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Abstract We consider analytic stochastic regulariration for various gauge theories. We 

find a breakdown of gauge invariance in spinor and scalar QCD by an explicit one-loop 
computation of the two-, three- and fow-point vertex function of the gluon field. As a 

result, we prove that these theories require non gauge invariant counterterms. We observe, 
on the other hand, that in the supersymmetric multiphts there is a cancellation of unwanted 

terms, rendering the counterterms gauge invariant. The case of supersymmetric matter 

fields and supersymmetric gauge contributions are considered at  one loop order. 

1. Introduction 

Non abelian gauge theories are in a rather distinguished position in the set 

of field theories. This is so because local symmetries are very difficult to be main- 

tained in the process of quantization. For example, dimensional regularization 

is, in practice, the only regularization scheme preserving gauge symmetry. On 

the other hand, this procedure breaks supersymmetry and must be discarded in 

those cases where this latter symmetry is an important issuel. Besides that, 

non perturbatively there are the Gribov ambiguities which prevent a clear gauge 

specification2. It must be mentioned also that although computer simulations us- 

ing Monte Carlo methods have unveiled a lot about the structure of gauge theories, 
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the inclusion of fermions still poses a difficult problem not only theoretically but 

also concerning computer time as wel13. 

In view of the above problems, the stochastic quantization method4 is a posi- 

tive proposal which can circumvent, a11 at the same time, the mentioned difficulties. 

To start with, the gauge fixing procedure is not necessary, at least in the usual 

sense, since it is already incorporated in the initial conditions. Therefore, Gribov 

ambiguities are simply not an issue to be discussed. 

Computer simulations of gauge theories on a lattice require much less com- 

puter time, since the introduction of the Langevin time permits the updating 

of the whole Iattice data at one step, permitting studies of spinor fields using a 

reasonable amount of computer time. 

The issue in the present paper, however, concerns the obtention of a new reg- 

ularization scheme based on the Langevin equation with a non Markovian process. 

This is a procedure not related to space time, and some authors claim that indeed, 

such a regularization scheme is able to preserve a11 symmetries of the lagrangian, 

including gauge symmetry and super~ymmetry~.~.  As a matter of fact, there are 

many results in this direction, partially confirming this hypothesis. It has been 

shown that QED vertex functions with zero externa1 momenta vanish, as in di- 

mensional regularization; therefore, the highest divergence in the corresponding 

diagram cancels, and there is no mass counterterm. A one-loop calculation in 

2-dimensional scalar QCD confirms this fact, and it can be shown, in fact, that 

a11 counterterms in that model are gauge invariant. However, in four-dimensional 

gauge theories there is an induction of non gauge invariant counterterms, con- 

taining derivatives of the gauge field. We present a detailed computation of the 

polarization tensor and of the three and four vertex function of scalar QCD. Be- 

sides the usual transverse (gauge invariant) terms we found a divergent part of the 

form A'd2 A,. This may appear quite innocuous in the abelian case, but consti- 

tutes a breaking of gauge symmetry in the non abelian case. We show how one 

can possibly handle the problem in perturbation theory but non perturbatively 

this is an open problem. 
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In spinor QCD case, the situation is not better, and again, non gauge invari- 

ant counterterms have to be added. Already at one loop leve1 again, we find a 

counterterm Afia2 A,, spoiling the explicit gauge independence. 

However, when QCD is coupled to supersymmetric matter fields, nameIy 2 

bosonic and one fermionic field with the same charge, the matter contribution to 

that dangerous counterterm vanishes. Moreover, if vve add fermions in the adjoint 

representation, a cancellation of gauge dependent coimnterms arising from the gauge 

field self energy occurs as well, showing that cancellation of gauge dependent 

counterterms happens for supersymmetric Yang-Mills coupled to supersymmetric 

matter fields. Therefore, the scheme is gauge independent, at leat to one loop 

order, for supersymmetric gauge theories. 

A note on possible difficulties about current conservation in the framework 

of stochastic quantization has already appeared6. However, there was no clear 

indication of how it would appear for quantized gauge theories. In the present 

work we discuss the appearance of infinite counterterms spoiling that symmetry 

in the Langevin equation, disproving previous clainls that gauge symmetry is au- 

tomatically preserved in this scheme. 

