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Abstract  A method is presented which quantizes e l ec t roma~e t~c  fluxes 
directly in flux space. It is based on the commutation law [&, 4 E ]  = i, 
where & is the magnetic flux, and $E the longitudinal electric flux of 
a quasi one-dimensional conductor. The relevance of such a method for 
the description of the quantized Hall plateaus is discussed. In a second 
step, the polarization electric flux is introduced, together with a method for 
quantization of hybrid variables formed with pure electromagnetic fluxes 
plus electronic variables. 

1. Introduction 

After Laughlin' evoked gauge invariance to explain the quantization of the 

Hall conductancel-', it is becoming clearer that the effect should be caused by a 

macroscopic quantum mechanical phenomenon6-' . Here I propose a theory which 

formalizes this idea and might account for some basic features of the quantized 

Hall effect. The theory deals with a single (extended) degree of freedom: the 

magnetic flux and its canonical momentum, the electric flux. 

Laughlin ideal Hall effect device is a ring where many Landau orbitals run in 

parallel. Each one of the Landau orbitals can be represented by the system shown 

in fig.1. 

It is a ring of radius R and cross section S, with a magnetic field 2 parallel 

to its symmetry axis z. Electrons are confined in a thin slice of the ring, forming a 
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quasi one-dimensional gas in t,he plane of closed curve I'. The systems' observables 

are5 the Hall voltage V, and the longitudinal voltage V,. 

If 4 ,  is the electric flux through S, and f$B the magnetic flux through any 

one of the surfaces encircled by I', one can show that the quantum operators 4 ,  
and 4, associated with thern obey the commutation relation 

This commutator can be decluced directly from the equal time commutation re- 

lations of the electromagnetic field. Eq.(l) is true for any pair of surface S and 

closed curve I' with interception. If they do not intercept, the commutator of 

fluxes vanishes. 

Fig.1 - Idealized orbital I' is the dotted 
curve. The horizontal full line in cross- 
section S shows the plane of the quasi 
one-dimensional electron gas. 

$E and 4, are therefore a pair of extended operators, built up as linear 

combinations of the local fieid i(?) and Ê(q, and which form a canonical pair. 

One observes that the observables, V, and V,, are respectively proportional 

to the expectation values of the fiuxes < J B  > and < $E > 
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That is, the two observables are related to a canonical pair. It would then seem 

reasonable to suppose, as I do here, that: the pair of fluxes should effectively 

decouple from other degrees of freedom, and develop a dynamics on its own. 

In the 4E representation, where states are represented by functions + ( 4 E ) ,  

the action of J B  in a given state must be given by i%. Notice that J B  is the 

total magnetic flw, i.e. it accounts for the flux of external magnetic fields, as well 

as for that generated by currents on the electron gas. 

Before exploring the flux dynamics one has first to establish the domain of 

the wave functions $(&) in (bE space. 

In a high magnetic field, a Hall effect device is, I suppose here, an ensemble 

of a large number M of well separated and almost identical narrow tubes of few 

electrons, like the idealized system of fig. 1. Each tube is in fact defined by the 

electronic wave function of a Landau orbital. 

Let us consider one particular tube. To suppose that electric flux fluctuations 

through its cross-sections S should be produced only by the few electrons moving 

inside it, seems to be an educated guess, because the flux produced there, by the 

immense number of distant electrons moving in other tubes, would result in an 

average classical source field, perturbing the orbital dynamics. 

The real Hall effect system allows direct control of the external magnetic 

field, of the gate voltage,and of the total current in the ensemble. But one has 

no externally direct control of the number of electrons in each tube. In this 

paper however I analyse a simpler system, where supposedly one can define the 

number of electrons at one's own will. This system is nevertheless good enough to 

illustrate the method and the consequences of flux quantization. Here, I treat the 

one electron case, leaving to the end of the paper a discussion about multi- carrier 

situations. 

If the system contains a single electron, the electric flw on S must lie in the 

interval -e/2 5 #E 5 +e/2 and this interval must be the domain of the wav'e 

function ). 

Now one can easily obtain the eigenfunctions and eigenvalues of the magnetic 

flux operator 
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in the domain above. If p is m integer, the ptb normalized eigenfunction reads 

whereas its associated eigenvalue is dBp = %rp/e resulting therefore in magnetic 

flux quantization consistent with the observed anomalous quantized Hall effect4ve 

(although in the present case the magnetic flux can be an even as well as an odd 

multiple of 27r/e). 

