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Abstract This paper presents a theory o the quantized Hall effect based on
flux quantization. The strong magnetic field divides the deviceinto a large
numbers o square orbitals. The orbital is the elementary dynamical sys-
tem, which isa correlation domain, whereafew correlated electrons interact
with the same quantum o magnetic flux. Acting upon each one of those
correlation regions, there is an effectivegate voltage, which is proportional
to the device's gate voltage, and whose variation will make the orbital elec-
tron number change. But since this number is quantized, it must change
by steps, and this yroduces the normal effect sequence of plateaus. The
coupling o the orbital’s electric flux to an external source is what makes
a current pass through. The electric flux also couples to the operator that
describes electron number fluctuations. The finite temperature behavior o
astandard deviceis studied. The Hall voltage and the longitudinal voltage
are obtained as functions of gate voltage, magnetic field, temperature and
device’s current. The specific heat is computed as a function of magnetic
field. The results compare well with what is observed in quantized Hall
effect experiments. A preliminary analysis about the anomalous effect is
also presented.

1. Introduction

This paper proposes a theory of the quantized Hall effect, which uses the
guantum flux method introduced by one o the authors'.
The quantized Hall effect was discovered in 1980 by von Klitizing, Dorda

and Pepper?, during measurements of the Hall voltage and longitudinal voltage
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ina MOSFET (metal-oxide-semiconductor -fieldsffect-transistor) operated at lig-
uid Helium temperature, and under a high magnetic field. They observed the
formation of Hall resistance plateaus, with variation o the gate voltage.

An important step for development and comprehension o quasi two-
dimensional electronic systems, had been taken in the work of Fowler, Fang,
Howard and Stiles®, who, in 1966, observed the Shubnikov-de Haas effect dur-
ing measurements of conductance in a field effect device, with an electron gas
formed on its 8i/SiO, interface.

In 1982, Tsui, Stormer and Gossard* discovered the so called anomalous or
fractional Hall effect, in a device of the heterojunction type: GaAs(AlGa)As.

In the development of the present work, in order to interpret our numerical
results, we made frequent comparisons with experimental results shown in the
reports by Paalanen, Tsui and Gossard®, and von Klitzing, Tausendfreund, Obloh
and Herzog® on the normal Hall effect; with those by Tsui, Stormer and Hwang’
on the anomalous effect, and aso with the analysis made by Gornik, Lassing,
Strasser, Stormer, Gossard and Wiegman® about the system’s specific heat. We
have also used informations contained in the review papers by Ando, Fowler and
Stern ; Souillard, Toulousse and Voss'® and Stormer™".

Now we pass to some theoretical references about the quantized Hall effect:

Asearly as1967, Stern and Howard'? had already computed the electron gas
sub-bands, taking into account the average potential of neighbouring centers o
charge, and also the screening effect.

The quantization o electronic motion along the direction normal to the in-
version layer had been predicted by Schrieffer'® in 1957.

In 1971, Ohta'* noticed that electron scattering by impurities should lead
to an broadening d Landau levels, and observed that this is an essentialy two-
dimensional phenomenon. He also observed that the longitudinal resistance peaks
at low temperature, should be related to that broadening of levels.

His theory was then improved and extended by Ando and Uemura'®, and
Ando*®, who assumed that the electron gas should be viewed as a disordered
system. Ando developed many-body techniques more complex than those used by
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Ohta, and obtained results which, in the single-site approximation were consistent
with Ohta’s ones.

The theory motivated a lot of theoretical studies, and has been serving as
a guidefor the interpretation of some experimental aspects of the phenomenon.
However, the theory iscomplex, and frequently presents methodological difficulties
typical o many-body problems.

On the other hand it is difficult to conciliate the high numerical precision
of Hall resistance plateaus, with the idea of a system that should be essentially
disordered.

In 1981, concerned with this problem, and under the light of certain results
by Ando, Laughlin'” concluded that the high precision o the Hall effect plateaus,
should be due to some fundamental principle. He then proposed that gauge in-
variance should play a fundamental role in the description of the phenomenon.
Laughlin took the vector potential as a classical field, but used the Dirac-London
flux quantization rule (f Adl = —2;7£p) when making gauge transformations in
extended states wave functions.

In order to present hisideas in a clear manner, Laughlin conceived an idealized
Hall effect device: a ring with many Landau orbitals circulating in parallel. His
ideas soon found a large number o followers!+18~321,

Imry*® and Lindelof and Hansen® proposed schemes to explain the quan-
tized Hall effect, supposing that flux quantization should play a central role, and
stablishing a connection with the Josephson effect.

In 1984, Zawadzki and Lassing®? obtained the electron gas specific heat, as-
suming a phenomenological density d states with the form of a sum o gaussians.

Also in 1984, Ventura introduced a canonical method of flux quantization
that extends the traditional method of Dirac-London to the description of mixed
states of flux. Ventura proposed that every Landau orbital should have indepen-
dent dynamics. The action of global external sources, like the gate voltage and
current source, on a given orbital, should be introduced by means of external

source terms in the orbital Hamiltonian. He also noticed that, from the viewpoint
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of an orbital, the two main observables, the Hall voltage and the longitudinal volt-
age, are respectively proportional to the elements of a canonical pair o fluxes: the
magnetic flx ¢ and the electric flK ¢z.

Reference (1) also shows a calculation of an orbital with well defined electron
number, which providesan explanationfor the existenced fractional plateaus, and
describes how the transition from a plateau to the next one occurs, with variation
of the magnetic external source. The peak in longitudinal voltage that appears in
transition regions, is explained as a direct consequence of the non commutativity
d electric and magnetic fluxes.

Ventura argues that there should be an effective gate voltage at every orbital,
which, by forcing the variation of electron number, should lead to the sequence of
plateaus of the normal effect. He also proposesthat the orbital Hamiltonian must
contain operators to describe the effect d electron number fluctuation, although
it was still unclear that, as we will show here, electron number fluctuations and
momentum fluctuations should be coupled. Polarization flux is introduced in the
final version of Reference (1).

However, that theory is a good explanation for the existence and behavior o
plateaus, but only for the idealized system, that is, a Landau orbital in Laughlin
device. It was still necessary to apply those theoretical developmentsto the direct
study o the real transistor, at finite temperature, and also to explain in detail
the important role played by the device's electrostatic energy. And thisis just the
purpose of this paper.

In reference (23) we analyze the statistical mechanics of the canonical quan-
tum flux theory.

The plan o the paper is as follows:

In section 2 we review Landau theory.

In section 3 we study the device’s electrostatics. We elected the MOSFET
as our theoretical framework, so that, discussionsd section 3 more directly refer
to such a kind o devices,where the number of carriersis fixed by a gate voltage;

although, with minor modifications, they can be extended and applied to the
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description of other devices. A brief discussion about devices without gate is
presented in section 10.

