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Abstract  The schematic model of central heavy ion collisions developed by 
Swiatecki includes the Coulomb and surface contributions to the potential 
energy of the system and one-body dissipation. In this work the model is 
extended by considering the diffuseness of the nuclear surface; this has the 
implication that we must consider the proximity forces in the dynamics of 
the collisions. For the sake of simplicity we work with symmetrical systerns. 
The results of the model studied are compared with experimental data and 
with other theoretical calculations. We conclude that the detailed consider- 
ation of the diffuseness of the nuclear surfaces does not substantially change 
the results of the schematic model for sharp surfaces in which the diffuseness 
is considered only through the pararneters. 

1. Introduktion 

Recent experimental data' confirm the results obtained by Swiatecki2 with 

a schematic model, which considers one-body dissipation and the Coulomb and 

surface contributions to the potential energy of the system formed in a low energy 

nucleus-nucleus collision. 

The calculation in ref. 2 do not include the diffuseness in a detailed form, 

but only in the chosen parameters. Here we consider that effect expecting to 

verify whether the agreement between theory and experiment is maintained. Only 

symmetrical systems are considered, in which projectile and target are identical 

nuclei with mass number A, and atomic number 4, and central collisions. 
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2. Parametrization of the system 

When the nuclei come into contact they develop a neck between them. We 

parametrize that system schematically as in ref. 2, by two spheres each of radius R, 

whose centers are separated by a distance r, with a cylindrical neck between them 

of radius n, as shown in fig. 1. For a small neck whose volume can be neglected 

the radii of the spheres are approximately constant and can be calculated by the 

expression R, = r o ~ ~ ' ' ,  if we admit that the nuclear fluid is incompressible. 

We use Swiatecki's "elegant variabIesn2 a and v defined by the equations 

the values of which are bounded by -1 5 o < oo, O 5 v 5 1 and having the 

constraint imposed by the existence of a minimum value that the neck radius can 

have when the two spheres intersect. For a small neck this constraint can be written 

as a 2 -v2. When we consider the diffuseness this inequality is substituted by 

eq. (17) of section 5. 

The case in which a = O and v = O corresponds to the configuration where 

the spheres are tangent (there is no neck), and when a = -1 and v = 1 it corre- 

sponds to the configuration where the system reduces to a single sphere (compound 

nucleus) . 

3. Potential energy of the Swiatecki model 

In this model the nuclear system is considered as a macroscopic leptodermous 

(the surface thickness is small relative to the other relevant dimensions) system3 

in which the potential energy leading terms are the surface energy V, and the 

Coulomb electrostatic energy V. . 
The surface energy is proportional to the system's surface, the proportionality 

constant being the coefficient of surface tension v. The system's surface is equal 
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Fig.l - Parametrization of the system. 

to that of the two spheres excluding the surface of the caps delimited by the neck, 

plus the neck surface. 

If we consider the case in which a and v are small of order and E respectively 

and we retain terms to the order c3 (see ref. 2 ) ,  the radius of the spheres remains 

constant. The caps surface is approximately irn2 for each of them and the neck 

surface is 2xnl where l s + 5 is the neck length and s is the separation between 

the tips of the spheres (see fig. 1) .  Tn this approximation 

and the Coulomb potential energy is taken, along ref.3, as 

3 (21 (21 e)2 2- - +- 
5 RI 2 R l + s  

and for smalI s, dropping constaxit terms, we obtain 

where 

is the fissility parameter, Z = 22, is the total electric charge of the system (in 

units of e) and R = 2lI3R, is the compound nucleus radius. For convenience we 

add a factor a, a = í being deduced from the preceding equations. 
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A major assumption in the Swiatecki model is that it admits that equations 

2 and 3 are valid even when a and v are not small quantities. That author takes 

a = 615, the result of this being that the saddle point of the potential energy 

V = V, + V, corresponds to the spherical configuration of compound nucleus 

(a = -1,v = 1) when z = 1, in accord whith the classical theory of nuclear 

fission. 

4. One-body dissipatian 

Another ingredient of the model is the dissipation produced by the fact that 

the particles experience collisions with the "wallsn of the system giving energy 

to the individual particles' degrees of freedom. This process is know as one-body 

dissipation3. Simple formulae can be written in three particular cases as described 

below. 