From now on the pth eigenstate of shall be represented by J p  >; and a 

generic state $, (dE) by Ia > . I also define dEa and r#B a as the expectation values 

of electric and magnetic fluxes in states a. 

In particular, notice that mEp = O, which means that #E vanishes if the system 

is apure eigenstate of magnetic flux, and this explains why the longitudinal voltage 

V,, given in eq.(2), must drop to zero whenever one has a very sharp Hall plateau. 

With the purpose of illustrating why plateaus appear in dynamical models, 

I will now quantize a model Hamiltonian that is quadratic in the magnetic and 

electric flux operators belonging to a single Landau orbital. So I define the Hamil- 

tonian 

where HB and HE are respectively its magnetic and electric parts 

H has therefore a self induction term & /2L a longitudinal electric fEuz capacity 

term &/2c, with c = L/2 as the capacity for longitudinal fiuz only; and two 
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external source couplings. For brevity's sake, I call b the external magnetic field. 

Notice that the external electric source may be related to the action of a global 

source in the ensemble of orbitals. 

This is one of the simplest non trivial Hamiltonians one could imagine for 

the system of fig.1. It is not however the real Hall effect Hamiltonian. The 

true Hamiltonian should result from the integration of electric degrees of freedom, 

and would of course couple flux operators belonging to different orbitals in the 

ensemble. Nonetheless the quadratic Hamiltonian already shows well the role that 

0ux quantization may have in quasi one-dimensional conductors. 

Let us first ignore the electric Hamiltonian, and solve HB . Its eigenstates are 

the same as those of J B  : &, (dE) or /p  >. The corresponding eigenvalues are then 

given by 

The last equation means that, for a given magnetic source b, the ground state of 

HB is the state IP, >, with energy E i C ,  where p, is the closest integer to be/27r. 

I call this system with no electric energy Hamiltonian the ideal Hall effect 

system. Below I Iist some of its properties: 

a) When bel2n is half integer, the ground state has a double degeneracy. 

b) Besides this discrete set of cases of degenerate vacua, the ground state 

magnetic flux q5B is given by 27rpc/e. That is, for every integer p,, in the interval 

& - L < & . <  - ,= - pc + i, the magnetic flux is in the exact plateau 4~ = 2apc/c. 

These well defined quantized plateaus are typical of the ideal case. They 

occur only in situations that allow one to diicard the energy of the longitudinal 

electric field, as compared to the magnetic energy. This is a necessary condition 

for having simultaneous eigenstates of H and J B .  In this case the semiclassical 

flux quantization made by Laughlinl would hold. 

c) For be/27r different from any half integer the system shows no longitudinal 

resistivity because, as discussed above, in magnetic flux eigenstates the electric 

flux expectation value must vanish, and so the longitudinal voltage Vz vanishes. 
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d) If be/% is exactly a half integer, p + 2, then the ground state of H ,  is 

degenerate, and the ideal system can be in any state of the form 

]e, u >=: cos deiu Ip > +sen de-'" (p + 1 > (8) 

(for any pair O, u, such thal; O <_ O, u 5 ~ 1 2 )  with equal probability. Then the 

electric flux expectation value, which in the vacuum (O,  u > is 

would be undertermined. 

In what follows I show that the full Hamiltonian, which incorporates the 

electric energy, leads to nosharp plateaus. I compute the ground state of total 

Hamiltonian H,by means of' a variational calculation, suggested by the ideal case 

analysis. 

If the externa1 magnetic field is between two given consecutive multiples of 

the magnetic flux quantum, p 2nle and (p + 1) 2s/e, then the natural trial is a 

ground state which mixes states Ip > and (p + 1 >. Since state 10, u > of eq.(8) is 

the most general normalized. state one can make up with those two dB eigenstates, 

I choose it to be the trial ground state. O and u are now variational parameters 

one must adjust to get the expectation value < OulHIOu > to its minimum, so as 

to approach the exact ground state. 