The quantized effective electrostatics of individual orbitals is treated in
sections 4 and 5. It is determined by the requirements of global electrostatics. At
this stage one is already able to understand the existence of normal Hall effect
plateaus.

In section 6 we deal with flux quantization, accordingly with the proposal o
Reference (1).

The kinetic Hamiltonian is considered in section 7, where we also construct a
perturbation Hamiltonian (proportional to the electric flux operator) which makes
current pass through the orbital.

In section 8 we discuss the effect o fluctuationsof the number o electrons of
an orbital.

The solution d the Harniltonian is carried out in section 9, together with the
construction o the corresponding statistical mechanics.

Section 10 is the longest one. There we describe the normal Hall effect, and
discussin detail thefollowingtopics: orbitals' geometry and dimension; behavior of
the Hall resistance and longitudinal voltage, with the variation of the gate voltage,
at constant magnetic field; estimate of the device's gate voltage variation needed
for the system to cross a plateau; estimate o the temperature region where the
effect becomes clearly seen; a standard device; top electron dominance; constant
total current regime; resultson the Hall resistance and longitudinal voltage, under
magnetic field variation; Ohmic behavior; dissipation mechanism; and specific
heat.

Section 11 is dedicated to a preliminary analysis o the anomalous effect.

2. The electron in a magnetic field

The motion of one electron in a magnetic fied B is described by the

Schrodinger equation®*

N 1 g fex
0= oo [F-ed] ¢ (1)
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Whereg‘is the generalized momentum, e is theelectron charge, and A*** aclassical
vector potential, whose rotational is the B field.

Let B be a uniform field paralel to the z-axis. Thanks to gauge invariance
there is a large continuous set of potential vectors which reproduce the same B.

In the sequence of the paper, we will introduce an external electric source
aong the z-direction, which will break the system’s symmetry, leading to the
formation of orbitals aong the z-axis. Thus it is convenient to choose from now
on a special classical vector potential, so as to form Landau orbitals paralel to

the z-axis:

A**=Byt. (2)

With this vector potential choice, the electron’'s equation of motion turns out
to be:
1 1 1
~5% 3 ¥ T L
In devices where the quantized Hall effect is observed, the electron is bound

to an attractive wel V(z) varying in the z-direction. We will not treat this 2-

= By ¥ ©

10 = E

direction motion in detail. The effect shall be seen when only thefirst few levels
o the potential V(z) are populated'?. Here wesupposethat itsfirst excited state
energy iSso high, that we can ignore the possibility of occupation of this level'2.

The electronic wave function is thus f, (z) ¥(z,y), where ¢(z,y) is an eigen-
solution of Eq. (3), and f, (2) is the ground state wave function o V (2).

Let us take the system to be a box o length L, in the z-direction, and width
H, in they y-direction. The electron's eigenstates are functions #,,, (z,y) that
solve Eq.(3) in this box:

¢mn(zyy) = eikmz ¢(y - ym) ’ (4)
where the wave number k is
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k, =—m (m =0,+1,12,etc) ()

and ¢.(y —y) isthen™ eigensolution o the harmonic oscilator:

1 & e? B2 2
€n ¢n - 2M dy’ ¢n + 2M (y ym) ¢n (6)
centred around y,, , with
K 2rm
I e I e 7
Yn = ¢B ~ LeB )

The energy o state ¥, (z,y) does not depend on m and is given by:

] 5 ®

Ep = [n—i— Y
m is the index denoting a particular orbital.

So, we have a set of identical orbitals. One electron of energy E in a magnetic
field B, has frequency w = eB/M, and its motion is over a circle o radius R =
2E/\eB|, centred at an origin orgin 0. In quantum theory, in turn, the wave
function factor ¢*~* isinterpreted as reflecting an uncertainty in the position o
the origin, although such an origin must be at rest.

In this regard, the expectation value of the vector potential in the electron
state ¥, . (2,Y) is

< A >,..= By, = E ; m, (9)

and, using Eq.{7), we deduce that, if , is the generalized momentum along the

z-direction then

<ﬁz - eAeZt Zmn= k - eBym =0 ’ (10)

and we see that the expectation values o z-direction momentum and current
vanish.

The coupling of a z-direction external electric source to the system, makes a
current to flow in this direction, as it will be discussed in sections 7 and 10..
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3. Many-electron systems

In a MOSFET, the region filled with the electron gas is a plane charged be-
caused agate voltage V., After turning on the magnetic field, the system’s ground
state is such that electrons are distributed among a large number of orbitals, like
those discussed in the former section.

Classical estimate o the orbital number o electrons, at given values of mag-
netic field and gate voltage:

(i) From the analysis o the previous section, one concludes that the number
of orbitals is the same as the total number K of magnetic quanta of flux flowing
across the system area S = LH (thisis true as far as the gate voltage is high
enough to keep at least one electron per orbital).

Since BL H is the total magnetic flux, and 27 /e the magnitude o a quantum
of magnetic flux, we get

e e
= — = — BS 11
. BLH o B ( )

as the relation between the number o orbitals and the magnetic field.

(ii) E(B,V,,n) is the system’s total energy as a function o magnetic field,
gate voltage and orbital number of electrons, n. We assume that the system is in
"electrons bath", i.e., it may have as many electrons as it needs to minimize the
energy; so that by minimizing E(B,V, n) one can obtain n.

That energy has three parts that we pass to analyze:

(iii) One of them refersto the coupling to the magnetic field.

For our purpose here, the complete treatment o the spin variable is not
essential, and we will assumethat every electron has spin up, for instance. Hence,
there is only one electron per orbital level. The first electron enters in the orbital
with energy % %, the second one with % eB, and so on.

Every n-electron orbital will then have an energy

gEm=Y -3 %" (2
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due to the direct coupling to the field B.

(iv) Another term in total energy corresponds to the electrostatics repulsion

& (Kn)?
7 C (13)

where Cisthe devicecapacity, and K n the total number of electrons in the electron

E*(K,n) =

gas.
(v) Finaly, we must consider the electrostatic coupling to the external gate

voltage:

E*(K,n) = —eV,Kn, (14)

(vi) So that the total energy (E*+ E2 + E?) will be

E(B,Vg,n)zK[% e %n’+%n2~e%n] . (15)

(vii) And, supposing for a while that » is a continuous classical variable, then
by minimizing Eq. (15) (use Eq.(11) also} we can get the value of n corresponding

to the lowest energy state

n=—=. (16)

The constant M* issuch that

1 1 e2S e2s
— T — —_— A —— 7
M =MV amc " e (17)

and the approximation made in the last step holds in general.

4. Quantized orbital 'electr ostatics

Now we suppose that an orbital is a correlation region: electrons belonging to
agiven orbital are all interacting with the same quantum o magnetic flux, and we
expect that electronic motion iscorrelated together with quantum electromagnetic
field fluctuations.



