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Abstract  This paper presents a theory of the quantized Hall effect based on 
flux quantization. T l ~ e  strong magnetic field divides the device into a large 
numbers of square orbitals. The orbital is the elementary dynamical sys- 
tem, which is a correlation domain, where a few correlated electrons interact 
with the same quantum of magnetic flux. Acting upon each one of those 
correlation regions, there is an effective gate voltage, which is proportional 
to the device's gate voltage, and whose variation will make the orbital elec- 
tron number change. But since this number is quantized, it must change 
by steps, and this yroduces the normal effect sequence of plateaus. The 
coupling of the orbital's electric flux to an externa1 source is what makes 
a current pass through. The electric flux also couples to the operator that 
describes electron ntmber fluctuations. The finite temperature behavior of 
a standard device is studied. The Hall voltage and the longitudinal voltage 
are obtained as functions of gate voltage, magnetic field, temperature and 
device's current. The specific heat is computed as  a function of magnetic 
field. The results compare well with what is observed in quantized Hall 
effect experiments. A preliminary analysis about the anomalous effect is 
also presented. 

1. Introduction 

This paper proposes a theory of the quantized Hall effect, which uses the 

quantum flux method introduced by one of the authorsl. 

The quantized Hall effect was discovered in 1980 by von Klitizing, Dorda 

and Pepper2, during measurements of the Hall voltage and longitudinal voltage 
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in a MOSFET (metal-oxide-semiconductor-field effect-transistor) operated at liq- 

uid Helium temperature, and under a high magnetic field. They observed the 

formation of Hall resistance plateaus, with variation of the gate voltage. 

An important step for development and comprehension of quasi two- 

dimensional electronic systems, had been taken in the work of Fowler, Fang, 

Howard and Stiles3, who, in 1966, observed the Shubnikov-de Haas effect dur- 

ing measurements of conductance in a field effect device, with an electron gas 

formed on its Si/SiO, interface. 

In 1982, Tsui, Stormer and Gossard4 discovered the so called anomalous or 

fractional Hall effect, in a device of the heterojunction type: GaAs(A1Ga)As. 

In the development of the present work, in order to interpret our numerical 

results, we made frequent comparisons with experimental results shown in the 

reports by Paalanen, Tsui and Gossard5, and von Klitzing, Tausendfreund, Obloh 

and Herzog6 on the normal Hall effect; with those by Tsui, Stormer and Hwang7 

on the anomalous effect, and also with the analysis made by Gornik, Lassing, 

Strasser, Stormer, Gossard and Wiegman8 about the system's specific heat. We 

have also used informations contained in the review papers by Ando, Fowler and 

Stern

Q

; Souillard, Toulousse and Voss10 and Stormer". 

Now we pass to some theoretical references about the quantized Hall effect: 

As early as 1967, Stern and Howard12 had already computed the electron gas 

sub-bands, taking into account the average potential of neighbouring centers of 

charge, and also the screening effect. 

The quantization of electronic motion along the direction normal to the in- 

version layer had been predicted by SchriefferI3 in 1957. 

In 1971, Ohta14 noticed that electron scattering by impurities should lead 

to an broadening of Landau levels, and observed that this is an essentialy two- 

dimensional phenomenon. He also observed that the longitudinal resistance peaks 

at low temperature, should be related to thaf, broadening of levels. 

His theory was then improved and extended by Ando and Uemura15, and 

Ando16, who assumed that the electron gas should be viewed as a disordered 

system. Ando developed many-body techniques more complex than those used by 
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Ohta, and obtained results which, in the single-site approximation were consistent 

with Ohta's ones. 

The theory motivated iL lot of theoretical studies, and has been serving as 

a guide for the interpretation of some experimenta! aspects of the phenomenon. 

However, the theory is complex, and frequently presents methodological difficulties 

typical of many-body problems. 

On the other hand it is difficult to conciliate the high numerical precision 

of Hall resistance plateaus, with the idea of a system that should be essentially 

disordered. 

In 1981, concerned with this problem, and under the Iight of certain results 

by Ando, Laughlin17 concluded that the high precision of the Hall effect plateaus, 

should be due to some fundamental principle. He then proposed that gauge in- 

variance should play a fundamental role in the description of the phenomenon. 

Laughlin took the vector potential as a classical field, but used the Dirac-London 

flw quantization rule ( f  A&? = % p )  when making gauge transformations in 

extended states wave functions. 

In order to present his itieas in a clear manner, Laughlin conceived an idealized 

Hall effect device: a ring with many Landau orbitals circulating in parallel. His 

ideas soon found a large nwmber of f o l l ~ w e r s ~ ~ ~ ~ - ~ ' .  

Imryao and Lindelof and Hansenal proposed schemes to explain the quan- 

tized Hall effect, supposing that flux quantization should play a central role, and 

stablishing a connection wi1,h the Josephson effect. 

In 1984, Zawadzki and Lassing2' obtained the electron gas specific heat, as- 

suming a phenomenological density of states with the form of a sum of gaussians. 

Also in 1984, Ventura' introduced a canonical method of flux quantization 

that extends the traditional method of Dirac-London to the description of mixed 

states of flux. Ventura proposed that every Landau orbital should have indepen- 

dent dynamics. The action of global external sources, like the gate voltage and 

current source, on a given orbital, should be introduced by means of external 

source terms in the orbital Hamiltonian. He also noticed that, from the viewpoint 
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of an orbital, the two main observables, the Hall voltage and the longitudinal volt- 

age, are respectively proportional to the elements of a canonical pair of flwes: the 

magnetic flux dB and the electric flux d E .  
Reference (1) also shows a calculation of an orbital with well defined electron 

number, which provides an explanation for the existence of fractional. plateaus, and 

describes how the transition from a plateau to the next one occurs, with variation 

of the magnetic externa1 source. The peak in longitudinal voltage that appears in 

transition regions, is explained as  a direct consequence of the non commutativity 

of electric and magnetic fluxes. 

Ventura argues that there should be an effective gate voltage at every orbital, 

which, by forcing the variation of electron number, should lead to the sequence of 

plateaus of the normal effect. He also proposes that the orbital Hamiltonian must 

contain operators to describe the effect of electron number fluctuation, although 

it was still unclear that, as we will show here, electron number fluctuations and 

momentum fluctuations should be coupled. Polarization flux is introduced in the 

final version of Reference (1). 

However, that theory is a good explanation for the existence and behavior of 

plateaus, but only for the idealized system, that is, a Landau orbital in Laughlin 

device. It was still necessary to apply those theoretical developments to the direct 

study of the real transistor, at finite temperature, and also to  explain in detail 

the important role played by the device's electrostatic energy. And this is just the 

purpose of this paper. 

In reference (23) we analyze the statistical mechanics of the canonical quan- 

tum flux theory. 