For a system without a neck we have the wall .dissipation formula for the 

energy loss of the collective degrees of freedom3 

Q = - = P -  dE V C /  (v,, - D ) ' ~ s  
dt 

where p is the nuclear mass density, ü the mean nucleonic speed; v,, the normal 

velocity of the element dS of the system's surface and D is the normal component 

of the drift velocity for the pa-sticles in the vicinity of the system's surface, given 

by 

with v and being solutions of the equations 
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In these equations R is the vector from the system's center of mass to the 

surface element dS and N is a normal unit vector at that point of the surface. 

The second situation is that in which we have a system composed by two rigid 

spheres in communication through a small window of area AS. In that case the 

window dissipation formulg is applicable 

where ut and u,  are the tangential and radial components of the relative velocity 

of the two rigid portions of the system. In this work we consider only central 

collisions in which u, vanishes. 

The third situation is that in which the two parts described in the above 

paragraph are deformable. Here we apply the wall and window formula3 

where the subscripts 1 and 2 refer to the two parts of the system mentioned before. 

We use eq. (4)  in the case in which the neck is large and eq. (9) when it is 

small. As we do not have a formula applicable in the intermediate case we follow 

the prescription2" 

in which F(u)  is a function subjected to the conditions F(0) = 1 and F ( l )  = 0 .  

Swiatecki2 uses a step function which goes from 1 to O when v2 = 112, whereas the 

authors of ref. 4 take F(v )  = cos2 $. In this work we use the latter expression. 

The procedure to follow is, as in the case case of the potential energy, to 

calculate Q from eqs. (4)  and (9)  for a small neck using the chosen parametrization, 

to express the result as a function of the elegant variables a and u and to use the 

result thus obtained for any neck2. 

In the case of the wall formula (eq.(4)) the indicated procedure gives 



Q, = 2rpüRf -õ2 + (u + vz)via (3 
whereas the wall and window formula gives4 

H.D. Marta 

(11) 

where the two spheres and the neck are denoted by the subscripts 1, 2, and 3 

respectively. After performing the integration, we obtain 

1 
Q,+. = 2np.R: (iuaba + (o + J ) V V )  (12) 

Following eq.(lO) we take 

vZ 1 
(u + va)v i2 + F(v) - + -(I- J'(v)))hz] (13) ( 4 3  

with the Rayleigh dissipation fu.nction, 3, given by 

in which we use eq. (13) for Q. 

5. Kinetic energy 

We approximate the kinetic energy by the expression4 

where p = Ml /2 is the reduced mass and M = 2M, is the system's total mas .  

(Swiateckiz takes this expression for v2 < 112 and neglects the kinetic energy 

when 4 > i). 
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6. Nuclear diffuseness 

As we have said, in this work we include the effects produced by the diffuseness 

of the nuclear system in the model studied. There are two aspects of the problem to 

be çonsidered; one is purely geometrical and consists in that if we follow Swiatecki's 

prescriptions and parametrize the system along the contou with density one half 

the bulk density of the nucleus and maintain the notation of fig. 1 (now the lines 

are the half-density contoilrs), a geometrical neck appears when s = s, = 1.73 

fm because that position is the beginiiing of the superposition of the p / 4  density 

contours. (p is the bulk density of the nucleus). The radius of this geometrical 

neck is given by 

where we have neglected higher order terms in s/'R1. Because of this the configu- 

ration space is limited by the inequality 

We remark that this neck does not correspond, generally, to the surface of a 

leptodermous system, because if the neck radius is small enough there is no region 

in the cylinder for which the density is equal to the bulk density of a nucleus. For 

that reason we define an eifective neck length as 

which we use to ca1cuIate the surface potentiaI energy and the wall dissipation 

term of the neck. The eqs. (2) and (13) are replaced by 

u2 1 
, = 2rpiR: [(o - a, + v2)v Y 2  + ( ~ ( v )  - + i ((1 - ~ ( v ) ) )  6'1 (20) 4 