Theory of the quantized Hal effect

Based on the material of section 2, we aso suppose that orbitals are very
similar,so that, by treating oned them theoretically, oneisalready ableto describe
the behavior of the ensembledf orbitals.

Theelectrostatic action of the device’s gate voltage and of other orbitalsupon
an individual orbital is described by meansd an effectivegate voltage V, V, must
be such that, at the classical level, every orbital in equilibrium should have the
same number of electrons as given by Eq.(16)}, since this number is determined by
the global electrostatics of system.

Theeffective electrostatics of acorrelation region with n electrons will then
be given by the static energy:

En) = :—; e—l\f n? — eV)n (18)
where the first term is the interaction with the magnetic field (see Eq.(12)); and
17,, is such that, if we minimize the above expression relative to n, then, at the
point o minimum, the number o electrons d Eq.(16) should result. Therefore,
the orbital effective gate voltage must be

?,:%Vgegg% - (19)
It isremarkable that this relation depends only on geometric constants, S and C,
having no dependence on the magnetic field B.

Eq:(18) hasno term of electrostatic repulsion amongelectrons belongingto the
same orbital, since electrostatic interaction, which was already considered in the
study of the global device, is along range effect. On the other hand the coupling
to the external magnetic field must take part in orbital dynamics, because thisis
alocal effect.

Plateaus of the normal Hall Effect : up to now we have considered the number
o electrons n as a continuous classical variable, in order to construct the effective
orbital “electrostatics”. The next step isto quantizeit.

We must then start from a Hamiltonian operator, which has a classical limit
compatible with the energy formula E(n), that is
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~

LeB oo _n. (20)

Hcharge (;i) = 2

R &

Now 7 is the electron number operator. Its eigenvalues are the non-negative
integers (n =0,1,2,..., etc).

At this point one can already explain the existence of plateaus in the so-called
normal Hall effect.

The energy of state [r > is

E, = i n> —eVon , (21)

and the ground state [n, (B,V,,) > corresponds to the integer n, (B,\7,) that min-
imizesEq. (21). n, isthe integer in the interval:
MV, 1 MV, 1

1 1 22
B 2 <™<"p t3 (22)

One then sees that, if B increases at constant V, (or vice versa) the number of

electrons variesin steps.

On theother hand, if Sisthe system's surface and N the number of carriers,
then the classical description o the Hall effect (that must hold when the ensemble
of orbitals istaken together) means that the Hall resistance isgiven by therelation

between the magnetic flux across surface S and the total carriers charge

Via BS
Ryan = Hl L - N (23)
where Vg, is the transverse Hall voltage and 1 the longitudinal current.
Then, since B S= 2rK/e and N = n K, we get
27
Ryan = en, (24)

so that, in the normal Hall effect case, the Hall resistance depends only on the
number of electrons per orbital.
From inequality (22), one concludes that when the ratio MV, /B is in the

interval
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1 MY 1
no-——2-< B"<no+-2-, (25)

then the Hall resistance is given by Eq. (24). Therefore, it is clear that, under

continuous variation of magnetic field or gate voltage, the Hall resistancevariesin
steps.

5. Correation among the orbital electrons

Owing to the external induction field electrons move in tubes along the z-
direction. The boundaries d a certain tube are approximately defined by the
transverse wave function factors, ¢, (y — v.,) and f,(z).

After the orbitals arefilled with their ny, K electrons, Pauli’s principle forbids
an electron to leave its orbital spontaneously. A given electron could not for
instance, move away from a state in the m*® orbital to occupy the same level in
the k** orbital, sincethisstate is already filled. Therefore, that electron can only
leave its orbital by receiving a certain amount of energy, so as to make its energy
larger than e(r,) (see Eq. (8)).

Any orbital has then a particle cluster with n electrons. The collective motion
o thiscluster isruled by the Hamiltonian

1,
26
oM, ¥ (26)

where # is the collective s-momentum and M; the cluster total mass

I—Iz(ﬂ =

M9==any———V,, (27)

so that, Hamiltonian (26) describes the center of mass motion of the electron
cluster .

In orbital dynamics, there is a situation where the motion of an internal
excitation can be more important than the center of massmode: it occurs in the
transition region between plateaus, when the binding energy o the (electron-type)
quasi-particle at the top o the orbital becomes much smaller than the binding
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energies of other quasi-particles. In thiscase, both the orbital polarization and its
current shall be determined mostly by the motion of the quasi-particle at the top.
This effect is considered in section 10.

Polarization Operator

Let Vol= LS be the fraction of the device's volume ascribed to an orbital.
L isits length along the z-direction, and S its transverse section. (This volume
is a rectangular box larger than the region where the electrons belonging to that
orbitai move).

For every correlation region, we then define the polarization operator:

enz

p=2 (28)

In this very section and in the next one, we treat the variable n, as if it were
a c-number.
Variable P is a measure of how much the electronic cluster center of charge

is displaced from its origina position at the center of the orbital.

6. The quantum flux, the polarization,and the momsntum

Let 4,(Z) be the x-cornponent of the vector potential, defined within the
volume ascribed to an orbital. Assuming periodic boundary conditions, one can

decompose 4, (Z) as follows

AE) =40+ Y au a(E) (29)

s
where the first mode operator 4, is a,/+/Vol.

Theset {¢,} isorthonormal and complete; whereas the field variables a; are
canonically conjugated to another set of variables {b;}, so that [a;,b;] =1 &;.

By using the operators b; and the orthonormai set {ri,), we then construct
another local field
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—Ey(@) = —Eo + ) _ ba $u(Z) (30)

n#0

with the first mode E, given by —b,/v/Vol.

We call this field the z-component of the pure electromagnetic electric field.
It is the A, (Z) fidd canonical momentum: [A, (Z), =B, (%)) =i 6(Z-%). In
classical theory, and in the gauge ¢ =constant, we have E = —A, so that the two
fields indeed form a canonical pair.

In order to simplify the presentation, we shall take only the first mode A,
and E‘o to represent respectively the z-direction vector potential and pure elec-
tromagnetic electric field, since, in the retangular geometry, A, and Eo are the
operators more closely related to fluxes. The complete treatment o fluxes has
been presented in Reference (1).

A, and E, are proportional to the elements d the canonical pair {ao,b,), SO
that the commutator is [AO,E‘O] = —-i/L§, or, in the form o a commutator o

fluxes:

[LAo,SE,) = -i. (31)

We define the true electric field as the difference between the pure electro-
magnetic electric field and the polarization

~ ~

Eon—P- (32)

And the corresponding eectric flux is given by

¢z =SE =SE, —en% (33)
The canonic conjugate to the electric flux is another hybrid operator’

3o = [Lao+ = 2], (34)

en O

which results proportional to the physical momentum of the electron cluster
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~ . en ~
pf = '—163 - enAo = —_i‘ ¢,“B . (35)

In order to keep our treatment as close as possibleto tradtional methods, we
choose to work with the cluster momentum g, and its canonic conjugate X:

Vol E 1 L ¢z
2en 2[:: en ] (36)

instead of the pair of fluxes ($E,$B). One must however have in mind that X is
proportional to the orbital electric field.