The plan of the paper is as follows: 

In section 2 we review Landau theory. 

In section 3 we study the device's eleçtrostatics. We elected the MOSFET 

as our theoretical framework, so that, discussions of section 3 more directly refer 

to such a kind of devices,where the number of carriers is fixed by a gate voltage; 

although, with minor modifications, they can be extended and applied to the 
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description of other devices. A brief discussion about devices without gate is 

presented in section 10. 

The quantized effective electrostatics of individual orbitals is treated in 

sections 4 and 5. It is deterniined by the requirements of global electrostatics. At 

this stage one is already able to understand the existence of normal Hall effect . 
plateaus. 

In section 6 we deal with flux quantization, accordingly with the proposal of 

Reference (1). 

The kinetic Hamiltonian is considered in section i', where we also construct a 

perturbation Hamiltonian (proportional to the electric flux operator) which makes 

current pass through the orbital. 

In section 8 we discuss the effect of fluctuations of the number of electrons of 

an orbital. 

The solution of the Harniltonian is carried out in section 9, together with the 

construction of the corresponding statistical mechanics. 

Section 10 is the longest one. There we describe the normal Hall effect, and 

discuss in detail the following topics: orbitals' geometry and dimension; behavior of 

the Hall resistance and longitudinal voltage, with the variation of the gate voltage, 

at constant magnetic field; estimate of the device's gate voltage variation needed 

for the system to cross a plateau; estimate of the temperature region where the 

effect becomes clearly seen; a standard device; top electron dorninance; constant 

total current regime; results on the Hall resistance and longitudinal voltage, under 

magnetic field variation; Ohmic behavior; dissipation mechanism; and specific 

heat. 

Section 11 is dedicated to a preliminary analysis of the anomalous effect. 

2. The electron in a magnetic field 

The motion of one electron in a magnetic field 5 is described by the 

Schrodinger equationZ4 
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A -, 
where Pis the generalized momentum, e is the electron charge, and Aezt a classical 

vector potential, whose rotational is the B field. 

Let I? be a uniform field parallel to the z-ais.  Thanks to gauge invariance 

there is a large continuous set of potential vectors which reproduce the same S. 
In the sequence of the paper, we will introduce an externa1 electric source 

along the z-direction, which will break the system's symmetry, leading to the 

formation of orbitals along the z-axis. Thus it is convenient to choose from now 

on a special classical vector potential, so as to form Landau orbitals parallel to 

the x-axis: 

With this vector potential choice, the electron's equation of motion turns out 

to be: 

In devices where the quantized Hall effect is observed, the electron is bound 

to an attractive well V(z) varying in the z-direction. We will not treat this z- 

direction motion in detail. The effect shall be seen when only the first few levels 

of the potential V(z) are populated12. Here we suppose that its first excited state 

energy is so high, that we can ignore the possibility of occupation of this levella. 

The electronic wave function is thus f, (z) $(z, y), where +(x, Y) is an eigen- 

solution of Eq. (3), and f, (z) is the ground state wave function of V ( z ) .  

Let us take the system to be a box of length L, in the z-direction, and width 

H, in they y-direction. The electron's eigenstates are functions Iji,, (x,y) that 

solve Eq.(3) in this box: 

where the wave number k, is 
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and 4, (y - y,) is the nth eigensolution of the harmonic oscilator: 

centred around y, , with 

k, 2rm y ,= -= -  
eB LeB 

The energy of state $,, (x, y) does not depend on m and is given by: 

m is the index denoting a particular orbital. 

So, we have a set of identical orbitals. One electron of energy E in a magnetic 

field B,  has frequency w = eB/M,  and its motion is over a circle of radius R = 

2E/\eBI, centred at an origin orgin 0. In quantum theory, in turn, the wave 

function factor edkmZ is interpreted as reflecting an uncertainty in the position of 

the origin, although such an origin must be at rest. 

In this regard, the expectation value of the vector potential in the electron 

state $,, (z, y) is 

1 2n < .A""t >,, = By, = - - m 
L e  ' (9) 

and, using Eq.(7), we deduce that, if $, is the generalized momentum along the 

z-direction then 

< 9, - eAezt >,,= k, - eBy, = O , (10) 

and we see that the expectation values of z-direction momentum and current 

vanish. 

The coupling of a z-direction externa1 electric source to the system, makes a 

current to flow in this direction, as it will be discussed in sections 7 and 10.. 
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3.  Many-electron systems 

In a MOSFET, the region filled with the electron gas is a plane charged be- 

cause of a gate voltage V,. After turning on the magnetic field, the system9s ground 

state is such that electrons are distributed among a large number of orbitals, like 

those discussed in the former section. 

Classical estimate of the orbital number of electrons, at given values of mag- 

netic field and gate voltage: 

(i) From the analysis of the previous section, one concludes that the number 

of ,orbitals is the same as the total number K  of magnetic quanta of flux flowing 

across the system area S = LH (this is true as far as the gate voltage is high 

enough to keep at least one electron per orbital). 

Since BLH is the total magnetic flux, and 2ã /e  the magnitude of a quantum 

of magnetic flux, we get 

e e 
K = - B L H = - B S  

2ã 2~ (11) 

a s  the relation between the number of orbitals and the magnetic field. 

(ii) E(B,  V,,n) is the system's total energy as a function of magnetic field, 

gate voltage and orbital number of electrons, n. We assume that the system is in 

"electrons bath", i.e., it may have as many electrons as it needs to minimize the 

energy; so that by minimizing E(B,  V,, n) one can obtain n. 

That energy has three parts that we pass to analyze: 

(iii) One of them refers to the coupling to the magnetic field. 

For our purpose here, the complete treatment of the spin variable is not 

essential, and we will assume that every electron has spin up, for instance. Hence, 

there is only one electron per orbital level. The first electron enters in the orbital 
1 eB with energy 9 x, the second one with q #, and so on. 

Every n-electron orbital will then have an energy 
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due to the direct coupling to the field B. 

(iv) Another term in tot,al energy corresponds to the electrostatics repulsion 

where C is the device capacity, and K n  the totalnumber of electrons in the electron 

g= 

(v) Finally, we must consider the electrostatic coupling to the externa1 gate 

voltage: 

E3 (K, n) = -eV, Kn , 

(vi) So that the total energy (E1 + E2 + E3) will be 

(vii) And, supposing for a while that n is a continuous classical varitible, then 

by minimizing Eq. (15) (use Eq.(lí) aIso) we can get the value of n corresponding 

to the lowest energy state 

M* V, n = -  
B 

The constant M* is such that 

and the approximation made in the last step holds in general. 