In section 2 we review the general rules of stochastic quantization for scalar, 

vector and spinor fields. Then we compute the polarization tensor for two- 

dimensional scalar QCD. We compare the results with dimensional regularization. 

Next, in section 3 four-dimensional scalar and spinor QCD are discussed in the 

externa1 field approximation. In section 4 we discuss supersymmetric models. 

Discussions are in section 5. 

2. Stochastic quantization and analytic stochastic regular- 
ization 

2.1. Feynman rules 

We start from the Langevin equation for an arbitrary field p(z, t )  and its 

corresponding noise q (z, t). 
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(2.1) 

The variable t is called the fifth time, S is the classical action, and the noise 

has two point function given by 

< qi(z, t )~j(z"t i )  >= 26;,6(z - zf)6(f - t') (2.2) 

and any higher funtions are given by Wick's decomposition (higher connected 

functions vanish). 

From the Langevin equations we compute the field (o, (z,t). Averages in 

are, by definition, usual averages for functions of (o 

and with this Markovian process we are able to define the field theory. This is 

done defining Green functions as the stationary (t + oo) limit of the statistical 

average 

< T(oil(zl) ...pi, ( zN)  >= lim < pil(zl,t)...(oiN (zN .t) >, 
t- 03 

(2.4) 

Originally developed for bosonic models, it was only recently that stochastic 

quantization of fermions received a physically consistent treatment. The starting 

point is a generalization of tbe original Langevin equation by means of the intro- 

duction of a Kernel Ki (notice that (2.1) is incompatible with the dimension of 

fermion fields, since dim[t] = -2) 

where vi is the classical noise with correlations 
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In the case of free fermion with classical Euclidean action8 * 

Kap ( G Y )  = (i 3% + m)aaJ(?: - Y )  

and the free fermionic Langevin equation is 

With these considerations out of the way, we wirite down the general Feynman 

rules and propagators. 

In perturbation theory we separate the quadratic part of the action, from the 

interaction 

and the Langevin equation is rewritten as 

where 

Dij = bij(-a2 + m a)  for a scalar field, 

D,, = -6," d2 i- d, 8, for a gauge field, 

Da8 = -i a,@ + m6,@ for a fermion field. 

* Our Euclidean 7-matrices satisfy (7, ,r,) = -26,, 
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The propagator is given by 

It exists even in the case of a gauge field, due to the presence of the fifth time 

derivative. Indeed, we have 

Gik (k; t )  = bikO(t) exp(-t(k2 i- m2)) (2.13) 

for a scalar field 

kp kv k p  k v  c,,, (k; t) = {(a,, - -) exp(-tk2) + -kl}e(t) 
k2 

for a gauge field, while for a fermion we have 

which is very similar to eq.(2.13). There is a longitudinal piece in the gauge field 

propagator which is worth noting. It does not contribute to the Green functions 

of gauge invariant objects, as has been noted elsewhere. Inside Greens functions 

it does not contribute either, as far as the gauge field is coupled to a conserved 

current, in the presence of a cut-off. Thus it is dangerous if one uses a non gauge 

invariant regularization scheme. 

The Langevin equations (2.11) can be solved iteratively as usual, and using 

the correlation functions of the V fields, an arbitrary Green function of the p fields 

can be computed. We obtain a set of rules7sQ : 

i) draw the topologically inequivalent diagrams. 

ii) two contracted V'S form a crossed propagator, to be computed below. 

iii) every loop contains a crossed line. 

iv) two external vertices can not be connected by a continuous path of lines 

without crosses. 

v) any crossed line can be connected to an external leg by a sequence of 

uncrossed lines. 
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vi) the number of crossed lines is given by 

N, = (loops) + N(externa1 lines) - 1 

following, 

vii) to the lines we associate the propagators 

uncrossed line: 

G(x, t) 

crossed line: 