Given the commutator [X, ;] =i, and the domain of the variable X : —% <

X< % (noticethat ——é—' <z [I—’,%E—] < %),we can obtain the physical momentum

eigenfunctions

% (X) = \/if expi[?f pX]| (37)

and eigenvaues p, , = 25’- p (with p =0, £1,+2,..., etc).
7. Motion of the center of mass

After introducing electromagnetic variables, one modifies Hamiltonian (26},

according to the rule of minimal coupling,

. 1
Ha(pr) = o5 P7 - (38)

This Hamiltonian has eigenvalues 272 p? /M, 2.

The deviceswhere the quantized Hall effect is observed are coupled to current
sources. We will describe this effect by means d a self-consistent electric source.

Every orbital isan open system of finite volume. Wesupposethat thedevice's
current source plus neighboring orbitals act together on a given orbital, tending
to create there an electric field.

In classical physics, we can describe the effect of external sources producing
a uniform electric field in a open volume Vd (which has no charge), by adding
a term —E,,, Vol to the system's Hamiltonian. This term combined with the
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quadratic electric field energy % E2Val, leads to the expected value E = E,,,,
after minimization in E.

The, we supposethat alsoin our quantum system the action of a weak electric
sourceisgiven by perturbation Hamiltonian - Vd E.,. E: although we discard any
Hamiltonian dependence on quadratic terms such as E2 or X2, etc. (We recall
that the orbital electric field is not confined into the tube where electrons move,
but extends along the device in the z-direction).

Writing that perturbation Hamiltonian in terms of the variable X, we get

H; (X)= —2|¢|nE.,. X . (39)

Thevalue of E,,, can be determined self-consistently in terms of the current.

At this point we would like to add a note about the passage from classical
electrodynamics to the construction of a quantum electrodynamics of fluxes. Con-
sider the interaction term in the classical action of an electron interacting with an
external field S, = e [ dt A:**v;.

Formally, it can be integrated by parts leading to an action term of theform
Sp = —efdtAr=tz; = e dt Ef**z;, which is analogous to the corresponding
classical action associated with Hamiltonian (39).

However, in the construction of a quantum electrodynamics suitable for the
description of nonperturbative/low energy/large distance phenomena (like many
effects belonging to quantum electronics, for instance), where fluxes play an impor-
tant role, the type of interaction to choose, S, or Sy isstill somewhat ambiguous.
This certainly depends on the nature of the system we want to describe.

In our case here, of open finite volumeorbitals, formed because o the existence
o a magnetic field, we made the (justified) choice S5 ; athough the choice S4
would lead to a qualitatively similar picture,and to results of nearly the same
order d magnitude.

Notice also that the classical 4 field has already been used to introduce the
effect of the classical magnetic field; and this is one more indication that choice

S should be the right one in the present case.
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A study about the construction o a quantum electrodynamics o fluxes is

being carried out(2®), and shall be published elsewhere.

8. Electron number fluctuations

One more effect must be considered, in order to complete our descritpion of
the quantized Hall effect: the effect of electron number fluctuation in an orbital.

Starting with a classical argument, we observe that sudden alterations of
external conditions may lead to the appearanc¢ o perturbative forces able to
change the number o electrons in an orbital. Besides, an oscillatory longitudinal
electric field might also make the electron number change. For example, variations
d electric field can make an electron move from an orbital to the other.

Another possible cause o electron number fluctuations could be the presence
o impuritiesinthe material*. An electron weskly bound to an impurity, may inits
ground state have a “small fraction” o its wave function in the orbital region. In
an excited state, in turn, the electron will be with higher probability in the orbital
volume. Variations of electric field might then produce oscillations between these
two states, so leading also to fluctuationsin the orbital electron number.

On the other hand, when an orbital gains an additional electron, even if
transitorily, the electron cluster momentum will change, reciprocally.

Then, we are led to conclude that there must exist a coupling between the
electric flux operator (which brings magnetic flux/momentum fluctuations) and
the operator related to electron number fluctuations.

If theoperators a+ and aaresuch that [¢* ,a] = --1and a* a = #, fluctuations
d electron number can be introduced by means of the hermitian operator ¢t +a,
since this operator does Uot commute witli 7.

Then, in order to describe the mutual effect of fluctuations of particle number

and momentum, we construct a perturbation Hamiltonian of the type:

H?(X,a* +,8) = A X(a¥ +a) . (40)
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In this work we treat low energy phenomenaat low temperature, so that only
a few lowest energy levels contribute to the motion. Therefore, in this case, the
guantum analysis, made in terms d Hamiltonians (20), (38), (39) and (40) is
already complete, inthesensethat it isimpossibleto have a morelocal description
for what happens inside an orbital. This limitation comes from the uncertainty
principle. Since the modes are extended within the orbital, the description given

by Hamiltonians H, and H? for their respectiveeffectsis the most detailed.

9. Solving the Hamiltonian

In order to solve the system's Hamiltonian, wefirst choose its main part

HO = Hchm‘ge (ﬁ) + H2 (ﬁj) ] (41)

which is already diagonalized; and let the other two terms

H =g} (X)T H} (X,0* +,0) (42)

to be treated as perturbations.

At given valuesd magnetic field and gate voltage the ground state of H, isa
state |p =0, n >, with n given by inequality (22). The perturbation Hamiltonian
then changes this pure H, ground state into a mixed state, that nevertheless is
still dominated by the state [0,n >.

The perturbation effect is introduced by coupling that state to its nearest
neighbors, as we explain beow:

(i) Besidesthe state |0, n >, with n given by inequality (22), we also include
the state | — 1,n > to form the mixed ground state.

It would be more appropriate to take in account the state |1,n > also. How-
ever, in order to simplify the calculationsd results presented in this paper, wedid
not consider this latter state.

Taking E... > 0, oneobservesthat perturbation H, producesa ground state
with < X >> 0, which means a positiveelectric field. On the other hand, it aso
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leads to a mixture o p = 0 and p = —1 states, that corresponds to a negative
average momentum, and, in consequence, to a positive current.

(ii) Every plateau defined by inequality (25) is separated into two parts: the
upper region, in the interval a < —ME‘,—Q <nt 1; and the lower region in the

interval n—%<MB‘—,"-<n.

(iii) When the system is in the upper region of the nth plateau, then only
thestates | —1,n > and |0,n >, and their nearest neighborsabove, | —1,n+ 1>
and |0,n T 1 >, will give relevant contribution to the system’s dynamics. We
have therefore, a four-state dynamics, with a mixed ground state, where the state
{0,n > prevails.

