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Abstract  We present a simple pedagogical method to evaluate the min- 
imum attainable temperature for laser cooling of twdevel neutral atoms. 
Results are given as a function of the laser detuning and intensity. We also 
discuss the use of this approach to predict the minimum temperature of 
neutral atoms confined in magnetic traps. 

1. Introduction 

There has been as  increasing interest in laser cooling and trapping of neutral 

atoms during the past few years. This interest arises mainly from the need to 

reduce high order Doppler shifts in spectroscopic measurements and from the 

possibility of having a very hight density sarnple of extremally cold atoms, aiming 

the observation of collective quantum effects such as Bose-Einstein condensation 

and the study of collisions of cold atoms'. 

During the laser cooling process, the random nature of the spontaneous emis- 

sion introduces a heating effect which limits the minimum attainable temperature. 

From the experimental point of view, the knowledge of this temperature and its 

relationship to the laser detuning and intensity is very important. Calculations 

based on the cross section of the anti-Stokes spontaneous Raman scattering de- 

scribing the cooling process were already carried out by Wineland and Itanoa. An 

alternative approach to this problem, based on the analysis of the atom diffusion 

in momentum space, was presented by C .Cohen-Tannoudjig . 
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In this paper we describe a simple and pedagogical method to evaluate the 

ultimate attainable temperature as a iunction of laser detuning and intensity. Part 

of the method uses the diffusion of the atom in momentum space and is therefore 

similar to the one presented i11 ref. 3. However, the simplicity which character- 

izes this approach makes it suitable to analyse even trapped atoms subjected to 

magnetic fields. 

2. Radiative forces 

Two types of forces can be produced during the interaction of electromagnetic 

radiation with an atomic system. First, there is a spontaneous force which origi- 

nates from the momentum transferred to the atom during the photon absorption 

followed by the spontaneous emission. Second, there is an induced force which 

comes from the interaction of the electric dipole induced during the electronic 

transition with gradients of the radiation intensity. 

The usual approach to calculate the radiative force consists in treating the 

atoms as a two-leve1 quantum system and the radiation as a classical electromag- 

netic field4. In this approach the radiation force is given by 

- tLI'R2V0 + h(A $ 6)vCI2 F = -- 
4 ( A  + 0 ) ~  + r2 + 2R2 

(1) 

where 0 = pE(F',t)/h is the Rabi frequency, A = w - w, is the detuning be- 

tween the laser frequency and the atomic resonance frequency, r is the transition 

linewidth and O is the spatial phase of the electromagnetic field. In eq.(l) the 

term with the gradient of the phase represents the spontaneous force while the 

term with the gradient of the intensity for the induced force. When a plane wave 

is considered, we have just the spontaneous force given by 

4 

where k is the wavevector and v' is the atomic velocity. 
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The use of this force to c001 neutra1 atoms was independently suggested by 

two groups516. Let us consider an atom with velocity v' in the presence of two 

counter-propizgating laser beams with the same frequency, as shown in fig. 1. For 

small velocities, the net force acting on the atom is 

where 

is the saturation parameter for a single beam. In the present treatment we will 

consider s << 1 (negligible saturation). Otherwise, effects such as stimulated 

emission have to be taken into account, which makes the situation very difficult 

to be analysed and more general treatment, such as the one presented in ref. 3, 

have to be used. For negative detunings eq. (3) represents a viscous force in the 

direction of the laser beams. Therefore, the configurations of fig. 1 enerates the 

so-called "one dimensional molasses" in analogy to the three dimensional molasses 

demonstrated by S. Chu and others7. This viscous force has ben used to c001 atoms 

in atomic beamss and also trapped atoms

Q

. 
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Fig.1 - Configuration for one-dimensional cooling with 
two counter-propagating plane waves. 
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3. Energy balance and ultimate temperature 

Within the approach of considering the electromagnetic field as classical, one 

is left just with the viscous force given by eq. (3), which will bring the kinetic 

energy of the atom to zero. However we know that spontaneous emission, which 

appears naturally when the field is quantized, plays an important role in the 

cooling mechanism. Therefore, it is necessary to introduce an extra term into 

the rate equation for the kinetic energy. In the configuration of fig. 1, this rate 

equation is given by 

where Ki = $.rnvS, E is the ith component of the force given by eq.(3) and H, 

represents a heating term associated to the spontaneous emission. 