4. Quant ized orbit a.1 'electrost atics' 

Now we suppose that an orbital is a correlation region: electrons belonging to 

a given orbital are a11 interacting with the same quantum of magnetic flux, and we 

expect that electronic motion is correlated together with quantum electromagnetic 

field fluctuations. 
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Based on the material of section 2, we also suppose that orbitals are very 

similar,so that, by treating one of them theoretically, one is already able to describe 

the behavior of the ensemble of orbitals. 

The electrostatic action of the device's gate voltage and of other orbitals upon 
w - 

an individual orbital is described by means of an effective gate voltage V,. V, must 

be such that, at the classical level, every orbital in equilibrium should have the 

same number of electrons as given by Eq.(16), since this number is determined by 

the global electrostatics of system. 

The effective electrostutics of a correlation region with n electrons will then 

be given by the static energy: 

w 1 eB - 
E (n) = - -- n2 - eVg n 

2 M  

where the first term is the interaction witli the magnetic field (see Eq.(12)); and 
w 

V, is such that, if we minimize the above expression relative to n, then, at the 

point of minimum, the number of electrons of Eq.(16) should result. Therefore, 

the orbital effective gate voltage must be 

It is remarkable that this relation depends only on geometric constants, S and C, 

having no dependence on the magnetic field B. 

Eq.(18) has no term of electrostatic repulsion among electrons belonging to the 

same orbital, since electrostatic interaction, which was already considered in the 

study of the global device, is a long range effect. On the other hand the coupling 

to the externa1 magnetic field must take part in orbital dynamics, because this is 

a local effect. 

Plateaus of the normal Hall Eflect : up to now we have considered the number 

of electrons n as a continuous classical variable, iii order to construct the effective 

orbital Uelectrostaticsn. The next step is to quantize it. 

We must then start from a Hamiltonian operator, which has a classical limit 

compatible with the energy formula E(%), that is 
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Now 2 is the electron number operator. Its eigenvalues are the non-negative 

integers (n = 0,1,2,. . . , etc). 

At this point one can already explain the existence of plateaus in the so-called 

normal Hall effect. 

The energy of state In > is 

1 eB - 
E,, = 5 n2 - eVgn , 

,., 
and the ground state [no (B, fg) > corresponds to the integer no (B, V,) that min- 

imizes Eq. (21). no is the integer in the interval: 

One then sees that, if B increases at constant V, (or vice versa) the number of 

electrons varies in steps. 

On the other hand, if S is the system's surface and N the number of carriers, 

then the classical description of the Hall effect (that must hold when the ensemble 

of orbitals is taken together) means that the Hall resistance is given by the relation 

between the magnetic flux across surface S and the total carriers charge 

H a l l  - 
V H a l l  BS R - 

I eN ' 
where VHall is the transverse Hall voltage and I the longitudinal current. 

Then, since B S  = 2irK/e and N = no K ,  we get 

so that, in the normal Hall effect case, the Hall resistance depends only on the 

number of electrons per orbital. 

From inequality (22), m e  concludes that when the ratio M?,/B is in the 

interval 
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then the Hall resistance is given by Eq. (24). Therefore, it is clear that, under 

continuous variation of magnetic field or gate voltage, the Hall resistance varies in 

steps. 

5. Correlation among the orbital electrons 

Owing to the externa1 induction field electrons move in t u b a  along the z- 

direction. The boundaries of a certain tube are approximately defined by the 

transverse wave function factors, 4, (y - y, ) and fo (2).  

After the orbitals are filled with their no K electrons, Pauli's principie forbids 

an electron to leave its orbital spontaneously. A given electron could not for 

instance, move away from a state in the mtb orbital to occupy the same leve1 in 

the kth orbital, since this state is already filled. Therefore, that electron can only 

leave its orbital by receiving a certain amount of energy, so as to make its energy 

larger than &(no) (see Eq. (8)). 

Any orbital has then a particle cluster with n electrons. The collective motion 

of this cluster is ruled by the Hamiltonian 

1 H (3 = - P2 
2 P  2Me (26) 

where p is the collective s-momentum and M, the cluster total mass: 

so that, Hamiltonian (26) describes the center of mass motion of the electron 

cluster . 
In orbital dynamics, there is a situation where the motion of an interna1 

excitation can be more important than the center of mass mode: it occun in the 

transition region between plateaus, when the binding energy of the (electron-type) 

quasi-particle at the top of the orbital becomes much smaller than the binding 



M. Bimões and I. Ventura 

energies of other quasi-particles. In this case, both the orbital polarization and its 

current shaI1 be determined mostly by the motion of the quasí-particle at the top. 

This effect is considered in section 10. 

Polariza.tion Operator 

Let Vol= L,? be the fraêtion of the device's volume ascribed to an orbital. 

L is its length along the z-directiorz, and its transverse section. (This volume 

is a rectangular box larger than the region where the electrons belonging to that 

orbitai move). 

For every correlation region, we then define the polarization operator: 

enx p = -  
v01 ' 

In this very section and in the next one, we treat the variable n, as if it were 

a c-number. 

Variable P is a measure of how much the electronic cluster center of charge 

is displaced from its original position at the center of the orbital. 

6. The quantum flux, the polarization, and the momsntum 

Let AI (Z) be the x-cornponent of the vector potential, defined within the 

volume ascribed to an orbital. Assuming periodic boundary conditions, one can 

decompose AI (Z) as follows 

where the first mode operator Ao is % /m. 
The set {&) is orthonormal and complete; whereas the field variables ai are 

canonically conjugated to another set of variables { b j ) ,  so that [a;, b j ]  = i bij. 

By using the operators bj and the orthonormai set {ri,), we then construct 

another local field 
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with the first mode zo &;n by -bo/m. 

We cal1 this field the x-component of the pure electromagnetic electric field. 

It is the A, (2)  field canonical momentum: [A, (Z), - E, ($1 = i 6(Z - 9. In 
-# -, 

classical theory, and in the gauge 4 =constant, we have E = -A, so that the two 

fields indeed form a canonical pair. 

In order to simplify the presentation, we shall take only the first mode Ao - 
and E. to represent respectively the x-direction vector potential and pure elec- ,., 
tromagnetic electric field, since, in the retzngular geometry, Ao and E, are the 

operators more closely related to fluxes. The complete treatment of fluxes has 

been presented in Reference (1). 

Ao and Zo are proportional to the elements of the canonical pair (h, bo), so - 
that the commutator is [Ao, Eo] = 4 1 ~ 5 ,  or, in the form of a commutator of 

[ L A ~ ,  gio] = - i . (31) 

We define the true electric field as the difference between the pure electro- 

magnetic electric field and the polarization 

And the corresponding electric flux is given by 

The canonic conjugate to the electric flux is another hybrid operatorl 

which results proportional to the physical momentum of the electron cluster 
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In order to keep our treatment as close as possible to tradtional methods, we 

choose to work with the cluster momentum si and its canonic conjugate X: 

instead of the pair of fluxes (6E,  &). One must however have in mind that X is 

proportional to the orbital electric field. 
L Given the commutator [ X ,  pf ] = i, and the domain of the variable X : - 2 < 

,-, 

X < $ (notice that -< < z; iL&] < <), we can obtain the physical momentum 

eigenfunctions 

1 
+p (x) = - exp i [$ p ~ ]  Jz 

and eigenvalues pf,, = 9 p (with p = O, f i,%$. . . , etc.). 