However, in a transition region between plateaus, when MV’H/B isin asmall
neighborhood of the value n+ %, and the energy Eq(0,n) is close to E(0,n + 1),
(seethe energy formula below) then the ground state is nearly a fifty-fifty mixture
d states [0,n > and ]0,n+1 >,

(iv) In the lower region, states | — 1,n > and [0,n > are in turn mixed with
nearest neighbors below, | = 1,n —1> and |0,n — 1 >; and we proceed as we do
in the other case.

(v) The next goal is to obtain the matrix elements of the Hamiltonian that
rules thefour states' approximated dynarnics. A genericstate shall be represented
by (withindex i running from 1 to 4)

[ >*=al|0,n> +aif0,n+1> +ai |~ L,n>+a)|~1L,n+1> . (43)

(vi) By numbering the H, eigenstates from 1 to 4, in the order in which they
appear in formula (43}, we can write the Kamiltonian matrix that gives the four

states' dynamics. It is the hermitian matrix:

0 0 -ign ffynT1
0 A, -f /n +1 ign
ign if vn+1 A, 0
|f ‘\,/n + 1 —ign 0 Al + Ag
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where A,,A;, gand T are given by:

A, = % [n+ %] — eV, , (45)
2
g= -:;L-Em, (47)
and
F=2t (48)

(vi) After diagonalizing matrix (44), we determine the energy eigenvaluee;,
and the average electron number n, for every state |¢; >; we determine also the
average electric fild —en X /Vol; the average orbital current —e(p,)i/M L; etc.

(vii) Then we develop the statistical mechanics of the ensemble of orbitals,
similarly to what we did in Reference (23). For example, the average electron

number at temperature T is

1 4
I R
<n>=- .—E 1 nge (49)

where the partition function Z is

4
Z=Y eiT (50)
i=1
The electric field average value at finite temperature will in turn be given by
<E>= -~ —l—z‘:X-e"*/T (51)
Vol Z ' '

and so on.

10. The normal Hall effect

The quantized Hall effectdf the normal type corresponds to the formation of
electron number plateau states. Under variation of external conditions, transitions
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between these states occur, without pronounced alteration in the number of quanta
o flux ascribed to each orbital.
In this case the Hall resistance can be obtained by means of formula (24), but

now replacing r, by the finite temperature average electron number

27

R = e
Hall e <n>

(52)

The other important observable is the longitudina voltage V, (the product
of the electric field by the system length), with the related longitudinal resistance
R, = V,_/Itotal, i.e., the ratio between the longitudina voltage and the total

current in the device.

(@) On the geometry and length of orbitals

In an orbital, electrons are strongly correlated, and are interacting with the
same quantum o magnetic flux. On the other hand, there is the semiclassical
interpretation, accordingly to which, those electrons should be rotating, due to
the magnetic force, around a common orign of uncertain position?*.

Both facts indicate that electrons belongingto the sameorbital must be close,
and that the orbital form must therefore be squared.

Taking then a squared orbital, and considering that thereis a quantum of flux
per orbital, one can have an estimate of the orbital length L, by using the relation

L

BI? ~ (53)

€
For example, if the magnetic field strength is near 100 kG, then the orbital
length Lg shall be around ~ 200 A.
Equation (53) leads also to an interesting relation between the energy coef-
ficients that appear in the gap equations (45) and (46). Multiplying Eq.(53) by
ne/M, we get:

(54)
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This equation has been used in every calculation on the normal effect, whose

results we now pass to discuss.

(b) Varying the gate voltage at constant magnetic field

The behavior of the Hall resistance and longitudinal voltage with the variation
o thegate voltage, at finite temperature and constant magnetic field, isillustrated
in Figure1. Thisfirst example isfrom a calculation made with electric source E,,,
kept constant, and with the effectiveelectron massin the material taken equa to
the very electron mass.

Vg (3.0x1.03 V)
3 7
T T 7 T T 1 l T 1
S
(*})
?f B=200 kG
N T=8.6 mK
z lj «n=2 | vaiesin theintavd |
~ wn-3 1074 - 10°S Amp/m
o L ] I L 1
I T T T T T
> [
! " Al L_FL_[
3

e'\V/g (3.0x1.0°%eV)

Fig.1 - Hall resistance and longitudinal voltage as functions of the
orbital effective gate voltage, at B = 200 kG, T = 8.6 mK, and with
M = M, and the electric source E,,, kept constant.

The result is very similar to the onesfrom quantized Hall effect experiments.
One sees the Hall resistance plateaus, and, in the transition regions between
plateaus, the longitudinal voltage peaks. Since the temperature is low, and the
electric source weak, the longitudinal voltage becomes very small at the central
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region of the plateau, which isjust the region where the Hall resistance is quite
well defined near the ideal values of 27/en.

However, in the experimental situation, it is the device's total current that
is in general kept constant. In the sequence of the paper we will show reaults of
calculations where the electric source strength has been varied concomitantly with
the magnetic field, so as to keep constant the device's current (see Figures (3)
and (4)).

In this paper the constant A of Hamiltonian H} enters as a phenomenological
number. In principle it would be possible to estimate this number; but it is
nevertheless a complicate estimate.

In view of this difficulty, we decided to take a phenomenological constant A
that growswith vB (A = Ag1/B/ B, ax, Where B, isthe highest B value, in each
exhibited graph). Wewill not justify our particular choicefor theform of A, but we
noticethat it corresponds to writing the perturbation H? in theformp s (a* +a),
with a constant p. In the calculation that resulted in Figures 3 and 4, A, is such
that Ao = eBuax /M L(Byax); L(Bmax) being theorbital length when B = B ax;
and ¢ isasmall number fixed in avaluein theinterval 0.0075 < ¢ < 0.075.

() On the temperature region wherethe effect starts being
observed

The temperature value around which the quantized Hall effect becomes visible
in experiment, can be estimated in terms o the typical energy of Hamiltonians
H.parge and H, , that is about eB/M.

If we take the magnetic field to be near 100 kG, then that characteristic gap
shall be eB/M ~ 10~2eV (or ~ 12°K).

On the other hand, if the effective electron mass assumes the value that sup-
posedly it must have'! in the device’s material (M ~ 0.10M), then the above
estimate will result larger by an order o magnitude.

Therefore, Hall effect plateaus will get asharp definition, only after the device
is cooled down to ~ 0.1°K or 1.0°K. And this is in fact the temperature region
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where the effect starts being clearly seen, in most experiments®*¢, when B ~

100 kG.

(d) Thelength of a plateau under variation of the gate
voltage

Let AI7,, be the effective gate voltage variation needed to put one more carrier
in every orbital. And let AV, = (eZSM/21rC)A17, be the corresponding variation
o the devices gate voltage (see Eq.{19)). If one knows the device geometry, and
its dielectric characteristics, then one can estimate AV,, for every value of B.