Let Bo and uo, be the values of B and u which minimize the Hamiltonian 

expectation value in the trial state 

2 1 1 2  

cos 2.0 = [1 + (?i) ] 
and 

1 be 2 - 1 1 2  
sen 2Uo = A p + - - -) + A'] [( 2 2, 

The constant A is of second order in the fine structure constant 
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Then one can use formula (9) to get the longitudinal electric flux expectation value 

associated with external sources b and E .  The magnetic flux is in turn given by 

Fig.(Z) shows the electric and magnetic fluxes expectation values when the 

constant A equals 0.05. 

Fig.2 - The expectation values of electric and magnetic fluxes 
as functions of the external magnetic source for A = 0.05. 

The bigger A is, the more different the system will be from the ideal quantized 

Hall effect. The variational approach used here indicates that the Hall plateus start 

being poorly defined if A N 0.5. 

The trial function choice also introduces spurious discontinuities on dB and 
#', at integer values of be/2ir, which are not visible in the scale fo fig.(2). The 

adoption of a more symmetric trial function, that mixes 16s > with the state 

Ip - 1 >, would remove those false discontinuities. 
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The theory might in principie be extended to multi-electron and multi-hole 

systems. In a gas of n carrieis, the maximum electric flux through cross-section S 

should be ne/2, so that perhaps the wave function domain could be enlarged to 

the interval (-ne/2, +ne/2). That would lead to plateau states of the type 4 B p n  = 

Z~plen .  On the other hand 1,here are factors which tend to inhibit configurations 

of longitudinal electric f lw  around ne/2, with n larger than one. For example, (1) 

those configurations should be rare in phase space, since they amount to having 

two or more electrons in the neighborhood of the sane  cross-section S-which is 

quite unlikely an event; and (2) because of the proximity of the electrons these 

configurations would also hitve an huge Coulomb interaction energy. One must 

then be cautious concerning the extension of the flux wave function domain to 

regions larger than the interval (-e/2,+e/2). This is clearly a point which calls 

for a detailed analysis of the particular physical system where one intends to apply 

this method. 

In order to pass from oiir results, which refer to a single system, to the whole 

ensemble of M systems (that supposedly cooperate and are a11 in the same quan- 

tum state) one must multiply fluxes by M ,  energies by M,and must also rescale 

the externa1 sources properly. The parameters L and C of eqs. (4) wilI depend 

on geometry and should be taken as the orbital impedance and capacity. A rough 

estimates gives L - C - ZãR, so that Y - l , A  (e/%)' - 10-~, for the one 

electron system. This figure gives one an idea of how far the system should be 

from the ideal case. 

It then seems possible that this method of flw quantization in the very f lw  

space might have a bearing to the description of the observed quantized Hall 

plateaus. In this regard I outline the following facts: (i) The longitudinal voltage 

V, is proportional to & ,  imd the Hall conductance is given by ne/&; so that 

if n is allowed to change with b, our results might be use ful for interpreting the 

experimental data. (ii) The eiectrostatic interaction (related to the radial electric 

flux, not to the longitudinal one) might be described by adding to the Hamiltonian 

eq.(4) a term of the type 
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where fi is the electron number operator. The term fi2 accounts for the Coulomb 

energy, whereas V, is the externa1 gate voltage that acts against the system's 

tendency to discharge. Since the new Hamiltonian does not depend on 4, the mo- 

mentum of fi, its ground state will always have a well defined number of electrons 

n. Then if, at fixed b, one keeps the system in a flux eigenstate = Z.lrp/e) and 

increases V,, one will find that the Hall conductance as a function of V, shows a 

sequence of plateaus, analogous to the pattern observed in experiment. (iii) One 

effect of impurities is to create quantum fluctuations in the number of carriers. 

Thus their role could be introduced by means of another Hamiltonian part of the 

type 

which of course would lead to a ground state without a well-defined n. (iv) The 

results presented in this paper still hold if the system's geometry is not cylindrical. 

This method is a cannonical extension of Dirac's quantum flux method. 

This second section complements the quantum flux method by introducing 

the effect of electric polarization. 

Let us take our system to be a box of length L and cross section S, with 

periodic boundary conditions. It could be either the ring represented in figure 1, 

or a rectilinear box, with is length parallel to the x direction. 

