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Abstract In the present paper we study the family of integrals A, (ak) =

J5 e*in* 012 (1 - K2 cos ¢)=»~1/7d¢ 0 < k<1andv > —1/2 arereal pum-
bers. First we establish arelationd A (ak) with confluent hypergeomet-
ricfunction o two variableswhich leadsto a seriesexpansion of A, (a, k) for
small k. We also obtain recursion formuladf A, (a,k). We can easily verify
that Ao (0, k) = 2(1+k2)/2K(A) and A, (0, k) = 2(1+k?)~*/2(1—-k?)~ ' B(})
where K (A) and E(}) are complete elliptic integrals of first kind and of the
second kind.

1 Introduction
Epstein and Hubbell' have treated afamily of integrals

”

0,(6) = (1= cosg) 7 dg 1)

o
where 0 < k < 1 and j is a positive integer. These integrals are encountered
in the application of a Legendre polynomial expansion method? to certain prob-
lems involving computation of the radiation field off-axis from a uniform circular
disc radiating according to an arbitrary angular distribution law®. In a follow-up
note on Epstein-Hubbell work®*, Weiss® obtained an expansion of eq.(1) in the
neighbourhood of k* = 1 and established its relationship with Legendre and hy-
pergeometric functions. The function defined in eq.{1) has a singularity at k =1
and plays in important role in analysis.
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For specia vaues o j, the integral eq.(1) reduces to the complete elliptic
integrals o the first and the second kind. It can be verified that

0 (k) = (V2A/R) K (Y) (2)

where
N =2K?/(1+Kk) (3)

and K (X} is the complete elliptic integral of the first kind defined by

®/2
K(}) = / (1 - X*sin® ¢) "/ ?dg (4)
Similarly
0, (k) = (V2X/R)(1/(1 - K))E(A) (5)
where
r/2
E(}) = / (1 — A?sin® ¢)'/%d¢ (6)

0
is the complete integral o the second kind.

Several mathematicians including Epstein®, Hubbell®, Weiss®, Kalla®, and
Al-Sagabi! havestudied generalized dliptic-type integrals. Recently Kalla, Conde
and Hubbel1” have defined and studied certain generalized elliptic-type integrals.

In the present work, we study the family of integrals

n

A, (e, k) =/CZP(O‘Sin2 ¢/2)(1—k2 cos¢)""1/2d¢

0
0< k<1 aandv > —1/2 are real numbets. The importance of 4, (e, k)
stems from the fact that several elliptic-type integrals are simply specia cases of
them, and thus each recurrenceformula, identity or asymptotic formula, devel oped
here becomes a master formula from which a large number o relations for other

functions can be deduced.
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2. Some dlliptic-type integrals

Recently Kalla® has studied the function

[ sin® 6d8
Sﬂ(k,l/): (1_k2c°so)[l+1/2
0

(7)

where0 < k <1, Re(v) > —1/2and Re(u) > —1/2. He obtained series expansion
and some other formulae. Further, Kalla, Conde and Hubbell’ have studied a
more generaized elliptic-typeintegral in thefollowing form

"

Fulboen) = o'/ (1 — k2 cos 0)

cos?2~1(8/2)sin®* %>~ (6/2)d6 "
“+1/2 ( )

0< k<1, Re(v) > Re(e) >0 and Re(p) > —1/2. We observe that for v=2a

B(k, o, 20) = 2"~ S(k, & — 1/2) 9)

and also
R, (k,1/2,1) == S;(k,0) = 0, (k) (10)

where j is a non-negative integer. Iurther

Ry (k,1/2,1) = 0 (k) = (V2A/R) K(A)

and also
Ru(k,1/2,1) = 0 (k) = (VEM[K(1 - KD E()

where X2, K(A) and E(A) have been defined in eqgs.(3), (4) and (6) respectively.
Kalla, Conde and Hubbell' obtained a series expansion o R, (k,a,v) and es-
tablished its relationship with Gauss hypergeometric functions. They obtained
asymptotic expansions d R (k,a,V) in the neighbourhood d k* = 1 and also
obtained some recurrence formulas. Then they computed some numerical values
d R (k,a,v) for selected values d u,k,aand v.