In a MOSFET, the capacity is nearly given by C e KS/d, where S is the
devices surface, and d is the distance between the electron gas plane and the
gate. d is the distance along which the global gate voltage is applied (d ~ 10~ °m,
typicaly). K isin turn the relative dielectric constant of the material that fills
that space. From the relations above, and by inspecting Eq.(21}, one deduces that
AV, e Be2d/2nK.

So, at an induction field of ~ 100 kG, the global gate voltage variation needed
to make the system run through a plateau, or to vary by one the orbital electron
number, is about 1.0 Volt to 10.0 Volt, depending upon the insulator’s dielectric
properties and width. This is also the approximate plateau length, in quantized

Hall effect experiments done under those conditons®*®.

(e) A standard device

Figure 2 shows astandard MOSFET, suitable for the observation of the quan-
tized Hall effect. It is made up of a 1.0 pm thick insulator, grown on a body of
semiconductor material with thickness o about 30 gm. On top of the insulator

material there is a thin metallic gate.
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2mm GATE
1” T 11
INSULATOR 1um
Semm ]
2“ all |« ELECTRONS |
3mm
SEMICONDUCTOR 30 pm

1e2 : HALL PROBES

3e4 : POTENTIAL PROBES
Fig.2 - Standard device

Electrons movein a thin layer (~ 50 A) around the insulator/semiconductor
interface.

The device is 20 mm long and has 0.50 mm in width. The distance between
potential probes is 0.30 mm.

All numerical results shown in Figures 3 ana 4 refer to this standard device.

After solving the Hamiltonian, and constructing the statistical mechanics of
the ensemble of orbitals, we compute the average value o thevariable X. Inorder
to get the longitudina voltage from that, we then take V, == £ < E >, where
£ =030 mm is the distance between the potential probes, and < E >, the electric
field average value, can be obtained from < X > by means of Eq.{36).

In this regard, we recall that the volume Vd appearing in that equation is
the orbital volume (thefraction of the device's volume ascribed to each orbital):
Vol= L x L x I, where D = 31um is the device thickness.

Even though we have chosen the MOSFET as our theoretical framework, the
theory presented here is general. It can be easily modified for application to any
kind of devicewhere the quantized Hall effect has been observed. All one needsto
know is what effect, in the device, playsa role analogousto that of a gate voltage,
fixing the system’s number of carriers.

Let us then briefly discuss a device without gate. Consider, for instance, a

device similar in form to the standard device of Figure 2, but with the insulator
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replaced by a thin layer of dopped semiconductor; and suppose that the impurity
concentration is small, and also the temperature is very low. Let L be the device
length, | its total current, N the number o carriers (electrons), v the average
electron speed, and M their effective mass.

For a given value of the total current, which we suppose to be small, | =~
eNv/L, the electronic kinetic energy whill be % NMv? ~ M(LI/e)*/2N.

Now, if €, is the energy needed to ionize an impurity and produce a carrier,
then the electron gas has also an extra ionization energy e, V; so that the total
energy shall be:

E=%M[-L-21]2-]1V+50N. (55)

This is a nonconservative system. When the current is constant the current
source continuously supplies the necessary energy, to compensate dissipation, and
keep mechanical energy constant. In spite of that, and considering that the device
is at very low temperature, we will use the universal criteria of minirnizing its
mechanical energy, in order to determine its preferred configuration.

Minimizing Eq.(69), we then conclude that the system's number of carriers
is current dependent: LI\/ATJ/e\/'Z_eI. Taking for example: M ~ M/10, g, =~
10-%eV and | ~ 100 u 4, one gets a valuefor the number of carriers, which is close
in magnitude to the typical number o carriersin quantized Hall effect devices.

Another very important conclusionone getsin theream o thismoddl, is that
the electron’s velocity results independent of the current value but depends only
on the ionization energy, and on the electron effective mass: v =~ 1/2¢, /M.

Notice that, in cases where ¢, is very small, the electron speed will also be
very small, so that the passage o low currents through the device will cause little
dissipation.

Consider the limiting case when the impurity concentration is very high, and
the binding energy €, very small. In thiscase, thanks to the tunnel effect and(or)
to temperature effect, electrons may originally form a sort of gas, even before the
onset o current.
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It seems t0 us that this device without gate we briefly discussed, might be of
some use, at least as a preliminary and rough model for the heterojunction-like
devices.

Anyway, the number of electronsin the system is defined somehow. The effect
that, in devices other than MOSFET, fixes the total number of carriers, is called

here the effective gate voltage of the device.

(f) Dominance of the electron on top of the orbital

Now we pass to examined the casein which orbital polarization is mostly due
to the dislocation o the (electron-type) quasi-particle on top of the orbital. Such
an effect is expected to occur in the transition region between plateaus.

For afirst qualitative discmsion about the effect it is convenient to return to
Landau theory, because o its smplicity.

Before the introduction of perturbations, orbitals are all filled with the same
number o electrons, and, thanks to Pauli’s principle, a particle cannot move to
another orbital, unless it gains a certain amount of energy, that will be bigger the
deeper is the level occupied by that particles in its original orbital.

A small perturbation of the type 7, (analogousto Hamiltonian (44)) will
mix the wave function d an electron d a given orbital with nonpopulated high
energy levelsd neighboring orbitals. But it is the quasi-particle on top of the
orbital that will be mostly affected by the effect, specially in the transition region
between plateaus, where the gap that inhibits that electron on top from moving
away becomes much smaller than the binding energy of other quasi-particles.

So, in the transition region, the orbital polarization is mainly due to the dy-
namicsaof the quasi-particleon top, and not to the center of mass dynamics. Under
these circumstances, and only for computational purposes, one can suppose that
the orbital has a center o charge, corresponding to the (n — 1) charges belong-
ing to the (n— 1) deeply bound quasi-particles; plus one more quasi-particle of
very small binding energy, which isjust the one that couples to fluxes, and whose

motion shall be the main responsiblefor the polarization effect.
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Now, in order to introduce thiseffect into tbe model, weconstruct the dynami-
cal variables by combining pure electromagnetic variables, with only the position z
and generalized momentum —:8, o the quasi-particle on top. The orbital elec-
tric flw and momentum shall then be given by (see Egs. (33), (34) and (35) for
comparison): §F, — e(z/L) and —i8, — eA,.

One must also replace the mass M, in Hamiltonian (38) by the electron
mas M.

Because of electron indistinguishability it isimpossible to distinguish which
one gained the average momentum ascribed to the top quasi-particle. Therefore
all orbital electrons must be counted as carriers; or aternatively, oneshould count

the orbital as a whole as a single carrier of charge ne.

(g0 Thesystem at constant current

At a given magnetic field strength, the choice of the total current fixes the
orbital momentum, in a self-consistent way. Neighborhoodscreate aself-consistent
external source E,,,, at any individual orbital, so as to induce there the same
average momentum required by the global current source.