After setting the Feynman rules, we are able to build any unregularized dia- 

gram, which is, in general, divergent. There are always diagrams as divergent (in 

the power counting sense) as those of the usual formulation of field theory. Since 

any loop contains a crossed line (rule (iii) above) we introduce a regularization in 

the noise, which is a non Markovian element in the statistical process6 

< ~ i ( x , t ) ~ , ( x ' , t '  >= bij6(z - z') f,(t - t') (2.18) 

with 

lim f, (t) = 26(t) 
c- o 

We will make a choice very similar to analytic regularization 

With this regularization, the Green functions are meromorphic in c with poles 

on the real axis. Different c's could be used in different lines, as in analytic 

regulari~ation'~~' . 
The regularized crossed propagators is given by 
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The above function may be explicitly computed to provide, for a scalar field 

= ,it (Pa + m2)-'-C 

while for fermionic fields we have 

where 
n i = Er(6) sin -(I - E) 
2 

Relevant terms to a one loop computation are 

" dw lnw 
exp(-(iw(pa + m2)(t, - t,)) + 0(r2)) (2.25) 

The first term is exatly the same as that obtained with analytic regularization, 

the only difference lying in the fact that only crossed propagators are regularized. 

2.2. An example 

To illustrate the use of the regularization method introduced before, we 

will calculate the lowest order contributions to the polarization tensor of two- 

dimensional scalar QED. The photon polarization tensor, G,, is a convenient 

object to focus our attention as it must be transverse if gauge symmetry holds12. 
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This is also a good test on the advantages of the new regularization method be- 

cause, as the reader probably knows, the usual analytic regularization method of 

field theory induces a mass counterterm, breaking gauge invariance. 

The model is described by the Lagrangian density 

where 

F," = a, A" - a,, A, 

and 

D, = a, + ieA, 

is the covariant derivative. The Langevin equations governing the evolution of the 

fields A,, p and p* are 

with the random field q, , q  and q* satisfying 

< r/, (x, t )q ,  ( x f  , t ' )  > = 26," f, ( t  - t 1 )6 (x  - x') 

Solving these equations iteratively we found in lowest order of perturbation 

the graphs shows in fig. I. Note that there is one graph contributing to fig.I.a, 
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four graphs contributing fig. 1.b - they correspond to different graphs with the 

same topology having two crossed lines, one externa1 and the other internal - and 

two graphs for fig. 1.c. To get a better idea of the details of the calculation, 

we divide it in two parts. In the first part we calculate the amplitudes for the 

graphs, neglecting the contributions of the second term in eq.(2.25) to the crossed 

propagators. Also, for simplicity, in computing correlation functions, we suppose 

that the fifth times of the fields are a11 equal and very large. We then integrate 

over the fifth times of the internal vertices and keep only the dominant terms (i.e., 

only those surviving in the infinite fifth time limit). In the appendix A, for the 

reader's convenience, we have included more details of the calculation. For the 

graph 1.a we get 

I a B  

8 , . -' 
IbF 

I b B  

Fig.1 - Diagrams contributing to vacuum polarization functions. B stands 
for interna1 bosonic Iines and F for fermionic. 

As explained in the appendix, the factor 2 on the right hand side of this 

equation comes from the two possible orderings of the internal times (r, > r2 or 

ri < 72). Integrating over T~ and r2 we get 
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This expression is very difficult (even for E = O) to be evaluated. Although in 

two dimensions we could still obtain a closed form for it, we find it more instructive 

to employ a different procedure which has the advantage of being generalizable to 

four dimensions. The basic observation is that ?r,, is analytic in m for big enough 

m (equivalently, for small p). Then T,,, can be expanded in powers of m-' (or, 

equivalently, in powers of the externa1 momenta) and the transversality property 

of ?r,, will be correct only if it is satisfied at each order of the expansion. In 

the forthcoming calculation we will analyse the terms of the mentioned expansion, 

up to the first one to be finite when the regularization is removed. With this 

approximation we have 

dak 2k,ku 6, v -- 
I." = / (k2 + m2)3+2< - 8Tp2m2 + o (€1 (2.31) 

For the graph of fig. (1.b) the calculation is also straightforward but a little 

bit more extensive. From the appendix A we get 

Finally, the graph of fig. (1.c) gives 

where the extra factor of two comes from the two graphs of fig.(I.c). 