1 O3 
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where 

The choice of e,* as given by eq. (18) is similar, in some sense, to what 

Swiatecki calls a prozimity correction in ref. 3 and it seems a reasonable guess, 

since in the initial instant of the collision where s = sl and n = O we have te* = 0, 

in agreement with the fact that in this instant the maximum density in the neck 

is p / 2  (there is not a leptodermous neck). If additionally we suppose that the 

evolution of the system is such that n = n, the half-density contours touch when 

s = O, in this instant begins the formation, in the neck, of a contour with density 

p which has a nu11 length; this is consistent with the fact that in this configuration 

e,, = o. 
The second aspect related to the above considerations is that if we consider 

the nuclear diffuseness we must consider also the proximity potential energy, which 

can be ~ r i t t e n ' . ~  . 

where 

E,, (cb) = 2rbn+' @, (C) (23) 

the functions being defined in ref. 5 where they are also tabulated for the first 

few values of n. The c, coefficients are characteristic of the interacting surfaces, 

whereas b is the thickness of these surfaces. 

In the parametrization in section 2 the contributions of the facing spherical 

parts are given by eqs. (22) and (23) with6 N = 2, c, = R, + i$', c, = -114 

and = l ' l b  where s' and t' are defined by the relations 
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The second term on the right hand side in eqs. (24) and (25) appears because 

in the expressions for the proximity energy we must consider the central surfaces 

and not the equivalent sharp surfaces6. There is no contribution of the cylindrical 

neck to the proximity energy. A11 that gives us 

with 

and 

In eqs. (19), (20), (27) and (28) we are using the small neck approximation, but 

in the spirit of the Swiatecki model we use it for arbitram neck sizes. 

We will take ao from the approximate analytic expression indicated in ref. 6 

but we only need the derivative of Phi ,  since it is that which appears in the 

equations of motion and it can be obtained from the relation 

which is easily deduced from the equations given in ref. 5. 

For the Coulomb potential energy we use eq:(3) with cw = 1 since no attempt of 

a parameter adjust such as that indicated in section 3 has been made bacause the 

potential energy considered can be inappropriate for near spherical configurations. 

7. Equations of motion and parameter values 

The equations of motions are obtained from the Lagrange equations 

105 
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where q1 = a, q2 = v, Lf = T - V is the Lagrangian of the system and 9 is the 

Rayleigh dissipation function given by eq.(14). 

The equations of motion obtaixied are 

in which the terms in braces are those introduced to take into account the diffuse- 

ness. The initial conditions are now a(0) = a, and v(G) = O .  In this work we use 

the following set of p a r a m e t e r ~ ~ v ~ . ~  

püc = 29.723 ( c  is the speed of the light) j35) 

Given the mass number A, of the nucleus in tbe collision we calculate their charge 

from the relation 
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so that the nuclei are in the beta stability valley. 

We will show some trajectories in the configuration space. The possibility 

suggested in ref. 3 that initially the system goes into a geometrical regime in 

which n = n,, does not happen in our model since the neck growth is very fast a t  

the beggining of the reaction. 

We take as an example the symmetric system in which A, = Az = 104. We 

show in fig. 2 a case in which the system is initially with zero radial kinetic energy. 

The neck is quickly developed but the distance between the centers of the spheres 

increases since the Coulomb repulsion predominates against the attractive nuclear 

forces. The neck obtains a maximum size, then decrease, and finally vanishes. 

This process lasts 2.0 x 10-21 sec. 

Fig.2 - Trajectory of the system in the 
a, v plane for the case A, = 104 with 
zero kinetic energy in the initial 
instant in which u = 0.32 and v = 0. 

In fig. 3 the system evolution is shown when the radial kinetic energy is 

initially 2 MeV. The distance between the centers begins to decrease but the energy 

given to the system is not enough to pass the saddle point of the potential energy 

landscape and so arrive at the compound nucieus configuration. The duration of 

this process is longer than that in the preceding case: 5.2 x 10-'l sec. 
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In fig. 4 we see a third case in which the initial kinetic energy (5 MeV) is 

enough to arrive at the compound nucleus configuration. 

Fig.3 - Sarne as fig. 2 but for initial 
kinetic energy equal to 2 MeV. 

Fig. 4 - Same as fig. 2 but for initial 
kinetic energy equal to 5 MeV. 

9. Results, discussion and conclusions 

In this section we confront the model with experimental data and with other 

models. With this aim we define some quantities such as the threshold fissility 

parameter and the extra-push. energy. 

The threshold fissility parameter, xth, is the maximum vaIue of the fissility 

parameter z defined in section 3 for which the nuclei in the collision arrive at the 

compound nucleus configuration when put in contact with zero relative velocity. 