When computing the results shown below, we adopted the top quasi-particle
approximation, and, in order to have a theoretical picture closer to the experimen-
tal situation, we then modified the electric source value E,,, , concomitantly with
the magnetic field variation, so asto produce the sametotal current in the device,
for every vaue o B.

If I***=! js the device current, the average orbital current shall be i =
LI****!'/H, On the other hand this same average current depends on the orbital
average momentum in the followingway: i = e< p, > /M L; where the average
momentum can be roughly estimated to be (gM}?L®/2x® (in this estimate we
took into account only Hamiltonians H, (p;) and H;). Combining all this with
formulae (47) and (53}, we obtain the relation between electric source E..: and

~_7ﬁ E 1/4 3/4 Jtotal
B = [2] B = (56)
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This approximated formula is reasonable only at lowv temperature. When
treating the system at high temperatura, one can only obtain the function
E... (1) by means of a complex self-consistent numerical calculation, which
we did not do.

Figures (3) and (4) show the Hall resistance and longitudinal resistance (or
conductance) which resulted from calculations of the standard device behavior. In
these calculationswe took the effective electron massin the device material to be
onetenth of the electron mass (M = M/10). In order to obtain the Hall resistance
in ohms, one must multiply Ry, by 25812.801.(2)

Figure 3a shows what happens at the relatively high temperature d 13°K,
when the effective gate voltage is varied, but the magnetic field is kept fixed at
200 kG, and the current at 0.4pA. In this case, temperature is so high that
there is no Hall resistance plateau yet; although one can observe a trend towards
formation of plateaus, at the indicated regions. One notices also, the oscillations
in longitudinal resistance, which resembles those of the Shubnikov-de Haas effect.

The next figure, Figure 3b, showsthe system’s behavior at a temperature one
order of magnitude lower, and at a current of 4.5 uA. Now, one clearly sees the
Hall resistance plateaus, as wel asthelongitudinal resistance characteristic peaks.

In Figure 3¢, which corresponds to a still lower temperature (.15'K), and
current of 12 pA, plateaus become somewhat sharper. There one notices also the
longitudinal conductance, with its typical behavior.

Figure 4a and 4b show the device behavior when wevary B, at constant tem-
perature {2.0°K and 0.60°K), constant gate voltage (V, = 30 mV), and constant
current (0.95uA and 0.82 p A4, respectively). The picture is similar to the other
case, in the sense that plateaus gain definition, and the longitudinai resistance
peaks become sharper, as the temperature goes down.

Figures 4c, which corresponds to conditions similiar to those of Figure 4b,
shows the Hall resistance and longitudinal conductance, at the relatively low cur-
rent of 0.064 pA. And finally Figure 4d shows the system's behavior at very low

temperature and current.
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Fig.3 - Hall resistance and longitudinal resistance of the standard device as func-
tions of the orbitalseffective gate voltage, for M = 0.10M, and (a) B = 200 kG,
T = 10°K and | = 4.5u4; (b) B=200%kG, T = 1.2°K and | = 4.5u4; and
(c) Hall resistance and longitudinal conductance, for B = 150 kG, T = 0.15°K
and | =12uA4.

Both for the order of magnitude of physical variables (magnetic field, gate
voltage, Hall resistance, longitudinal resistance, temperature and current), as well
asfor the general behavior of the results, the example’s shown here, compare well

with experimental results?2-%7,
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Fig.4 - Hall resistance and longitudinal resistance d the standard deviceas func-
tions o the magnetic field, for M = 0.10M, and (@) V, = 30mVolt, T = 2.0°K
and | = 0.94u4; (b) ¥, = 30mVolt, T = 0.60°K and | = 0.82u4; (c) Hall
resistance and longitudinal conductance, for ¥, = 20mVolt, T = 0.47°K and
| =64nA; and (d) V, = 20mVolt, T =0.15°K and | = 30nA.

(h) Ohmic behavior
The authors of Reference (5) succeded in observing the system in Ohmic
regime at very low temperature.

In this regard, we report that, in some calculations, at very low temperature
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and current, we have also observed the Hall voltage ohmic behavior. However
we have not seen the ohmic behavior of longitudinal voltage. In that region,
longitudinal voltage seems to grow with the square root o current.

In some other calculations, we observed the formation of dips at the center
o longitudina voltage peaks. We interpret such an effect as being due to the
thermal competition of the first excited state, where the average éectric flu has
asign opposite to that o the ground state electric flux.

(i) Mechanism of dissipation

The existence of a longitudinal voltage means that dissipation must occur in
the system.

On the other hand the orbital is in a definite quantum state of well defined
energy.

Then, we are led to conclude that dissipation must occur outsidethe orbitals,
in the "dectron bath".

One might say that, because o electron number fluctuations, electrons alter-
nately pass from the orbital to the "bath" and vice-versa. Sincethereisatendency
of accelerating the electron inside the orbitals, which is due to the external source
perturbation, it then happens that the bath supplies the orbitals with low energy
electrons, and receive them back with higher speed. Or equivalently one can say
that electrons belongingto the bath arescattered by the orbital to higher energies.

It is just the cooling in the bath of those electrons coming back with higher
energy that isirreversible, and causes the dissipation effect. But, in spite of that,
the orbital quantum state energy is well defined.

(J) Specific heat

To conclude the analysis about the normal Hall effect, we will show some
results referring to the system’s specific heat. Figure 5 shows examples of
specific heat calculations for Hamiltonian H.,...., at two temperature values
T, = eBuax/15M and T, = By, /100M, where B,,., = 100 kG.
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- Cy larbitrary units)

B (kG)

Fig.5 - Specific heat d the electron gas computed with Hamiltonian
H .., 8 function of the magnetic field, for M = M. The figure
also shows the system's Hall resistance.

The energy spacing between successive levels d Hamiltenian H, is some-
what larger than the gap between levels o H.yarge; and then, in the considered
temperature region, the contribution of the former Hamiltonian to the specific
heat is negligible in comparison with that of H.parg.; SO that, results of Figure 5
are already a good approximation for the system's total specific heat.

If the electron effective mass is M = M, then temperatures T, and T, are
respectively .83°K and .5°K. If however M = 0.10M, then those temperatures

increase by a factor ten.

Our result at temperature T, compares reasonably well with electronic specific
heat phenomenological calculations by Gornik et al.?, which have been used to

interpret experimental dataof temperature variation, in a device heated by electric
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fied pulses, in the temperature region from 1.0°K to 5.0°K. The calculations of
those authors are in turn based upon a method by Zawadzki and Lassing??, which
introduces a phenomenological density of states around each Landau level.

11. The anomalous effect

Let us again take a system of surface S, charged with total charge eN. At
very high magnetic field, the dystem will have more Landau orbitals than elec-
trons, because the ratio BS/N becomes larger than the magnitude of a magnetic
quantum flw2r/e.