Adding the contributions eqs.(2.31-33) we note that the divergent pieces ex- 

actly cancel, leaving the result 
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which is, evidently, non transverse. This expression should be compared with the 

one employing the usual analytical regularization of field theory. In that case the 

regularised integrand is obtained by replacing the free propagator (p2 + m2) by 

(p2 + m2)'. With this substitution we get a polarization tensor differing from eq. 

(2.34) just by a term which vanishes after a judicious choice of the participating 

lambdas. Thus, up to this point there is no great advantage in using stochastic 

analytic regularization instead of the more usual one. However, we still have to 

compute the corrections coming from the neglected terrns in eq.(2.25). These 

terms are very important because, as we shall see right now, they will make the 

final result gauge invariant. Firstly notice that there is no correction coming from 

the graph of fig. 1.a since it is finite without the regularization. The contribution 

of the remaining graphs is not difficult to be evaluated (see appendix A) and we 

get the following additional terms 

6, -- from Fig.1.b 
.(p2))" 

-- 6," -- from Fig. 1.c 
27r(p2)2 

Adding a11 these contributions we get a miraculous cancellation of the non trans- 

verse parts, leaving the net result 

The cancellation of the non transverse terms is a consequence of a general 

theorem proven13, asserting the non-existence of mass corrections to the photon 

field. However, tbe mentioned theorem does not preclude the induction of non 

gauge invariant terms, ccntaining derivatives of the A, field. 

3. Gauge invariance in Cdimensional scalar and spinor 

QCD 

The computation of the polarization tensor in 2-dimensional QED, with a 

transverse result, indicates that stochastic regularization may be a very efficient 
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method for the study of gauge theories, specially in cases where dimensional reg- 

ularization is not apropriate. However, there are problems in four dimensional 

non-abelian QCD12. We study the theory defined by the lagrangean density 

where 

F,, = 3, A, - &A,  + ie(A,, A,] ( 3 . 1 ~ )  

with ra the generators of the gauge algebra. In the above we introduced flavor 

indices for bosonic and fermionic fields; in the following we treat the two contri- 

butions separately in order to analyse them. 

The Langevin equations are 

A, = DpFp, - iep* D,p + 77, ( 3 . 2 ~ )  

( t , = D p D p ~ - m 2 ~ + v  (3.2b) 

e* = D,D,(o* - m2p* + v *  

d a  = - { ( p  - i m ) ( B  +im)+),  + O ,  ( 3 . 2 ~ )  

J ,  = - { + ( a ,  - im)T (pfl  + im)T 1, + B, (3.2d) 

with D; = -3, - ieA,. 

Where, as proposed in ref.(8) we used the modified covariant Kernels 

However, in the one loop computation we can drop the gauge field contribution 

in some expression and we use 
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Notice the presence of the exponent 2é in the next to last expression, im- 

plying a factor 1/2 in the final result. In particular, the value of dimensional 

regularization is 1/2 with D = 4 - 26. 

The fermionic contribution with two interna1 crossed lines, corresponding to 

fig. (1.a.F) is given by 

where the trace has already been performed. The resulting divergent piece is 

computed expanding in the externa1 momenta, as in eq.(3.7) 

&,v = ---- + finite terms 
32p2 ir2 c 

This value is one-half the result obtained in dimensional regularization with 

D = 4 - 2 ~ ,  and minus twice the corresponding bosonic value. We shall comment 

further on these results later on. 

Further diagrams are computed in the same way. For bosons, we have (1.b.B) 

and (I.c.B), which are given by the following expressions (equality holds for infinite 

parts) 
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where again expansion in the external momenta has been performed to separate 

the divergent parta. 

For diagrams (1.c.B) we have 

We note that the mass counterterm for the gauge field cancels between 

eq.(3.10) (first term on the r.h.s.) and eq.(3.11). 