7. Motion of the center of mass 

After introducing electromagnetic variables, one modifies Hamiltonian (26), 

according to the rule of minimal coupling, 

This Hamiltonian has eigenvalues 27r2 p2 /Mo L2. 

The devices where the quantized Hall effect is observed are coupled to current 

sources. We will describe this effect by means of a self-consistent electric source. 

Every orbital is an open system of finite volume. We suppose that the device's 

current source plus neighboring orbitals act together on a given orbital, tending 

to create there an electric field. 

In classical physics, we can describe the effect of externa1 sources producing 

a uniform electric field in a open volume Vol (which has no charge), by adding 

a term -ECztVol to the system's Hamiltonian. This term combined with the 
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1 quadratic electric field energy 2 E2Vol, leads to the expected value E = E,,,, 

after minimization in E. 

The, we suppose that also in our quantum system the action of a weak electric 
h 

source is given by perturbation Hamiltonian - Vol E,,, E; although we discard any 
A 

Hamiltonian dependence on quadratic terms such as E2 or X ,  etc. (We recall 

that the orbital electric field is not confined into the tube where electrons move, 

but extends along the device in the z-direction). 

Writing that perturbation Hamiltonian in terms of the variable X, we get 

H: ( X )  = -2lelnE,,,X . (39) 

The value of E,,, can be determined self-consistently in terms of the current. 

At this point we would like to add a note about the passage from classical 

electrodynamics to the construction of a quantum electrodynamics of fluxes. Con- 

sider the interaction term in the classical action of an electron interacting with an 

externa1 field SA = e dt A:ztvi. 

Formdly, it can be integrated by parts leading to an action term of the form 

S, = -e S dt A:"*% = e S dt E,eZtxi, which is analogous to the corresponding 

classical action associated with Hamiltonian (39). 

However, in the construction of a quantum electrodynamics suitable for the 

description of nonperturbative/low energy/large distance phenomena (like many 

effects belonging to quantum electronics, for instance), where fluxes play an impor- 

tant role, the type of interaction to choose, SA or SB is still somewhat ambiguous. 

This certainly depends on the nature of the system we want to describe. 

In our case here, of open finite volume orbitals, formed because of the existence 

of a magnetic field, we made the (justified) choice SB ; although the choice SA 

would lead to a qualitatively similar picture,and to results of nearly the same 

order of magnitude. 

Notice also that the classical A field has already been used to introduce the 

effect of the classical magnetic field; and this is one more indication that choice 

SB should be the right one in the present case. 
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A study about the construction of a quantum electrodynamics of fluxes is 

being carried out("), and shall be published elsewhere. 

8. Electron number fluctuations 

One more effect must be considered, ir1 order to complete our descritpion of 

the quantized Hall effect: the effect of electron number fluctuation in an orbital. 

Starting with a classical argument, we observe that sudden alterations of 

externa1 conditions may lead to the appearancç of perturbative forces able to 

change the number of electrons in an orbital. Besides, an oscillatory longitudinal 

electric field might also make the electron number change. For example, variations 

of electric field can make an electron move from an orbital to the other. 

Another possible cause of electron number fluctuations could be the presence 

of impurities in the material1. Ali electron weakly bound to an impurity, may in its 

ground state have a "srnall fractionn of its wave function iu the orbital region. In 

an excited state, in turn, the electron will be with higher probability in the orbital 

volume. Variations of electric field might then produce oscillations between these 

two states, so leading also to fluctuations in the orbital electron number. 

On the other hand, when an orbital gains an additional electron, even if 

transitorily, the electron cluster momentum will change, reciprocally. 

Then, we are led to conclude that there must exist a coupling between the 

electric flux operator (which brings magnetic flux/momentum fluctuations) and 

the operator related to electron number fluctuations. 

If the operators a+ and a are such that [a+ : a ]  = --1 and a+ a = R, fluctuations 

of electron number can be introduced by means of the hermitian operator a+ +a ,  

since this operator does úot coinmute witli 6. 

Then, in order to describe the mutual effect of fluctuatíons of particle number 

and momentum, we construct a perturbation Hamiltonian of the type: 
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In this work we treat low energy phenomena at low temperature, so that only 

a few lowest energy levels contribute to the motion. Therefore, in t h i  case, the 

quantum analysis, made in terms of Hamiltonians (20), (38), (39) and (40) is 

already complete, in the sense that it is impossible to have a more local description 

for what happens inside an orbital. This limitation comes from the uncertainty 

principle. Since the modes are extended within the orbital, the description given 

by Hamiltonians H,' and H; for their respective effects is the most detailed. 

9. Solving the Hamiltonian 

In order to solve the system's Hamiltonian, we first choose its main part 

which is already diagonalized; and let the other two terms 

H, = Hf (X) + H; (X, a+ +, a) (42) 

to be treated as perturbations. 

At given values of magnetic field and gate voltage the ground state of H. is a 

state Ip = O, n >, with n given by inequality (22). The perturbation Hamiltonian 

then changes this pure H. ground state into a mixed state, that nevertheless is 

still dominated by the state 10,n >. 
The perturbation effect is introduced by coupling that state to its nearest 

neighbors, as we explain below: 

(i) Besides the state 10, n >, with n given by inequality (22), we also include 

the state I - 1, n > to form the mixed ground state. 

It would be more appropriate to take in account the state 11, n > also. How- 

ever, in order to simplify the calculations of results presented in this paper, we did 

not consider this latter state. 

Taking E,,* > 0, one observes that perturbation H,' produces a ground state 

with < X >> 0, which means a positive electric field. On the other hand, it also 
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leads to a mixture of p = O and p = -1 states, that corresponds to a negative 

average momentum, and, in consequence, to a positive current. 

(ii) Every plateau defined by inequality (25) is separated into two parts: the 
MY 1 upper region, in the interval a < --# < n + 2; and the lower region in the 

MY 
interval n - f < + < n. 