But since magnetic flux is quantized at integer multiples of 27 /e, there occurs
the formation o larger orbitals, each one o them with p quanta d magnetic flux.
And, in that case, one gets Hall resistance plateaus of the type:

R =22 (57)

Hall e2 n
which characterizes the so-called anomalous effect.

Our procedure here will be similar to the one used in the normal effect case,
with an important differencein the Hamiltonian dependence on the magnetic
flux/momentum.

(i) First, let us see how the global conditions determine a classical value for
theratio p/n (regarding pand n as continuous variables). If N is the fixed total
number of carriers, K = ¢BS/2np the number o orbitals, and n = N/K the

number of electrons per orbital, then classically we have the relation

[eS

P
n 27N

]B =~B (58)

with 7 = eS§/27n.
(if) The orbital energy associated to the interaction with the magnetic fidd is
_1eB

e’ (n) = 3™ (59)

because now, in the orbital ground state, all electrons will be at the lowest energy
level.
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(if) Since only the first few energy levels contribute to the phenomenon we
consider here, the orbital is an essentially quantum mechanical system. It works
in the extreme quantum limit, in opposition to the semiclassical regime of other
phenomena. So it is difficult to visualize the form of an orbital.

In spite of that, and in order to simplify this preliminary discussion of the
fractional effect, in Figure 6 we outline a picutre of a sector in the ensemble of
orbitals. The figure is based on the paper’s theory, specially on the form of the
Landau wave function, but also on classical intuition.

In Figure 6, the dotted lines define in the device’s plane the space regions
belonging to the n*® orbital, to the (n+ 1}** one, and soon. Line AB showswhere
the n'" orbital Landau wave function (the even ones) have their maxima. Line
CD does the same for (n+ 1)t* orbital. Thecircular lines are only to recall the
classical view of electrons rotating because o magnetic force. The arrow shows

the direction of current flow.

A

A

Fig.6 - Sketch o asector o the orbitals' ensemble. The dotted lines
determine the domains d different orbitals (seethe text for details).

In order to construct the n'" orbital dynamics, we take line CD in the
neighbouring orbital as a line of reference for the vector potential, making first
f(f A-di = 0 We dso ascribe to the nth orbital the rnagnetic flux $B,, =
A.dl= [? & dt?(assuming [ A d€'is compensated by — [, A4 - dé).

fABCn
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If we then reintroduce the operator {2 A -dt, its average value will contribute
to the external sources d the n'" orbital dynamics.

(iv) Now we make the extreme simplification of supposing that 33 may be
simultaneously the orbital magnetic flux and the orbital momentum, as weexplain:

(a) Consider that the system is initially uncoupled to electric sources (being
ina 3;3 eigenstate, 2= p). In this case, if the system is in its ground state, we
interpret ¢5 asthe orbital magnetic flux; and

(b) However, if that same systemisthen coupled to a very weak electric source,
we then interpret the differenceégs = ¢5 — 2;75 p as a avariable proportional to
the orbital momentum: p, = f éé5. And p, will thus be related to the current
produced by the electric source.

(v) In order to show an example of calculation for the anomalous effect, we

solved the phenomenological Hamiltonian:

EB ].A 82 ~—1 T2 Il 2 D2 1 ~Q
—M—{gn-}-z;n ¢: — yBe¢y +W[7rfy B —E]n , (60)

coupled to external sourcesof thetype H} and H?. In Eq.(60) W is a phenomeno-
logical constant.

The reasons for constructing such phenomenological Hamiltonian are:

(a) It has a term like that o Eq.(59).

(b) In the classical limit it respects relation (58).

(c) At any given valuedf n, by expanding the Hamiltonian in ¢z around its

classical minimum we get: e(n)t ZA]In 2+, wherep; = % (¢a — %) and ¢5

is thevalue o ¢ that minimizes the classical energy. So that the second term in
that expansion can be interpreted as the kinetic energy o the orbital electronic
cluster.

(vi) Figure 7 shows the result of a calculation with Hamiltionian (60), made
with W = 0.70, at very low temperature (T = e¢B/40M). In this calculation,
the electric source was kept fixed, for every value d B. There one sees fractional
plateaus of thetype %, 2 and 3. One noticesalso the plateau p/n = 2. Asfar as we
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know, there is no report on the observation in experiment of anomalous plateaus
p/n, with an even p and odd n.
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Fig.7 - Example d anomalous effect calculation: Hall
resistance and longitudinal voltage, as functions of the
magnetic field.

In conclusion, we say that the theory presented here provides a good treat-
ment for the quantized Hall effect of the normal type, leading to a quite complete
picture o the phenomenon although the descreption o the anomalous effect isstill
phenomenological and tentative.

The theoretical method introduced in Reference (1)and in this paper, which
emphasizes a few modes of quantum flux as the relevant variables, showed to be
the natural framework for treating the quantized Hall effect.

I. Venturawould like to thank Paulo Caldas, who called his attention to the
quantized Hall effect problem. It is also a pleasure to thank M. Abud, A. Fazzio,
L. G Ferreira, J.R. Pereira Neto, J.F. Perez, N. Studart, and W.F. Wreszinski for

discussions about aspects o our method, during the development o this work.
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Resumo

O artigo apresenta uma teoria do efeito Hall quantizado baseada na quan-
tizagdo de fluxo. Devido & agdo do intenso campo magnético, o dispostivo é sub-
dividido num ndmero muito grande de orbitais semelhantes, aproximadamente
guadrados. O orbital é o sistema dindmico elementar. E uma regido de cor-
relag3o, onde poucos €l étrons correlacionados interagem com 0 mesmo quantum
de fluxo magnético. Sobre cada uma dessas regides de correlacdo atua uma volta-
gem de gate €efetiva, proporciona a voltagem de gate do dispositivo global, e cuja
variagdo faz alterar o nimero de elétrons de cada orbital. Mas, como esse nimero
€ quantizado, sua variagéo se faz aos saltos, produzindo a sequiéncia de plateaus
do efeito normal. O acoplamento do fluxo elétrico do orbital a uma fonte elétrica
externa é que provoca a passagem de corrente. O fl uxo elétrico também se acopla
ao operador que descreve flutuagdes do nimero de el étronsdo orbital. Estuda-seo
comportamento de um dispositivo padréo a temperatura finita. Obtém-se a volta-
gem Hall e aresisténcia longitudinal como fungdesdas variaveis voltagem de gate,
campo magnético, temperatura, e dacorrente do dispositivo. Calcula-setambém o
calor especifico como fungdo do campo magnético. Os resultados comparam favo-
ravelmente como o que se observa nas experiéncias sobre o efeito Hall quantizado.
Apresenta-se também uma andlise preliminar a respeito do efeito andmalo.