The fermionic contributions are given by 

The next step is the computation of diagrams with three and four gluon 

lines. Let us first give the detailed computation of the scalar case, and afterwards 

the results for spinor QCD,. In the set presented in fig. (1I.a) there are 18 

lineady divergent diagrams, which cancel (their divergent contribution) in groups 

of two. This is expected, otherwise there would be charge-conjugation-violating 

counterterms B, A, A, A, .  These diagrams do not have counterparts in spinor 

QCD. The other set of topological similar diagrams with 3 external gluon lines 

has also 18 diagrams. A simple computation is presented by the representative 

diagrams (1I.b.B) 
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Fig.11- Representatives of 3 external gluon lhe  diagrams. In order to obtain 

the full function, one muat add appropriate permutationa. 

where the external field propagators have been eliminated. After the usual mo- 

mentum expansion we have 

which, after addition of other diagrams with the corresponding changes of mo- 

menta and indices, gives 

2e3 
z ( 1 1 . b . ~ )  = - - tr(d, A, - 3, A, )Ap A" (3.16) 

(47r)2 € 

The corresponding fermionic contributions are given in (1I.b.F) 
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We come to diagrams with four external gluon lines. They can be grouped 

in sets of topologically similar diagrams. Consider the set whose typical diagram 

is (1II.a.b) which has two interna1 lines. They are 48 in number. This diagram is 

given by 

- - 2e4p; + finite terms 
( 2 ~ ) ~  E(P: + P; + P; + P:) 

Adding a11 contributions we have the result 

3e4 

lII.a.B = -tr(A, A,)2 (3.19) 
47r2 € 

There are also 144 triangular diagrams, which may be grouped in 12 groups 

of twelve digrams, in such a way that in each subset the label of the external line 

is b e d .  Let us take the diagram shown in fig. (II1.b.B) 

- - e4pp:tr(A,A,)2 1 -- + finite terms 
p: + p; + p; + p: 2 ( 4 ~ ) ~ ~  

Further diagrarns are sirnilarly computed, and the result of this group is 



Analytic stochastic regularization: variou3 ... 

Finally, we get to the box diagram (1II.c.B). There are 96 diagrams, separated 

in group of 16, fixing the labels of the externa1 legs. The exemplified case of 

(1II.c.B) is given by 

Further diagrams are computed similarly. Taking into account the correct 

combinatorial factors we obtain for this set 

3e4 e4 

1II.c.B + other = -tr(A,A,)' + -tr[A,,A,I2 
4n2 c 97r2 E 

Notice that the terrns (A,A,)' cancel between eqs.(3.19), (3.21) and (3.23). 

In the fermionic case we have only the set corresponding to tlie box diagrams, 

fig. (III.c.F), which can be computed similarly 

We may now gather a11 results, and write down the counterterms, once we 

have the constants 
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Fig.III - Representatives of 4 externa1 gluon diagrams. 

From the details of our computation it is not difficult to see the root of the 

problem, and verify why gauge invariance is broken. We look at the diagram 

with two crossed interna1 lines, (1.a.B) and (I.a.F), respectively for bosons and 

fermions. Then we verify that there is a doubling of the regulator (in this diagram 

it is always 2c instead of c appearing).This implies an extra factor of 112 only for 

this diagram. A cross-check is the computation of this diagram with dimensional 

regularization, with D = 4 -- 26. It turns out that all results are the same, with 

the exception of diagrams (I.a.F,B) where a factor 1/2 appears, generating a non 

zero Z,FrB. 

In non stochastic approachs we have to add gauge fixing terms (and Fadeev- 

Popov fields) to the Lagrange density. In Lorentz gauge we add k(a,A,) ' .  In 

the abelian case this term could absorb Z2, but that is not the case with non 

abelian symmetries. In general, observables must be ai-independent, and that is 
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the case only if A, is coupled to a conserved current. In stochastic quantization 

the problem is very severe", since the longitudinal part of A, field has a piece 

proportional to the fifth time, and it is mandatory that the gauge field be coupled 

to a conserved current. 

4. Supersymmetric gauge theories 

Although last section presented the method in a very bas shape, we will now 

comment on the status of supersymmetric gauge theories and claim that in this 

case a11 gauge breaking terrns cancel between bosonic and fermionic contributions. 