(iii) When the system is in the upper region of the nth plateau, then only 

the states ( - 1, n > and 10, n >, and their nearest neighbors above, I - 1, n + 1 > 
and IO,n + 1 >, will give relevant contribution to the system's dynamics. We 

have therefore, a four-state dynamics, with a mixed ground state, where the state 

10, n > prevails. - 
However, in a transition region between plateaus, when MVQ/B is in a small 

neighborhmd of the value n + f , and the energy Eo(O, n) is dose to Eo(O, n + 11, 

(see the energy formula below) then the ground state is nearly a fifty-fifty mixture 

of states ]O, n > and 10, n + 1 >. 
(iv) In the lower region, states 1 - 1, n > and 10, n > are in turn mixed with 

nearest neighbors below, ] - :L, n - 1 > and )0,n - 1 >; and we proceed as  we do 

in the other case. 

(v) The next goal is to obtain the matrix elements of the Hamiltonian that 

rules the four states' approximated dynarnics. A generic state shall be represented 

by (with index i running from 1 to 4) 

>*= ai,lO,n > +a',10,n+ 1 > +ori, 

(vi) By numbering the H. eigenstates from 1 to 4, in the order in which they 

appear in formula (43), we can write the Kamiltonian matrix that gives the four 

states' dynamics. It is the hermitian matrix: 

-íf d n  + 1 
ig n 

O 
A1 + Az 

-ign 
-if d n  + 1 

4 2  

O 

O 
O 

ign 
if d n + l  

O 
A 1 

if d n + l  
-ign 
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where AI, A2, g and f are given by: 

and 

(vi) After diagonalizing matrix (44), we determine the energy eigenvalue E ; ,  

and the average electron number ni for every state >; we determine also the 

average electric field -enXi/Vol; the average orbital current -e(p , ) i /ML; etc. 

(vii) Then we develop the statistical mechanics of the ensemble of orbitals, 

similarly to what we did in Reference (23). For example, the average electron 

number at temperature T is 

where the partition function Z is 

The electric 6eId average value at finite temperature will in turn be given by 

and so on. 

10. The normal Hall effect 

The quantized Hall effect of the normal type corresponds to the formation of 

electron number plateau states. Under variation of externa1 conditions, transitions 
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between these states occur, without pronounced alteration in the number of quanta 

of flux ascribed to each orbital. 

In this case the Hall resistance can be obtained by means of formula (24), but 

now replacing no by the finite temperature average electron number 

The other important observable is the longitudinal voltage V, (the product 

of the electric field by the system length), with the related longitudinal resistance 

Rt = Vz/Itotal, i.e., the ratio between the longitudinal voltage and the total 

current in the device. 

(a) On the geometry and length of orbitals 
In an orbital, electrons are strongly correlated, and are interacting with the 

same quantum of magnetic flux. On the other hand, there is the semiclassical 

interpretation, accordingly to which, those electrons should be rotating, due to 

the magnetic force, around a common orign of uncertain position2'. 

Both facts indicate that electrons belonging to the same orbital must be close, 

and that the orbital form must therefore be squared. 

Taking then a squared orbital, and considering that there is a quantum of flux 

per orbital, one can have an estímate of the orbital length L, by using the relation 

For example, if the magnetic field strength is near 100 kG, then the orbital 

length L. shall be around - 200 A. 

Equation (53) leads also to an interesting relation between the energy coef- 

ficients that appear in the gap equations (45) and (46). Multiplying Eq.(53) by 

ne/M, we get: 
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This equation has been used in every calculation on the normal effect, whose 

resuits we now pass to discuss. 

(b) Varying the gate voltâge at constant magnetic field 
The behavior of the Hall resistance and longitudinal voltage with the variation 

of the gate voltage, at finite temperature and constant magnetic field, is illustrated 

in Figure 1. This first example is from a calculation made with electric source E,,, 

kept constant, and with the effective electron mass in the material taken equal to 

the very electron mass. 

3 I 
L , I , I I I , I I  

8 = 200 kG 

T=8.6 mK 

I varies in the interval - 
I O - ~  - I O - ~  Amp/m - 

Fig.1 - Hall resistance and longitudinal voltage as functions of the 
orbital effective gate voltage, at B = 200 kG, T = 8.6 rnK, and with 
M = M, and the electric source E,,, kept constant. 

The result is very similar to the ones from quantized Hall effect experiments. 

One sees the Hall resistance plateaus, and, in the transition regions between 

plateaus, the longitudinal voltage peaks. Since the temperature is low, and the 

electric source weak, the longitudinal voltage becomes very small at the central 



M. Simões and I. Ventura 

region of the plateau, which is just the region where the Hall resistance is quite 

well defined near the ideal values of 2alen. 

However, in the experimental situation, it is the device's total current that 

is in general kept constant. In the sequence of the paper we will show reaults of 

calculations where the electric source strength has been varied concomitantly with 

the magnetic field, so as to keep constant the device's current (see Figures (3) 

and (4)). 

In this paper the constant X of Hamiltonian HJ enters as a phenomenological 

number. In principle it would be possible to estimate this number; but it is 

nevertheless a complicate estimate. 

In view of this difficulty, we decided to take a phenomenological constant A 

that grows with f i  (A = Ao ~B/B,., , where B,,, is the highest B value, in each 

exhibited graph). We will not justify our particular choice for the form of A, but we 
A 

notice that it corresponds to writing the perturbation H; in the form p 4E (a+ +a), 

with a constant p. In the calculation that resulted in Figures 3 and 4, Ao is such 

that Ao = (eBmax /ML(B,,,); L(Bm ,,) being the orbital length when B = B,,,; 

and ( is a small number fixed in a value in the interval 0.0075 < ( < 0.075. 

(c) On the temperaturéregion where the effect atarts being 
observed 

The temperature value ar.ound which the quantized Hall effect becomes visible 

in experiment, can be estimated in terms of the typical energy of Hamiltonians 

Hcharge and H,, , that is about eB/M. 

If we take the magnetic field to be near 100 kG, then that characteristic gap 

shall be eB/M - l O - =  eV (or 12OK). 

On the other hand, if the effective electron mass assumes the value that sup- 

posedly it must havel1 in the device's material (M - O.lOM), then the above 

estimate will result larger by an order of magnitude. 

Therefore, Hall effect plateaus will get a sharp definition, only after the device 

is cooled down to - O.l°K or l.O°K. And this is in fact the temperature region 
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where the effect starts being clearly seen, in most exper iment~~,~~ ' ,  when B - 
100 kG. 

(d) The length of a plateau under variation of the gate 

voltage - 
Let AVg be the effective gate voltage variation needed to put one more carrier 

in every orbital. And let AV, = ( e 2 ~ ~ / 2 s ~ ) ~ F g  be the corresponding variation 

of the devices gate voltage (see Eq.(19)). If one knows the device geometry, and 

its dielectric characteristics, then one can estimate AVõ, for every value of B. 