Kalaand Al-Sagabi® have studied the family  integrals o theform
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[ cos?™ 4dd
KM (k’m) =/ (1 — L2 cosa)u+1/2 (11)
0

whereO « ™ < 1, Re(u) > —1/2 and mis a non-negative integer. They used the

differencing tec™niques to express K,( k, m) and S,(k, v} in terms o the confluent
hypergeometricfunctions. The methods o steepest descent was applied to obtain
some relations with other functions. Some results were computed numerically and
particular cases were mentioned. Recently, Al-Sagabi' further studied the family
o integrals o theform

[ cos™ 8sin® ddd
B,(k,n,8) = /(1 — k3 cos B)u+1/2 (12)
0

wher1: 0 < k <1, Re(8) > —1/2 and n is a non-negative integer. It can be
ol ,erved that for =0

B, (k,n,0) = K, (k,n) (13)

and forn=0

B, (k,0,8) = 5, (k, 5) (14)

Further, for 8 = n=0and g = j, we have

B, (k,0,0) = K, (k,0) = §;(k,0) = Q; (k) (15)
and for j =0 we get
By (k,0,0) = Ko (k,0) = 5,(k,0) = 0 (k) = (V2¢/R) K(¢£) (16)
and for j=1
B, (k,0,0) = K (k,0) = 5, (k,0) = 0, (k) = (V2¢/k(1 — #*)) E(¢) (17)
where

2k?

f’=mi K(¢) and E(¢)
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are the complete dliptic integrals o the first kind and the second kind defined
in egs. (4) and (6) respectively. First Al.Saqabi’ obtained a series expansion
o B, (k,n,B8) for small values o k then he established a relation with Gauss
hypergeometric function. He also established an asymptotic formulafor B, (k,n, 8)

by using a simple method.
3. Elliptic-type integralsa, (ak)
In the present paper, we study the family of integrals

"

A, (o, k) = /eavp(ozsin2 $/2)(1 — k* cos ¢)™*~*/?d¢ (18)

[
0<£k<landwv > —1/2 are red numbers. First we establish a relation o
A, (a,k) with confluent hypergeometric function of two variables which leads to
a series expansion of A, (a,k) for small k. We also obtain a recursion formula of

A (a,k). Wecan easily verify that

Ao (0, k) = 2(1 + k*)~ 2 K ()) (19)
and
4 (0K) = \/_ﬁ‘rf (1- k) E(}) (20)

where K(X) and E()) are complete elliptic integrals of the first kind and o the
second kind defined in egs.(4) and (6) respectively. If v is a positive integer (say
7) and a= 0, then

A;(0,k) = / (1 - k? cos ¢) 7" dg = N, (k) (21)

We further observe that
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1
Ao k) = 2(1+ k%) 7" /eaa(l ey (1

0

2k? ~-v-1/2
1+k2) dt

1
= (1+k2)""’1/2/e"‘u‘1/2(1—u)-llz(l—~A2u)—v—1/2du

0

—y— 1 1
=7r(1+k2) 1/2<I>1(§,u+§,1;)\2,a)
where 42
2
A2 = T‘FE{ and ‘bl

is a confluent hypergeometric function of two variables defined as

ING)

= mm u““(l~—u)c_a_l(1—uw)—be"'du
: ]

¥, (a,b;c;w, 2)

Re(a), Re(c —a) > 0. Hence the series expansion for A, (e, k) can be written as

NOWEDE

‘ s
A (ak) = —
(1 + ]‘:2)""”1/2 k,tZ=0 (l)k,,_gk! fa]

For a= 0, we get

®

A, (0,k) :/(1—k2 cos¢)‘"“’2d¢ (22)
o
Hence by the series expansion of &,, we obtain
The results egs.(19) and (20) follows directly from the formula by giving the value
d v =0and v = +1 respectively. Hence for special value of v and a = O, the

142



On a elass of generaiized elliptic-type integrais

integral eq.(18) reducesto the complete eliptic integralsof the second kind. For

the particular casev = 0, we can write
2 -1/2 11
bR =7(3=5) oF(GiptY)
and
2 -3/3 31
A, (0,k) = (—2_,\2) 2Fl(-z-;—z-;l:/\’)
4 Asynptotic expansion
Since
/t"le"dt =T'(2)
0o

oo

-ptga-1 g, P
/e t*tdt T’