First notice that the phenomenon happens in the supersymmetric matter 

contribution to 2,. The bosonic and fermionic counterterm lagrangian are 

where ntl and n~ are the numbers of bosonic and fermionic fields. In supersym- 

metric matter fields n, = 2nF = 2n and the supersymmetric counter-lagrangian 

is given by 

-n 
6Lçvsy = -(Fzu)2 96n2 E (4-3) 

which is gauge invariant. 

In the case of N = 1 supersymmetric Yang-Mills multiplet the result is similar. 

We have to consider now the gauge field contribution to the loop, as well as a 

Majorana fermion contribution, in the adjoint representation. The gauge field 

contribution is the same as in scalar matter, with an extra factor of 2 coming from 

a combinatorial, while the fermionic contribution is the same as previously. Thus 

we get, as counterterm, 
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which is, again, explicitly gauge invariant. 

There is neither any break of supersymmetry, since the regularization process 

is independent of space-time, although we did not deal with supersymmetric Ward 

identities. But it is worthwhile mentioning, that usual supersyrnmetric cancella- 

tions of divergences occur. 

5. Conclusions 

We stablished, in this paper, case examples where stochastic quantization can 

be used to define a stochastic regularization prescription. Although the process . 

is perfectly well defined as a regularization procedure, there may be problems in 

connection with gauge invariances in non perturbative scheme. 

For abelian gauge theories the method is clearly advantageous, and possibly 

provides a good alternative to the use of dimensional regularization in chiral the- 

ories. Indeed, in lower dimensions (d < 4) the polarization tensor is transverse 

and gauge invariance is not broken (even in the non abelian case). In four dimen- 

sions because of quadratic divergences, there is induction of a non gauge invariant 

counterterm A,a2 A,. Technically, this happens because the number of interna1 

crossed lines (which are affected by the regularization ) varies from graph to graph, 

causing unbalance of weights among them due to difference in the regular action. 

Thus, non invariant pieces do not cancel one against the other. This is related 

to the fact that the gauge field is not coupled to a conserved current, which is a 

necessary condition if the scheme is to be gauge invariant. The problem is not very 

dangerous in the abelian case since the non invariant counterterm can be rended 

to a renormalization of the gtiuge fixing term in field theory, or of the fifth time 

in stochastic theory. 

In the non abelian case the situation is really serious, since it is no longer 

possible to relate it to (a, A')' plus gauge invariant counterterms. The problem 

is that renormalization of the gluon polarization tensor is now dependent on the 

renormalization of the three and four vertex function of the gauge field. At the 

perturbative leve1 we could remedy this desease by attributing different epsilons 

to different crossed propagators. This is not the original spirit of the method, but 



Analytic stochastic regularization: various ... 

one can obtain gauge-invariant amplitudes if the epsilons are chosen adequately. 

Non perturbatively however, there is not, up to the present, any prescription which 

guarantees gauge invariant results. 

Nonetheless, in supersymmetric theories, at the one loop level, we have a 

positive result, since non gauge invariant counterterms cancel between bosonic 

and fermionic contributions. Although we verified this 'result only for the infinite 

part, and at one loop level, it is very rewarding, since there is no scheme of 

regularization preserving at the same time gauge and supersymmetry of shell. 
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Resumo 

Teorias de gauge não abelianas ocupam uma posição de destaque em teorias de campo. 

Isto acontece porque simetrias locais dificilmente se preservam depois do processo de quantisyáo. 
Regularizacc dimensional 6, na prática, o único esquema de regularização que preserva simetria de 

gauge. Por outro lado, este procedimento quebra supersimetria e não deve ser considerado quando 

esta última 6 a simetria relevante. Além disso, num tratamento perturbativo, as ambiguidades 

de Gribov impedem uma especifica.ção de gauge clara. Deve-se mencionar ainda que apesar de 

simulações numericas usando m6todos de Monte Carlo terem revelado muito sobre a estrutura das 

teorias de gauge, o inclusão de fermions ainda coloca um problema diffcil, não somente do ponto 
de vista teórico como o do tempo de computagáo. 