In a MOSFET, the capacity is nearly given by C E KS/d, where S is the 

devices surface, and d is the distance between the electron gas plane and the 

gate. d is the distance along which the global gate voltage is applied (d - 10d6m, 

typically). K is in turn the relative dielectric constant of the material that fills 

that space. From the relations above, and by inspecting Eq.(21), one deduces that 

AVg E Be2d/2nK. 

So, at an induction field of - 100 kG, the global gate voltage variation needed 

to make the system run through a plateau, or to vary by one the orbital electron 

number, is about 1.0 Volt to 10.0 Volt, depending upon the insulator's dielectric 

properties and width. This is also the approximate plateau length, in quantized 

Hall effect experiments done under those conditons2*'. 

(e) A standard device 

Figure 2 shows a standard MOSFET, suitable for the observation of the quan- 

tized Hall effect. It is made up of a 1.0 pm thick insulator, grown on a body of 

semiconductor material with thickness of about 30 pm. On top of the insulator 

material there is a thin metallic gate. 



M. Simões and I. Ventura 

1 e 2 : HALL PROBES 

3 e 4  : POTENTIAL PROBES 

SEMICONDUCTOR I =O 

Fig.2 - Standard device 

Electrons move in a thin layer (N 50 A) around the insulator/semiconductor 

interface. 

The device is 2.0 mm long and has 0.50 mm in width. The distance between 

potential probes is 0.30 mm. 

A11 riumerical results shown in Figures 3 anà 4 refer to' this standard device. 

After solving the Hamiltonian, and constructing the statistical mechanics of 

the ensemble of orbitals, we compute the average value of the variable X. In order 

to get the longitudinal voltage from that, we then take V, - t < E >, where 

1 = 0.30 mm is the distance between the potential probes, and < E >, the electric 

field average value, can be obtained from < X > by means of Eq.(36). 

In this regard, we recall that the volume Vol appearing in that equation is 

the orbital volume (the fraction of the device's volume ascribed to each orbital): 

Vol= L x L x D, where D Y 31pm is the device thickness. 

Even though we have chosen the MOSFET as our theoretical framework, the 

theory presented here is general. It can be easily modified for application to any 

kind of device where the quantized Hall effect has been observed. AI1 one needs to 

know is what effect, in the device, plays a role analogous to that of a gate voltage, 

fixing the system's number of carriers. 

Let us then briefiy discuss a device without gate. Consider, for instance, a 

device similar in form to the standard device of Figure 2, but with the insulator 
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replaced by a thin layer of dopped semiconductor; and suppose that the impurity 

concentration is small, and also tKe temperature is very low. Let L  be the device 

length, I  its total current, N the number of carriers (electrons), v the average 

electron speed, and M their effective mas .  

For a given value of the total current, which we suppose to be small, I  

eNv/L, the electronic kinetic energy whill be 1 NMZ r M ( L I / ~ ) ' / z N .  

Now, if is the energy needed to ionize an impurity and produce a carrier, 

then the electron gas has also an extra ionization energy c,N;  so that the total 

energy shall be: 

This is a nonconservative system. When the current is constant the current 

source continuously supplies the necessary energy, to compensate dissipation, and 

keep mechanical energy constant. In spite of that, and considering that the device 

is at very low temperature, we will use the universal criteria of minirnizing its 

mechanical energy, in order to determine its preferred configuration. 

Minimizing Eq.(69), we then conclude that the system's number of carriers 

is current dependent: ~ 1 6 / e & .  Taking for example: M = M/10, c, = 
10-6eV and I  - 100 pA, one gets a value for the number of carriers, which is close 

in magnitude to the typical number of carriers in quantized Hall effect devices. 

Another very important conclusion one gets in the realm of this model, is that 

the electron's velocity results independent of the current value but depends only 

on the ionization energy, and on the electron effective mass: v = da. 
Notice that, in cases where is very small, the electron speed will also be 

very small, so that the passage of low currents through the device will cause little 

dissipation. 

Consider the limiting case when the impurity concentration is very high, and 

the binding energy E ,  very small. In this case, thanks to the tunnel effect and(or) 

to temperature effect, electrons may originally form a sort of gas, even before the 

onset of current. 
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It seems to us that this device without gate we briefly discussed, might be of 

some use, at least as a preliminary and rough model for the heterojunction-lie 

devices. 

Anyway, the number of electrons in the system is defined somehow. The effect 

that, in devices other than MOSFET, fixes the total number of carriers, is called 

here the effective gate voltage of the device. 

(f) Dominance of the electron on top of the orbital 
Now we pass to examined t,he case in which orbital polarization is mostly due 

to the dislocation of the (electron-type) quasi-particle on top of the orbital. Such 

an effect is expected to occur in the transition region between plateaus. 

For a first qualitative discmsion about the effect it is convenient to return to 

Landau theory, because of its simplicity. 

Before the introduction of perturbations, orbitals are a11 filled with the same 

number of electrons, and, thanks to Pauli's principie, a particle cannot move to 

another orbital, unless it gains a certain amount of energy, that will be bigger the 

deeper is the leve1 occupied by that particles in its original orbital. 

A small perturbation of the type 7, (analogous to Hamiltonian (44)) will 

mix the wave function of an electron of a given orbital with nonpopulated high 

energy levels of neighboring orbitals. But it is the quasi-particle on top of the 

orbital that will be mostly affected by the effect, specially in the transition region 

between plateaus, where the gap that inhibits that electron on top from moving 

away becomes much smaller than the binding energy of other quasi-particles. 

So, in the transition region, the orbital polarization is mainly due to the dy- 

namics of the quasi-particle on top, and not to the center of mass dynamics. Under 

these circumstances, and only for computational purposes, one can suppose that 

the orbital has a center of charge, corresponding to the (n - 1) charges belong- 

ing to the (n - 1) deeply bound quasi-particles; plus one more quasi-particle of 

very small binding energy, which is just the one that couples to flues, and whose 

motion shall be the main responsible for the polarization effect. 
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Now, in order to introduce this effect into tbe model, we construct the dynami- 

cal variables by combining pure electromagnetic variables, with only the position z 

and generalized momentum -ia, of the quasi-particle on top. The orbital elec- 

tric flw and momentum shall then be given by (see Eqs. (33), (34) and (35) for 

comparison): g& - e ( s /L )  and -ia, - e&. 

One must alço replace the mass Mo in Hamiltonian (38) by the electron 

mas M. 

Because of electron indistinguishability it is impossible to distinguish which 

one gained the average momentum ascribed to the top quasi-particle. Therefore 

a11 orbital electrons must be counted as carriers; or alternatively, one should count 

the orbital as a whole as a single carrier of charge ne. 

(g) The system at constant current 
At a given magnetic field strength, the choice of the total current fixes the 

orbital momentum, in a self-consistent way. Neighborhoods create a self-consistent 

externa1 source E,,,, at any individual orbital, so as to induce there the same 

average momentum required by the global current source. 