In order to find Hi one can look at the path followed by the atom in mo- 

mentum space after one absorption-ernission cycle. If the initial momentum is 

located at point O of fig.2, the absorption will take it either to point 1 or 2, which 

corresponds to a momentum transfer of hz. The spontaneous emission, assumed 

here to be isotropic, will take the atom to the ending point 0, due to the re- 

coil of the emitted photon. We can see that this process can have an ending 

point anywhere on the spherical surface with radius hk shown in fig.2, which has 

rotational symmetry around the P, a i s .  This leads to an average variation of 

the momentum components given by < (APz)2 >=< (AP,,)' >= (hk)'/3 and 

< A(AP,)' >= 4(Ak)2 /3 .  Therefore, the heating rate is given by 

where we have assumed rs /2  as the absorption and emission rate and the factor 

2 arises due to the fact that we have two waves (+z and - z  directions) and s is 

taken for a single wave. Eq. (4) can be solved for each Ki component and after 

adding them we get 
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where K, is the initial kinetic energy of the atom 

and 

px 

ENDING 
/ POINT 

EMISSION 

"2 

Fig.2 - Cross section of the surface in momentum space showing 
points where the atom may end after a cooling cycle. 

A plot of eq.(6) is shown in fig. 3. As we can see, the best one can do with 

one-dimensional molasses is to c001 the sample down to Kmi,. However, this has 

to be done in a time of the order of tmi,, which usually is in the ,us range. 

The configuration discussed above is not unreal, since for many trao config- 

urations the use of magnets to produce high fields may limit the optical access 

to the atoms. In this way, laser pulses may be a way to get cooler atoms using 

the Doppler cooling technique. If the time is much longer than tmi,, the present 

configuration does not produce an effective cooling, since the energy is transferred 

from the laser beam direction to directions transverse to it. However, one can 
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Fig.3 - Time evolution of the kinetic energy in the z-direction 
for the one-dimensional cooling. 

think of alternating the laser among the three directions (r, yandz). We have per- 

formed calculations concerning this situation and the results show that for cooling 

times (time that the laser spends in a specific direction) shorter than t,in, we 

always get the minimum kinetic energy as in the case of six laser beams discussed 

below . 
Another possible situation is the three dimensional configuration of laser 

beams shown in fig. 4, where six resonant laser beams illuminate the atom. In this 

case, the evaluation of the heating term is carried out by averaging the momentum 

in a surface made by six spheres with a common point. Fig. 5 shows a cross section 

of this surface. Now, the average momentum after one absorption-emission xycle 

is given by < A(APi)2 >= 2(fik)2/3. Therefore, the rate equation for the kinetic 

energy is given by 

where the factor 3 present in the last term arises due to the fact that for s k  laser 

beams, one has three times more heating than in the two bearns (one-dimensional) 

configuration. 
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Fig.4 - Laser configuration for the three-dimensional cooling 
scheme. 

Fig.5 - Cross-section of the surface in momentum space showing 
possible positions for the atom after a cooling cycle. 

In equilibrium we have dK/dt = O and this gives us the asymptotic kinetic 

energy for the process 

133 
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The minimum kinetic energy has an optimum value for A = -I'/2, corre- 

sponding to Kmin = 3tir/4. This is in agreement with the previous result of 

Wineland and Itano2. Eq. (7) has as solution 

where K, is the initial kinetic energy and 

is the cooling time. 

The results presented above are valid for a free sample of two-leve1 ato- 

submitted to a resonant laser light, in the form of a plane wave. However, it can 

also be used for severa1 trap configurations including magnetic fields or light fields, 

because in these cases the atoms are so limited ik space at the end of the cooling 

process that they do not suffer anly large variation of the resonance frequency due 

to these fields. 

As a numerical example, let us consider sodium atoms, which have I' 

10MHz. In this case, the minimum temperature (3/2k T,;, = K,in) achiev- 

able under optimum conditions (A = -F/2) is 240,uK. This has been observed 

experimentally

Q

. In the case of magnetically confined atoms1° cooled by laser 

light, one has to pay attention to the fact that even at temperatures as low as 500 

pK, the atom has enough energy to trave1 in a magnetic field gradient of the order 

to 10 G ,  which.gives an extra detuning of 15 MHz. In this case, since A may vary 

from r / 2  to 2r ,  one does not operate with the optimum detuning and T,in is of 

the order of 2 mk, much higher than the previous result. 
t 

Finally, we may still find cases where trapped atoms are submitted to only 

two counter-propagating laser beams but the asymmetry of the trap field will 
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produce a mixture of independent motions so that the effect is equivalent to the 

three dimensional cooling, but having a different cooling time. 

The above calculations show that the limiting temperature for laser cooling is 

of order 240 pK for sodium atoms. This is only true in the special appraximation 

of plane wave and a two-leve1 atom. In fact, temperatures as lows as 40 pK have 

been observed" for optically trapped sodium atoms. Of course this shows that the 

model we have assumed above is too simple to describe the reality of the atom-field 

interaction. However it is useful due to its simplicity and applicability in some 

cases. 
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Resumo 
Apresentamos um método pedagbgico simples para calcular a temperatura 

mínima no resfriamento com laser de átomos neutros de dois níveis. Os resulta- 
dos são apresentados como função da dessintonia e intensidade do feixe de laser. 
Discutimos o uso deste método para predizer a temperatura mínima de &tomos 
neutros confinados em armadilhas magnéticas. 