The electric part of the electromagnetic cloud that dresqes the electron, and 

is responsible for the low energy Coulomb interaction, is already taken into ac- 

count by the electric flux in commutator eq.(i), since this commutator can be 

deduced from a local field commutator. However, what that electric flux still does 

not account for is the effect of electronic polarization, because (in the traditional 

formulation of quantum electrodynamics) the electromagnetic and the electron 
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fields are independent variables, in the sense that each one of them has its own 

completeness. 

Polarization is an effect 'induced by externa1 sources, which drives a charged 

particle in a system to occupy a new avhrage position different from its former 

natural position. 

Suppose that our box of volume LS has one electron inside. Thus the elec- 

tronic position variable will be in the interval -L12 < x < L/2 .  So, I define the 

polarization operator 

that measures the deviation from the normal electron position x = 0; and the 

associated polarization electric f lw 

Then I interpret the difference between the pure electromagnetic electric flux 

and the polarizkion f lw as the true electric field flux 

This construction bears .a (remote) analogy to the standard procedure, used in 

classical electromagnetism of material media, of introducing an auxiliary displace- 

ment vector 5, but making bhe complete electric field as the difference between 5 
and the polarization vector. 

On the other hand, the canonical momentum of the total electric flux is also 

another hybrid operator of magnetic type 

where -2, is the electro? !pneralized momentum, and J B  the pure electromag- 

netic flux of commutator eq.(l). 
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Now, one sees that the total magnetic flux 4gta1 results to be just propor- 

tional to the electronls physical momentum, as  defined through the rule of minimal 

coupling 

e - e t o t a l  f i =  -ia, + -4, = z4B 
L 

One notices., in this regard, that the operator kq5B is in fact the space average 

of the vector potential operator (1/L $ A, d z )  in the orbital. 

The commutator of the total fluxes is 

1 t o t a l  
[ t i  ] =- i  ( A 4  

so that it is strictly the variable +&Ota', and not #Eta', that makes a canonical 

pair with #ita1. Nevertheless, is spite of the factor 112, this alternative quantum 

flux scheme, which explicitly includes the polarization effects, also leads to the 

same set of physically allowed magnetic flux eigenvalues obtained in the former 

case: 2np/e.  This is because an account of the additional polarization term, the 

domain of variation of the variable !&Ota1 is the same as that of : ( - i, +i). 
This method can also be generalized to describe many-electron orbitals, where 

one may take z and -8, to be the position and generalized momentum of the 

electron cluster. 

In applications of the method there are at least two distinct situations: 

(a) when the system's Hamiltonian is dominated by the pure magnetic energy 

1/2J B2d< the important operator shall be &; and (b) if, however, the domi- 

nant Hamiltonian term is the electron kinetic energy, then the important operator 

shall be #ita'. 
Following papers, by M. Simões e I. Ventura

Q

, present (a) the statistical Me- 

chanics of the quantum flux for an ensemble of orbitals; and (b) the application 

of the canonical quantum flux method to the direction description, at finite tem- 

peratures, of the transistor where the quantized Hall effect is observed. 
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An analysis, by I. Ventura1', on the extension of the canonical flux quanti- 

zation to systems which are essentially three-dimensional, is being concluded and 

shall be published elsewhere. 

At a section of Academia Brasileira de Ciências, in October 8th,  1985, in São 

Paulo, I. Ventura presented an application of the canonical quantum flux method 

to reinterpret the Bohn-Aharonov effect, and also to explain the flux quantization 

associated with the motion of a Cooper pair in a superconductor ring. I thank 

the referee for pointing out to me the paper by Webb et all' which reports the 

observation of Bohm-Aharonov oscillations in submicron normal-metal rings. It 

seems possible that the quantum flux method introduced here, might have some 

relevance to the description of that phenomenon. 
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Resumo 

O artigo apresenta um método que quantiza fluxos diretamente no espaço 
dos fluxos. O método se baseia na lei de comutação [JE, JB ] = i ,  onde JB é o 
fluxo magnético, e $E O fluxo elétrico longitudinal de um condutor quasi unidi- 
mensional. Discute-se a relevância desse método para a descrição dos plateaus 
do efeito Hall quantizado. Numa segunda etapa introduz-se o fluxo elétrico de 
polarização, junto com o método de quantizaçáo de variáveis híbridas, formadas 
com fluxos eletromagnéticos puros e variáveis eletrônicas. 