When computing the results shown below, we adopted the top quasi-particle 

approximation, and, in order to have a theoretical picture closer to the experimen- 

tal situation, we then modified the electric source value E,,, , concomitantly with 

the magnetic field variation, so as to produce the same total current in the device, 

for every value of B. 

If Itota' is the device current, the average orbital current shall be i = 
LItotai /H. On the other hand this same average current depends on the orbital 

average momentum in the following way: i = e < p, > IML; where the average 

momentum can be roughly estimated to be (gM)2L3/2n3 (in this estimate we 

took into account only Hamiltonians H2(&) and H;).  Combining a11 this with 

formulae (47) and (53), we obtain the relation between electric source E,,, and 

device current: 
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This approximated formula is reasonable only at Iow temperature. When 

treating the system at high temperatura, one can only obtain the function 

E,,, (Itota1), by means of a complex self-consistent numerical calculation, which 

we did not do. 

Figures (3) and (4) show the Hall resistance and longitudinal resistance (or 

conductance) which resulted from calculations of the standard device behavior. In 

these calculations we took the effective electron mass in the device material to be 

one tenth of the electron mass (M = M/10). In order to obtain the Hall resistance 

in ohms, one must multiply RHall by 25812.8fl.(') 

Figure 3a shows what happens at the relatively high temperature of 13OK, 

when the effective gate voltage is varied, but the magnetic field is kept fixed at 

200 kG, and the current at 0.4pA. In this case, temperature is so high that 

there is no Hall resistance plateau yet; although one can observe a trend towards 

formation of plateaus, at the indicated regions. One notices also, the oscillations 

in longitudinal resistance, which resembla those of the Shubnikov-de Haas effect. 

The next figure, ~ i ~ u r e  3b, shows the system's behavior at a temperature one 

order of magnitude lower, and at a current of 4.5 pA. Now, one clearly sees the 

Hall resistance plateaus, as well as the longitudinal resistance characteristic peaks. 

In Figure 3c, which corresponds to a still lower temperature (.15)K), and 

current of 12 pA, plateaus become somewhat sharper. There one notices also the 

longitudinal conductance, with its typical behavior. 

Figure 4a and 46 show the device behavior when we vary B, at constant tem- - 
perature (2.0°K and 0.60°K), constant gate voltage (V, = 30 mV), and constant 

current (0.95 pA and 0.82 pA, respectively). The picture is similar to the other 

case, in the sense that plateaus gain definition, and the longitudinai resistance 

peaks become sharper, as the temperature goes down. 

Figures 4c, which corresponds to conditions similiar to those of Figure 4b, 

shows the Hall resistance and longitudinal conductance, at the relatively IOW cur- 

rent of 0.064 pA, And finally Figure 4d shows the system's behavior at very low 

temperature and current. 
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vg (10-2 Volt) 

,. 25 1-j 
vg (1õ2 Volt 1 , 

3 7 
vg 102 Volt 1 

Fig.3 - Hall resistance and longitudinal resistance of the standard device as func- 
tions of the orbitals effective gate voltage, for M = O.lOM, and (a) B = 200 kG, 
T = 10°K and I = 4.5pA; (b) B = 200 kG, T = 1.2OK and I = 4.5pA; and 
(c) Hall resistance and longitudinal conductance, for B = 150 kG, T = 0.15OK 
and I = 12pA. 

Both for the order of magnitude of physical variables (magnetic field, gate 

voltage, Hall resistance, longitudinal resistance, temperature and current), as well 

as for the general behavior of the results, the example's shown here, compare well 

with experimental r e s u l t ~ ~ ~ ~ . ~ . ~ .  
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30 70 
B(kG)  (c) 

Fig.4 - Hall resistance and longitudinal resistance of th_e standard device as  func- 
tions of the magnetic field, for M = 0.10M, and (a) TI, = 30mVolt, T = 2.0°K 
and I = 0.94pA; (b) 7, = 30mVolt, T = 0.60°K and I = 0.82pA; (c) Hall 
resistance and longitudinal conductance, for vg = ZOmVolt, T = 0.47OK and 
I = 64nA; and (d) qg = 2OmVolt, T = 0.15OK and I = 30nA. 

(h) Ohmic behavior 
The authors of Reference (5) succeded in observing the system in Ohmic 

regime at very low temperature. 

In this regard, we report that, in some calculations, at very low temperature 
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and current, we have also observed the Hall voltage ohmic behavior. However 

we have not seen the ohmic behavior of longitudinal voltage. In that region, 

longitudinal voltage seems to grow with the square root of current. 

In some other calculations, we observed the formation of dips at the center 

of longitudinal voltage peaks. We interpret such an effect as being due to the 

thermal competition of the first excited state, where the average electric flux has 

a sign opposite to that of the ground state electric flux. 

(i) Mechanism of dissipation 

The existence of a longitudinal voltage means that dissipation must occur in 

the system. 

On the other hand the orbital is in a definite quantum state of well defined 

energy. 

Then, we are led to conclude that dissipation must occur outside the orbitals, 

in the "ele ctron bath". 

One might say that, because of electron number fluctuations, electrons alter- 

nately pass from the orbital to the "bathn and vice-versa. Since there is a tendency 

of accelerating the electron inside the orbitals, which is due to the externa1 source 

perturbation, it then happens that the bath supplies the orbitals with low energy 

electrons, and receive them back with higher speed. Or equivalently one can say 

that electrons belonging to the bath are scattered by the orbital to higher energies. 

It is just the cooling in the bath of those electrons coming back with higher 

energy that is irreversible, and causes the dissipation effect. But, in spite of that, 

the orbital quantum state energy is well defined. 

(j) Specific heat 

To conclude the analysis about the normal Hall effect, we will show some 

results referring to the system's specific heat. Figure 5 shows examples of 

specific heat calculations for Hamiltonian Hcharge, at two temperature values 

Ta = eBma,/15M and Tb = eBma,/lOOM, where B,,, = 100 kG. 



M. Simões and I. Ventura 

Fig.5 - Specific heat of the electron gas computed with Hamiltonian 
Hcharge, as function of the magnetic field, for M = M. The figure 
also shows the system's Hall resistance. 

The energy spacing between successive levels of Hamiltsnian H,, is some- 

what larger than the gap between levels of Hcbarge; and then, in the considered 

temperature region, the contribution of the former Hamiltonian to the specific 

heat is negligible in comparison with that of Hcharge; so that, results of Figure 5 

are already a good approximation for the system's total specific heat. 

If the electron effective mass is M = M, then temperatures Ta and Tb are 

respectively .83OK and .5OK. If however M = 0.10M, then those temperatures 

increase by a factor ten. 