When x > xth it is necessary to give energy to the system for the fusion to occur 

(with compound nucleus formation); the minimum value necessary for this to occur 

we cal1 extra-push energy E,. The function q5 is defined7 from the relation 

E2 = Ec~a d2 (5 - ~ t h )  

where ECh is a characteristic energy of the system given 
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in the particular case of symmetric collisions, and 

crit 3e2 

Fig.5 is the plot of 4 as a function of z obtained in this work; here we see 

that the slope of the curve increases with x .  

Fig.5 - Plot of the function +(x - xth) 
as obtained in this work. 

In table 1 we compare the experimental and calculated values of xth from 

some models, including the one presently studied. The third column corresponds 

to the Swiatecki model described in sections 3,4 and 5 (sharp surfaces) whereas the 

fourth corresponds to a sharp surfaces model in which the system is represented 

by two spheres connected by a hyperbolic neck. 

Table 1 - Comparison between experimental and calculated values of xth 

exp exp t heory theory theory 

(ref. 7) (ref. 1) (ref. 8) (ref. 9) (this work) 

Zt h 0.70 f 0.02 0.61 - 0.64 0.584 0.723 0.720 

The value of xth of the model presented in this work agrees acceptably with 

the one calculated in ref. 9 and the experimental results of ref. 7 but not with the 
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more recent data in ref.1. The discrepancies between theory and experiment are 

not understood in a sufficiently clear wayl. 

Another quantity of interest is the slope coefficient, a,  defined by 

but the comparison of this parameter for the different models is clouded by the 

fact that 4 is not, in general, a linear function of x. Having this reservation in 

mind we indicate that the value obtained from ourr model, a = 4.6, is closer to the 

experimental value 7.31 It 1.0 of ref. 1 than the one given in ref. 9 (a = 18) but it 

is farther than this from the experimental result in ref. 7 (a  = 12 f 2). 

To study the effects prodiiced by ,the inclusion of the nuclear diffuseness in 

the Swiatecki model we compare our results with that given in ref. 8. This is 

the sharp surfaces model described in sections 3, 4 and 5 which considers the 

diffuseness only through the chosen value of the parameter ro. Then the equations 

of motion are those obtained in section 7 without the terms in braces and with the 

constants modified with respeçt to those used in this paper. We also recall that 

Çwiatecki uses a correction in the Coulomb potential by taking ai = 615, whereas 

no simiIar correction was made here. Then, in order to obtain his equations we 

must make also the substitution x -t 6/52, We are interested in a comparison 

with the results of the Swiatecki model but without this last correction. As can 

be seen from the preceding considerations about the equations of motion these 

results can be obtained by multiplying the value of zth in ref. 8 by 615, that is, 

xth = 615 x 0.58 Z 0.7 whereas the slop parameter is not modified so that a 5. 

If we compare these figures with ours, 0.72 and 4.6 respectively, we could conclude 

that it is sufficient to consider the diffuseness in an approximate form choosing 

appropriately the parameters in a model of sharp surfaces, at least in relation to 

the determination of xth and a; the treatment we have given to it in this work 

does not substantialiy alter these pararnters. But we must consider the possibility 

that this conclusion could be subjected to the validity of eq. (18) in defining the 
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effective neck length. To obtain a more definitive conclusion it will be necessary to 

consider a more detailed model in which the diffuseness is treated more carefully. 

The author wishes to thank Dr. Raul Donangelo for suggesting this topic and 

for many useful discussions. 
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Resumo 
O modelo esquemático para colisões centrais de ions pesados desenvolvido 

por Swiatecki inclui contribuições coulombiana e de superfície à energia poten- 
cial do sistema e ao termo dissipativos de um corpo. Neste trabalho o modelo 
é estendido através da consideração da difusidade da superfície nuclear; a im- 
plicqãa disto é que devem ser levadas em conta as forças de proximidade na 
dinâmica das colisões. Por simplicidade, trabalhamos com sistemas simétricos. 
Os resultados do modelo estudado são comparados com dados experimentais e 
com outros cálculos teóricos. Conclui~nos que a consideração detalhada da di- 
fusidade das superfícies nucleares não muda substancialmente os resultados do 
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modelo esquemiitico para superfícies nitidamente definidas, no qual a difusidride é 
considerada apenas através dos parâmetros. 