Re(p) >0
0

By pattingt pt =u, the integral on the left, hand side becomes

17 o, T
;;-/e w~ldy = o
0

for Re(A) > Q Hence

o

1 1
- —ptpr-1 = — =g 2
ey /e trtdt po 4

0

By cornparing egs. (22) and (24) we obain —A =v + . Hence

1 o0
/e—pet—,\-a/zdt - pu+1/2

where Re(—v — 1/2) > 0 or we can say R(v) < ~1/2. By putting p =

(1 - k2 cosé), we obtain

(24)
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(1_k2 cosﬁ)_"'ll2 _ I‘(+i+ %)

/e—t(l—k’ cos 9)t+v—1/2dt
0

But we have

A, (ak)= /czp(asin’ g) (1 -k cosqS)_u_l/quS

o

= I‘(ul-(» %) O]ezp(asinz %) [O]oe"“"‘z°°’4’)t"_1/2dt}d¢

Lis

exp(osin? %)dd)[]o "~ ezp(—t(1 — k® cos ¢))dt]
(0]

H
!
—
A
4 |l
o

"

oo 1_
= 1 /t"'l/ze“’dt/exp(k"’tcos¢+ o 2cos¢))d¢
1]

0

eslz T f a
= /t"“/ze"dt[exp(kztcosgé— E—cosqS)qu
1
I‘(u—i— ;) p p
me*/? f v—1/2 —t 2 @
= . /t € Io(k t— 5)
F(V-f- 5) °
ajz2 T v-1/2 s d
N (SR T
I‘(z/+ %) g
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Hence we obtain

af2 % L2
A, (o, k) = kel /exp(— xl—z—k—)z""l/"’e"Io (1: - g)dz: (25)
T (v + %) k 2
o
We have therefore exposed A, ( a,k) as a Laplace transform in which the coefficient
in the first exponent ((1 — k*)/k?) approaches zero as k? approaches 1. Hence we
can apply an Abelian theorem for Laplace transforms® to determine the behaviour
d A, (a,k) in the neighbourhood of k? = 1. To do this we note an asymptotic

expansion

n (% +n) 1

. R o\
TR s & G (s o) W

n=0
as z tends to infinity. Substituting eq.{26) into eq.(25), we find for the asymptotic

(26)

expansion of A,u(ak) :

A, (o, k) =~

el jeaves Ly (1) P(LHL) T'(v—n)
r(u+§)k2 1\/27"2;0 7 F(;—n ()

where Vv is not a negative integer.

5. Recurrencerelations

For finding the recursion formulaof A, (ak), we proceed in the following way

A, (0,k) = "(2 _2,72)-u_1/22F1 (V“,’ %i %;1 : '72)

2 -v-1/2 _ 2 1/2-v
=7 1—+2 "( )
=) -G

1 1., 2 \-v-1/2
n -] (25)
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Hence we obtain

2
-

LOK) = (=) (1-¥) A0k

It is known® that

8, (o, B;viz59) = (1—2) "4y (7 - a,B;7; z—fl,-—y)

Hence
T 1 1
A"(a’k)=m@l(g’v-l_—i;l;)\z’a)
_ T S\ v l - 22 B
B (1+k2)"+~1—/—2—(1_/\) ) ¢1(2’V i 2)

vt g, 1 1 2k?
=(l-—k2) e Ql(E,V—FE;l;m,—a)

=e"A, (~a,ik)

Hence we obtain
A, (a,k) =e"A, (~a,ik)

Finally | would like to express my sincere thanks to Professor S.L. Kallafor
his suggestions and comments for a better presentation of this paper. Thanks are
also due to Research Council of Kuwait University for sanctioning my research

project SM054 under which this paper was completed.
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Resumo
No presente trabalho estudamos a familia de integrais A, (ak)

fee "n’9/2(1 - k2cosg)~v1/2dp onde O < k < 1 ev.> —1/2 sdo nlimeros
0

reais. Estabelecemos a relacdo entre A, (a,k) e as fungdes hipergeométricas con-
fluentes de duas variaveis que conduz a uma expansao em série dos A, (ak) para
k pequenos. Também obtemos formulas de recorrénciapara A, ( a,k). Verificamos
que A, (0,k) = 2(1 + k3)*/3K()) e A, (O,k) = 2(1 + k?)~/3(1 — ¥?)~* B()) onde
K(A) E(A) sdo integrais elipticas de primeira e segunda espécie.
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