a disordered z-matrix, at later time { = 3000
MCS one sees that two kinds of domain walls have evolved i.e. the straight

stacking faults and the broad soliton walls.

anintersite distance. Thereforet* isthetimewhen the decreaseof the length of the
curved walls, L,, can begin. Fig. 5showsthat the pinning time decreases rapidly
with increasing temperature. For T > 0.15 T one observes kinks being emitted
from the corners to the sharp walls. This dlows L, to decrease independently of
thelenth L,, and thisstart to break the hierarchical pinning mechanism. Therefore
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Fig. 3- The average excessenergy AE(t) for T = 0.01Ty relative to the
stable, single domain ground state energy Er (oo) is plotted for two system
sizes @) 100 X 100 for 14 runs and b) 200 x 200 for 3 runs. Consistently,
an early regime isfound with an exponent N ~ 1/2 and a sharp crossover
to a second regime with a smaller exponent N ~ 1/4; c) shows the excess
energy for 9 different 200 X 200 systems which develop into a metastable
slab configuration. The signatures indicate the excess energy relative to
Er (oo) as above, yielding too low exponents. The excess energy relative to
the relevant, higher slab energy Er (oo)mb is between the limits indicated
by —.— and —..—. Both the exponents and the crossover for the corrected
excess energy agree with the stable cases a) and b). At much later times
t > 25000 MCS finite size effects are detected for separate runs (V).

the pinning becomes irrdlevant for the late time behavior, and the system develops

into a case corresponding to an all curved walls system. The scaling theory for
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Fig. 4 - The exponent N for quenches to various finite temperatures for
a N = 100 x 100 system averaged over 15 Monte Carlo runs. A clear

cross-over from n = 1/4 ton = 1/2 isseen.
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of a barrel shaped domain with
curved walls of different length
L,, but the same length L,
straight walls. The pinning time
decreases rapidly with increasing
quench temperatures.
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this case gives the Cahn-Allen exponent n = 1/2. The decrease in the pinning

time is consistent with the cross-over in the exponent shown in fig. 4.

To obtain the algebraic growth laws it is imperative that the system has

a scaling behavior. Therefore, the obtained results from the specific model are

expected to have more general validity and to shed light upon the general aspects

o the new, unexpected slow-domain-growth universality class.
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Resumo

O crescimento de dominios apés um processo de témpera a temperaturas ' muito baixas
ou finitas 6 analisado através de teoria de escala e simulagfes Monte Carlo. Obtém-se que o
expoente de crescimento para a energia de excesso AE(t) ~ t7™ aproximase de N ~ 1/4
paraT — O. A teoria de escalada exatamente N = 1/4 para o caso de movimento hierérquico
de paredes de dominio. Isto explica a existéncia de uma classe de universalidade de crescimento
lento, recentemente descoberta. Mostra-se que esta é uma classe de Allen-Cahn singular, a qual
pertencem sistemas com paredes de dominios de curvaturas tanto finitas quanto exatamente zero.
O modelo estudado tem variaveis continuas, parametro de ordem nédo-conservado, e dois tipos de
parede de dominio: falhas de espalhamento retilineas e bem definidas, e paredes largas e curvadas,
semelhantes a solitons. Para processos de témpera a temperaturas mais altas obtém-se que o
expoente de crescimento aproxima-se do valor cléssico de Allen-Cahn, N = 1/2.
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