Our result at temperature Ta compares reasonably well with electronic specific 

heat phenomenological calculations by Gornik et aL8, which have been used to 

interpret experimental data of .temperature variation, in s deviçe heated by electric 
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field pulses, in the temperature region from l.O°K to 5.0°K. The calculations of 

those authors are in turn based upon a method by Zawadzki and LassingZ2, which 

introduces a phenomenological density of states around each Landau level. 

11. The anornalous effect 

Let us again take a system of surface S, charged with total charge e N .  At 

very high magnetic field, the ãystem will have more Landau orbitals than elec- 

trons, because the ratio BSIN becomes larger than the magnitude of a magnetic 

quantum flw 2n/e.  

But since magnetic flux is quantized at integer multiples of %/e ,  there occurs 

the formation of larger orbitals, each one of them with p quanta of magnetic flux. 

And, in that case, one gets Hall resistance plateaus of the type: 

which characterizes the so-called anornalous effect. 

Our procedure here will Ee similar to the one used in the normal effect case, 

with an important difference in the Hamiltonian dependence on the magnetic 

flux/momentum. 

(i) First, let us see how the global conditions determine a classical value for 

the ratio pln (regarding p and n as continuous variables). If N is the fixed total 

number of carriers, K = eBS/Zrp the number of orbitals, and n = N / K  the 

number of electrons per orbital, then classically we have the relation 

with 7 = eS /2rn .  

(ii) The orbital energy associated to the interaction with the magnetic field is 

because now, in the orbital ground state, a11 electrons will be at the lowest energy 

level. 
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(ii) Since only the first few energy levels contribute to the phenomenon we 

consider here, the orbital is an essentially quantum mechanlcal system. It works 

in the extreme quantum limit, in opposition to the semiclassical regime of other 

phenomena. So it is difficult to visualize the form of an orbital. 

In spite of that, and in order to simplify this preliminary discussion of the 

fractional effect, in Figure 6 we outline a picutre of a sector in the ensemble of 

orbitals. The figure is based on the paper's theory, specially on the form of the 

Landau wave function, but also on classical intuition. 

In Figure 6, the dotted lines define in the device's plane the space regions 

belonging to the nih orbital, to the (n+  l)th one, and so on. Line AB shows where 

the nth orbital Landau wave function (the even ones) have their maxima. Line 

CD does the same for (n + l)th orbital. The circular lines are only to recaII the 

classical view of electrons rotating because of magnetic force. The arrow shows 

the direction of current fiow. 

Fig.6 - Sketch of a sector of the orbitals' ensemble. The dotted lines 
determine the domains of different orbitals (see the text for details). 

In order to construct the nth orbital dynamics, we take line CD in the 

neighbouring orbital as a line of reference for the vector potential, making first 

Â d e  = O. We also ascribe to the nth orbital the rnagnetic flux JB,, = 

$A,,, Ã. dt?= Sf Á. dt? (assumíng S," Ã -  dt?is compensated by -$,O Ã. &I. 
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If we then reintroduce the operator S: 2.4 its average value will contribute 

to the external sources of the nth orbital dynamics. 
h 

(iv) Now we make the extreme simplification of supposing that 4~ may be 

simultaneously the orbital magnetic flux and the orbital momentum, as we explain: 

(a) Consider that the system is initially uncoupled to electric sources (being 
h 

in a &B eigenstate, p). In this case, if the system is in its ground state, we 

interpret $B as the orbital magnetic flux; and 

(b) However, if that same system is then coupled to a very weak electric source, 

we then interpret the difference = 4B - C p as a avariable proportional to 

the orbital momentum: p, = 5 6dB. And p, will thus be related to the current 

produced by the electric source. 

(v) In order to show an example of calculation for the anomalous effect, we 

solved the phenomenological Hamiltonian: 

coupled to external sources of the type H: and H ; .  In Eq.(60) W is a phenomeno- 

logical constant. 

The reasons for constructing such phenomenological Hamiltonian are: 

(a) It has a term like that of Eq.(59). 

(b) In the classical limit it respects relation (58).  

(c) At any given value of n, by expanding the Hamiltonian in dB around its 
1 classical minimum we get: ~ ( n )  + p2 + . e ,  where TI = 1; ( 4 B  - 4: ) and 4: 

is the value of 4B that minirnizes the classical energy. So that the second term in 

that expansion can be interpreted as the kinetic energy of the orbital electronic 

cluster. 

(vi) Figure 7 shows the result of a calculation with Hamiltionian (60), made 

with W = 0.70, at  very low temperature (T = eBI40M).  In this calculation, 

the electric source was kept fixed, for every value of B. There one sees fractional 

plateaus of the type $ , 2  and 3. One notices also the plateau pln = 2. As far as we 
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know, there is no report on the observation in experiment of anomalous plateaus 

p/n, with an even p and odd n. 

Fig.7 - Example of anomalous effect calculation: Hall 
resistance and lon.gitudina1 voltage, a s  functions of the 
magnetic field. 

In conclusion, we say that the theory presented here provides a good treat- 

ment for the quantized Hall effect of the normal type, leading to a quite complete 

picture of the phenomenon although the descreption of the anomalous effect is still 

phenomenological and tentative. 

The theoretical method introduced in Reference (I) and in this paper, which 

emphasizes a few modes of qt~antum flux as the relevant variables, showed to be 

the natural framework for treating the quantized Hall effect. 
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Resumo 

O artigo apresenta uma teoria do efeito Hall quantizado baseada na quan- 
tização de fluxo. Devido à ação do intenso campo magnético, o dispostivo é sub- 
dividido num número muito grande de orbitais semelhantes, aproximadamente 
quadrados. O orbital é o sistema dinâmico elementar. É uma região de cor- 
relqão, onde poucos elétrons correlacionados interagem com o mesmo quantum 
de fluxo magnético. Sobre cada uma dessas regiões de correlação atua uma volta- 
gem de gate efetiva, proporcional à voltagem de gate do dispositivo global, e cuja 
variação faz alterar o número de elétrons de cada orbital. Mas, como esse número 
é quantizado, sua variação se faz aos saltos, produzindo a seqüência de plateaus 
do efeito normal. O acoplamento do fluxo elétrico do orbital a uma fonte elétrica 
externa é que provoca a passagem de corrente. O fluxo elétrico também se acopla 
ao operador que descreve flutuações do número de elétrons do orbital. Estuda-se o 
comportamento de um dispositivo padrão a temperatura finita. Obtém-se a volta- 
gem Hall e a resistência longitudinal como funções das variáveis voltagem de gate, 
campo magnético, temperatura, e da corrente do dispositivo. Calcula-se também o 
calor específico como função do campo magnético. Os resultados comparam favo- 
ravelmente como o que se observa nas experiências sobre o efeito Hall quantizado. 
Apresenta-se também uma análise preliminar a respeito do efeito anômalo. 


